第四节最小相位系统与非最小相位系统
- 格式:ppt
- 大小:534.00 KB
- 文档页数:18
从传递函数角度看,如果说一个环节的传递函数的极点和零点的实部全都小于或等于零,则称这个环节是最小相位环节.如果传递函数中具有正实部的零点或极点,或有延迟环节,这个环节就是非最小相位环节.
对于闭环系统,如果它的开环传递函数极点或零点的实部小于或等于零,则称它是最小相位系统.如果开环传递函中有正实部的零点或极点,或有延迟环节,则称系统是非最小相位系统.因为若把延迟环节用零点和极点的形式近似表达时(泰勒级数展开),会发现它具有正实部零点.
最小相位系统具有如下性质:
1,最小相位系统传递函数可由其对应的开环对数频率特性唯一确定;反之亦然.
2,最小相位系统的相频特性可由其对应的开环频率特性唯返航一确定;反之亦然.
3,在具有相同幅频特性的系统中,最小相位系统的相角范围最小.
非最小相位系统一词源于对系统频率特性的描述,即在正弦信号的作用下,具有相同幅频特性的系统(或环节),最小相位系统的相位移最小,而非最小相位系统的相位移大于最小相位系统的相位移。
非最小相位系统根轨迹的绘制方法同最小相位系统完全相同。
最小相位系统的幅频特性和相频特性之间存在确定的对应关系。
两个特性中,只要一个被规定,另一个也就可唯一确定。
然而,对非最小相位系统,却不存在这种关系。
非最小相位系统的一类典型情况是包含非最小相位元件的系统或某些局部小回路为不稳定的系统;另一类典型情况为时滞系统。
非最小相位系统的过大的相位滞后使得输出响应变得缓慢。
因此,若控制对象是非最小相位系统,其控制效果特别是快速性一般比较差,而且校正也困难。
较好的解决办法是设法取一些其他信号或增加控制点。
例如在大型锅炉汽包的水位调节中增加一个蒸汽流量的信号,形成所谓的双冲量调节。
第四章系统的频率特性分析第四章系统的频率特性分析时间响应分析:主要用于分析线性系统的过渡过程,以时间t为独立变量,通过阶跃或脉冲输入作用下系统的瞬态时间响应来研究系统的性能;依据的数学模型为G(s)频率特性分析:以频率ω为独立变量,通过分析不同的谐波输入时系统的稳态响应来研究系统的性能;依据的数学模型为G(jω)频域分析的基本思想:把系统输入看成由许多不同频率的正弦信号组成,输出就是系统对不同频率信号响应的总和。
4.1频率特性概述1.频率响应与频率特性(1)频率响应:线性定常系统对谐波输入的稳态响应。
(frequencyresponse)对稳定的线性定常系统输入一谐波信号xi(t)=Xisin?t稳态输出(频率响应):xo(t)=Xo(?)sin[ωt+?(ω)]【例】设系统的传递函数为输入谐波信号xi(t)=Xisin?t 则稳态输出(频率响应)与输入信号的幅值成正比与输入同频率,相位不同进行laplace逆变换,整理得同频率?幅值比A(?)相位差?(?)ω的非线性函数(揭示了系统的频率响应特性)输入:xi(t)=Xisinωt稳态输出(频率响应):xo(t)=XiA(?)sin[ωt+?(ω)]幅频特性:稳态输出与输入谐波的幅值比相频特性:稳态输出与输入谐波的相位差?(?)[s]A(?)?(?)(2)频率特性:对系统频率响应特性的描述(frequencycharacteristic)频率特性定义为ω的复变函数,幅值为A(?),相位为?(?)。
输入谐波函数xi(t)=Xisin?t,其拉式变换为2.频率特性与传递函数的关系设系统的微分方程为:则系统的传递函数为:则由数学推导可得出系统的稳态响应为根据频率特性定义,幅频特性和相频特性分别为故G(j?)=?G(j?)?ej?G(j?)就是系统的频率特性如例1,系统的传递函数为所以3.频率特性的求法(1)频率响应→频率特性稳态输出(频率响应)故系统的频率特性为或表示为(2)传递函数→频率特性将传递函数G(s)中的s换成jω,得到频率特性G(jω)。