无网格方法.ppt
- 格式:ppt
- 大小:4.87 MB
- 文档页数:14
无网格法典型无网格法V伽辽金型无网格法V配点型无网格法V基于局部弱形式和边界积分方程的无网格法V最小二乘无网格法V物质点法V EFG¾MLS¾Galerkin V RKPM¾RK¾Galerkin V PIM¾PIG l ki¾Galerkin等效积分弱形式(虚位移原理)MLS 近似:()()u =x N x dV 计算量大精度高稳定性V 精度高,稳定性好V 需要背景网格进行积分V 系数矩阵对称V 不易施加本质边界条件处理V背景网格积分,,d I i J j N N ΩΩ∫()()()()=ΔΩ+ΔΓP N x f x N x t x 11I I I I I II I ==∑∑零能模态V 单位分解积分11.函数ψk (x )只定义在子域Ωk 上;2.子域Ωk 相互重叠,且它们完全覆盖了域Ω;3l=3.函数ψk (x )满足单位分解条件1()d ()()d k k k f f ψΩΩ∩Ω=ΩΩ∑∫∫x x x配点型无网格法V FPM¾MLS¾CollocationV SPH¾KA¾Collocationp es ess c ouds V Hp meshless clouds ¾PUC ll ti¾Collocation基于局部弱形式和边界积分方程的无网格法V MLPG¾MLS¾LPGV LBIE¾MLS¾LBIENV BNM¾MLS¾BIEgn pn 1iI IJ iJJ p m v ==∑1IJ p Ip Jpp m m N N ==∑质量阵求逆iIp iJv?质量阵求逆!gpn n 11I IJ p IpJ p m m m N ====∑∑对角质量阵iI I iIp m v =V已知t k 时刻的物理量,求t k +1时刻的物理量11.更新网格结点数据kk Ip Ipm m N=∑ppn k k kiIip Ip p m v N=1p ppp =∑int,ext,kk k iI iIiIf ff=−2.在背景网格结点上积分动量方程并施加固定边界条件1k k k pp f t+=+ΔiIiI iI10,0k k iIiIp f +==在固定边界上6.更新密度,应力k k k 1/(1)p p iipρρε+=+Δ1k k kkij ij ij ij+=ijpijp ijp ijp r σσσ+Δ+Δkk k kk r σσΔ=ΔΩ−ΔΩ其中ijpijpijpijpijpk ijpσΔ根据弹塑性本构关系更新7.进行下一个时间步循环。
无网格法简介2008-01-12 14:19:34| 分类:默认分类| 标签:|字号大中小订阅近几十年来,有限元法已成为计算力学中解决工程问题的主要数值手段,然而随着其应用范围的扩展,其固有的一些缺陷也日益突出。
在金属冲压成形、高速碰撞、流固耦合等涉及特大变形的领域中,基于拉格朗日法的有限元网格可能产生严重的扭曲,甚至使得单元的雅可比行列式为负值,不仅在计算中需要网格重构,而且严重地影响解的精度;对高速冲击等动态问题,显式时间积分的步长取决于有限元网格的最小尺寸,因而网格的扭曲将使得时间积分步长过小,大幅度地增加了计算工作量;对裂纹的动态扩展问题,由于裂纹的扩展方向不能事先确定,因而在计算过程中需要不断地重新划分网格以模拟裂纹的动态扩展过程。
由于有限元近似基于网格,因此必然难于处理与原始网格线不一致的不连续性和大变形。
网格重构不仅计算费用昂贵,而且会损害计算精度。
鉴于这种缺陷,近几年来国际上许多著名的计算力学学者,如T. Belytschko, O.C. Zienkiewicz, S.N. Atluri, J.T. Oden, W.K. Liu 等都对无网格方法表现出了极大的兴趣,并进行了大量的研究工作。
无网格方法采用基于点的近似,可以彻底或部分地消除网格,不需要网格的初始划分和重构,不仅可以保证计算的精度,而且可以大大减小计算的难度。
然而,由于目前的无网格近似一般没有解析表达式,且大都基于伽辽金原理,因此计算量很大,要超出传统的有限元法;另外,无网格近似大都是拟合,因此对于位移边界的处理比较困难,多采用拉格朗日乘子法处理。
目前已提出了十余种无网格法,其主要区别在于离散微分方程的方法(如伽辽金法、配点法、最小二乘法、彼得洛夫-伽辽金法等)和建立近似函数的方法(移动最小二乘近似、核近似、重构核质点近似、单位分解法、hp云团法、径向基函数法、点插值法等)。