无网格方法.
- 格式:pdf
- 大小:4.17 MB
- 文档页数:14
西北工业大学硕士学位论文无网格方法在计算流体力学中的应用研究姓名:张小华申请学位级别:硕士专业:计算数学指导教师:欧阳洁20060320两北工业大学硕士学位论文第二章无网格方法的基本知识Aa=Uu=ll“2矿2(x。
)氐(x.)leN(x2)l九(x。
)j图2.1由径向基函数构造的形函数及其一阶、二阶导数Figure2.IRBFshapefunctionandit'sthefirst,thesecondderivatives16))@江办龙12XX{红衍珐=.JJDQq;@咿牛中中ll式A(3)在整个域上,有£w(X--X1)搠=1(4)w(x—x,)是单减函数,即它随着x到x,距离的增加而减小。
图2.3二维三次样条函数及其一阶、二阶导数itsderivativesFigure2.32Dcubicsplinefunctionand为了计算的方便,权函数的影响域通常选为圆形域或矩形域(如图2.2)。
常用的权函数有f{一4r2+4r3,s{三次样条函数:M,(r)={{一4,+4r2_4r3{<r≤1l0"11R塑j暨;些查耋堡圭兰堡鎏兰篁三塞玉塑丝童鎏塑董奎垫塑四次样条函数:wc,,={:一6,+8,一3一:;:图2.4二维四次样条函数及其一阶、二目r导数Figure2.42Dquarticsplinefunctionanditsderivatives图23和图2.4分别给出了二维三次样条函数和四次样条函数及其一阶、二阶导数。
从图中可以看出它们都具有C2连续性。
在本文中,如不作特殊声明,权函数一律取为三次样条函数。
权函数的影响半径对无网格方法近似函数的构造影响非常大。
图2.5给出西北I.业大学硕士学位论文第三章瞬态热传导问题的无网格算法I目#自∞e!E!自■■■口《自目自自自|自=t!!==E=!==e!=gj目EEEE!■j目E=EE■日g!j==目■目t=,EE■Ea■■■■■t■■■自E自■t自皇(a)位置P1(b)位置P2(a)ThepositionofPl(b)ThepositionofP2图3.611×11个节点均匀分布时0-EFG方法、FEM方法与精确解的比较Figure3.6ComparisonbetweenFEMandO-EFGsolutionsfor11×11uniformednodes圈3.7(a)0.4秒时0-EFG解的温度分布Figure3.7(a)ThetemperatureprofileofO-EFGsolutionsfor0.4s3.4本章小结图3.7(b)0.4秒时的精确温度分布Figure3.7(b)Thetemperatureprofileofanalyticalsolutionsfor0.4s本章将EFG方法和日加权法相结合,成功地求解了一维、二维瞬态热传导问题,其数值结果表明:fal0-EFG方法直接采用EFG方法对空间进行离散,因此不需网格生成,前处理方便。
无网格法(Mesh-less method)无网格方法(Mesh-less method)是在数值计算中不需要生成网格,而是按照一些任意分布的坐标点构造插值函数离散控制方程,就可方便地模拟各种复杂形状的流场。
该法大致可分成两类:一类是以Lagrange方法为基础的粒子法(Particle method),如光滑粒子流体动力学(Smoothed particle hydrodynamics,简称SPH)法,和在其基础上发展的运动粒子半隐式(Moving-particle semi-implicit,简称MPS)法等;另一类是以Euler方法为基础的无格子法(Gridless methods),如无格子Euler/N—S算法(Gridless Euler/Navier-Stokes solution algorithm)和无单元Galerkin法(Element free Galerkin,简称EFG)等。
无网格方法可以方便地利用坐标点计算模拟复杂形状流场计算,但不足之处是在高雷诺数流动时提高数值计算精度较困难。
无网格方法中比较常见的还有径向基函数方法(Radious Basis Function),主要使用某径向基函数(如(MQ)f(r)=r^5)的组合,来逼近原函数。
吴忠敏院士在这方面有比较突出的工作。
最近在了解有限元法和无网格法,介绍中知道它们都是数值计算方法,主要区别一个是基于网格的,一个是无需借助于网格的。
但从有关数值计算方法的书和其他资料中,基本上没有见提到有限元法和无网格法,数值计算方法的书中基本上主要内容都包括:插值和拟合、数值微分和数值积分、求解线性方程组的直接法和迭代法、计算矩阵特征值和特征向量和常微分方程数值解等等。
而在有限元法和无网格法的具体算法计算过程中也都会用到上述数值计算方法中的某些。
第24卷第4期(总第109期)机械管理开发2009年8月Vol.24No.4(SUM No.109)MECHANICAL MANAGEMENT AND DEVELOPMENT Aug.20090引言有限元法(FEA)是随着电子计算机的发展而迅速发展起来的一种现代计算方法,但FEA是基于网格的数值方法,在分析涉及特大变形(如加工成型、高速碰撞、流固耦合)、奇异性或裂纹动态扩展等问题时遇到了许多困难。
同时,复杂的三维结构的网格生成和重分也是相当困难和费时的。
近年来,无网格得到了迅速的发展,受到了国际力学界的高度重视。
与有限元的显著特点是无网格法不需要划分网格,只需要具体的节点信息,采用一种权函数(或核函数)有关的近似,用权函数表征节点信息。
克服了有限元对网格的依赖性,在涉及网格畸变、网格移动等问题中显示出明显的优势。
1无网格方法的概述无网格方法(Meshless Method)是为有效解决有限元法在数值模拟分析时网格带来的重大问题而产生的,其基本思想是将有限元法中的网格结构去除,完全用一系列的节点排列来代之,摆脱了网格的初始化和网格重构对问题的束缚,保证了求解的精度[1]。
是一种很有发展的数值模拟分析方法。
目前发展的无网格方法有:光滑质点流体动力学法(SPH)、无网格枷辽金法(EFGM)、无网格局部枷辽金法(MLPGM)、扩散单元法(DEM)、Hp-clouds无网格方法;有限点法(FPM)、无网格局部Petrov-Galerkin 方法(MLPG)、多尺度重构核粒子方法(MRKP)、小波粒子方法(WPM)、径向基函数法(RBF)、无网格有限元法(MPFEM)、边界积分方程的无网格方法等。
这些方法的基本思想都是在问题域内布置一系列的离散节点,然后采用一种与权函数或核函数有关的近似,使得某个域上的节点可以影响研究对象上的任何一点的力学特性,进而求得问题的解。
2无网格方法国内外研究的进展无网格法起源于20世纪70年代。
无网格流形方法在固体力学中的应用研究摘要:在原有的无网格类方法中,为了克服位移场中不连续的问题,通常使用通视准则、绕射准则以及透明准则等方法,但是这些方法并不能完全解决问题。
为了弥补不足,无网格流形方法中引入了有限覆盖技术,该技术可以在无网格类方法处理不连续问题的过程中提供准确的数学依据。
但是,当节点形成的覆盖没有和不连续连接在一起时,不连续会把覆盖分割成不规则的子覆盖,造成计算结果的不准确。
为了克服有限覆盖技术的这一缺点,无网格方法采用强化分析法,目的是通过裂纹尖端位移场中的奇异项使无网格流行方法中的基函数得到扩展,对于无网格方法是种强化和扩展。
关键词:无网格;固体力学;流行方法;有限覆盖1 引言无网格方法是一种计算精度高、前处理简单的新兴数值方法。
由于无网格方法成功摆脱了网格的束缚,只需节点信息,因此,在处理复杂的工程问题和科学问题中发挥了重要作用。
无网格方法的发展时间短,其性质和方法还需进一步的研究和完善。
无网格流形方法就是把数值流形方法植入无网格方法中得到的,是对无网格方法的一种扩展[1]。
无网格流形方法是无网格方法中的其中一种,该方法无需设立流形单元,在模拟不连续问题是发挥着无可替代的作用[2]。
无网格流形方法没有诞生之前,无网格方法在处理不连续问题时通常使用透明准则、通视准则以及绕射准则等数值经验方法。
透明准则把裂纹当做不完全的阻隔体,具有一定的穿透能力;在通视准则和绕射准则中,裂纹则被视为阻隔体,区别在于在通视准则中,受阻隔的节点之间互不影响;在绕射准则中,影响线在裂纹尖端则会发生绕射现象[3]。
受数值经验方法的限制,这些方法在处理不连续问题的过程中还会产生新的不连续,试函数的建立也因此受到影响。
为了弥补数值经验方法的不足,在无网格流形方法中引入了有限覆盖技术,该技术为无网格方法在处理不连续问题的过程中提供了良好的数学支撑,避免了对试函数的影响。
但是,有限覆盖技术也有不足,当节点形成的覆盖没有穿过不连续时,不连续则会把覆盖分割成为不规则的子覆盖,影响了计算精度。
首先,从五个方面进行有限元和无网格方法比较,分别是网格划分、形函数的产生、边界条件、系统离散方案、系统方程的求解:1、网格划分有限元方法:连续体被划分成由有限个称作单元的小网格组合而成的离散结构。
单元划分是前处理过程中非常重要的部分, 通常占整个分析过程中大部分时间。
由于单元能按不同的联结方式进行组合,且单元本身又可以有不同的形状,因此可以模拟几何形状复杂的求解域。
无网格方法:问题域由一系列任意分布的节点来代替, 不需要用单元或网格来进行场变量插值, 也无须描述节点之间的关系。
节点的生成可完全由计算机自动完成, 这大大节省了分析人员的时间, 也相对较容易在分析过程中对节点进行重新划分。
几何体边界是由节点替代(而非离散) , 如图1所示,两个节点之间的任意一点可由近似函数插值。
(a)有限元法中光滑曲线边界由三角形直线边代替(b)无网格法中光滑边界由节点替代图1 网格-节点示意图2、形函数的产生:有限元法和无网格法都可从哈密尔顿原理推出, 它们之间最关键的区别是形函数的构造。
有限元法:形函数是定义于单元的局部近似函数,因此函数的连续性、光滑性在网格的分界处必然受到限制,计算后还需要进一步的后处理。
形函数可以直接插值得到,故相对较容易构造且相同类型的单元具有相同的形函数。
无网格方法:形函数是围绕每一个节点建立插值函数构成的,不同的点具有不同的形函数,形函数定义于全域,具有较好的连续性和光滑性,不需要后处理过程。
3、边界条件有限元法:施加边界条件并不很困难, 通常在网格划分时使网格形式满足边界条件特点, 本质边界条件可直接加在节点上。
无网格方法:本质边界条件不仅依赖边界点,而且也与内部点有关,无网格法不能直接施加本质边界条件都是用离散的点来代替连续的边界值,这样会给本质边界条件的精确实现造成困难。
,拉格朗日乘子法和罚函数法是两种基本的方法。
4、系统离散方案有限元法是建立在虚功原理上的。
若给出控制微分方程,对于固体结构或流体, 都可以从加权残值法推出更普遍意义上的有限元公式,其可以得到一个对称的刚度矩阵。
第一章绪论计算流体力学的发展现状计算流体力学(Computational Fluid Dynamics)是现代流体力学中的一个重要学科分支。
作为一门多学科交叉融合而形成的新兴学科,它是流体力学、计算数学和计算机科学相结合的产物。
随着计算机性能的飞速提高以及数值计算方法的不断发展,计算流体力学技术正在逐渐走向成熟。
计算流体力学经历了数值求解拉普拉斯方程、小扰动速势方程、全速势方程、Euler方程和Navier-Stokes方程等发展阶段。
20世纪80年代以前,由于受到计算机技术的限制,计算流体力学的数值模拟主要以求解拉普拉斯方程、小扰动速势方程、全速势方程为主,其中有代表性的是基于拉普拉斯方程的面源法以及有限差分法求解小扰动速势方程和全速势方程。
在随后的二十多年中,在计算机技术发展的推动和广大计算流体力学工作者的努力下,计算流体力学在求解Euler方程和Navier-Stokes方程以及数值模拟复杂流场方面都取得了重大突破。
在此期间,计算流体力学数值模拟的方法以有限差分法、有限体积法、有限元法为主。
随着诸如TVD格式、ENO格式、NND格式等高阶精度、高分辨率差分格式的提出,计算流体力学对激波、漩涡等复杂问题的模拟能力也有了很大的提高。
目前,计算流体力学工作者正致力于研究和发展更高精度(二阶以上)的计算格式和方法,以适应更精细、更复杂的流动研究和设计的需要。
计算流体力学研究的一个重要分支是计算网格的生成技术,它是计算流体力学走向工程实用阶段所必须面临的关键技术之一。
一般来讲,适合工程使用的网格生成技术应该具备以下特点:(1) 网格生成过程直观明了、简单易行、效率高、自动化程度好。
(2) 通用性、普适性好,对复杂外形、复杂流动的适应能力强。
(3) 网格几何灵活性好,尺度变化易于控制,网格自适应加密简便易行。
目前,已经成熟并走向工程实用中的计算网格有结构网格、非结构网格以及结构非结构的混合网格。
在结构网格方面,出现了代数生成网格法、解微分方程生成网格法、保角变换法等多种网格生成方法,网格类型也由单一的C型网格、0型网格、H型网格发展到嵌套网格和多块对接网格等。