数字信号处理 全通滤波器与最小相位系统
- 格式:ppt
- 大小:2.94 MB
- 文档页数:48
主要知识点1、数字信号处理就是用数值计算的方法对信号进行处理,这里“处理”的实质是“运算”, 处理对象则包括模拟信号和数字信号。
1、数字信号处理的主要对象是数字信号,且是采用数字运算的方法达到处理目的的。
2、数字信号处理的实现方法基本上可以分成两种即软件实现方法和硬件实现方法。
3、梳状滤波器适用于分离两路频谱等间隔交错分布的信号,例如,彩色电视接收机中用于进行亮度分离和色度分离等。
4、时间和幅值均离散化的信号称为数字信号。
5、时域离散信号和数字信号之间的差别,仅在于数字信号存在量化误差。
5、时域离散信号有三种表示方法:用集合符号表示序列、用公式表示序列和 用图形表示序列。
6、时域离散信号是一个有序的数字的集合,因此时域离散信号也可以称为序列。
7、关于)(、、n R n u n N )()(δ三种序列之间的关系8、由模拟信号采样得到的序列,模拟角频率Ω与序列的数字域频率ω成线性关系。
9、判断序列的周期性例如序列)4()(πj en x =的周期为810、序列的简单运算有加法、乘法、移位、翻转及尺度变换。
10、序列的简单运算有加法、乘法、移位、翻转及 。
尺度变换 11、序列之间的加法和乘法是指它的同序号的序列值逐项对应相加和相乘 11、序列之间的加法和乘法是指它的不同序号的序列值逐项对应相加和相乘。
错 11、序列)(n x ,其移位序列)(0n n x -,当00>n 时,称为)(n x 的延时序列。
12、实指数序列定义为)()(n u a n x n =,当1<a 时序列收敛。
13、实指数序列定义为)()(n u a n x n =,当1>a 时序列发散。
14、已知一序列为{}89531)(、、、、=n x ,则该序列的能量为180。
14、已知一序列为{}82119751)(、、、、、=n x ,则该序列的能量为1061。
15、在时域离散系统中,最重要和最常用的是线性时不变系统。
数字信号处理(简答题)1、在A/D 变换之前和D/A 变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D 变化之前让信号通过一个低通滤波器,是为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。
此滤波器亦称位“抗折叠”滤波器。
在D/A 变换之后都要让信号通过一个低通滤波器,是为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故友称之为“平滑”滤波器。
2.何谓最小相位系统?最小相位系统的系统函数)(min Z H 有何特点?解:一个有理系统函数,如果它的零点和极点都位于单位圆内,则有最小相位。
一个稳定的因果线性移不变系统,其系统函数可表示成有理方程式∑∑=-=--==N k kk Mr rr Z a Zb Z Q Z P Z H 101)()()(,它的所有极点都应在单位圆内,即1 k α。
但零点可以位于Z 平面的任何地方。
有些应用中,需要约束一个系统,使它的逆系统)(1)(Z H Z G =也是稳定因果的。
这就需要)(Z H 的零点也位于单位圆内,即1 r β。
一个稳定因果的滤波器,如果它的逆系统也是稳定因果的,则称这个系统是最小相位。
3.何谓全通系统?全通系统的系统函数)(Z H ap 有何特点?解:一个稳定的因果全通系统,其系统函数)(Z H ap 对应的傅里叶变换幅值1)(=jw e H ,该单位幅值的约束条件要求一个有理系统函数方程式的零极点必须呈共轭倒数对出现,即∏∑∑=-*-=-=---=-==Nk k kN k kk Mr rr ap Z Z Z a Zb Z Q Z P Z H 1111011)()()(αα。
因而,如果在k Z α=处有一个极点,则在其共轭倒数点*=kZ α1处必须有一个零点。
4.在离散傅里叶变换中引起混迭效应的原因是什么?怎样才能减小这种效应? 解:因为为采样时没有满足采样定理减小这种效应的方法:采样时满足采样定理,采样前进行滤波,滤去高于折叠频率2s f 的频率成分。
主讲人:陈后金电子信息工程学院数字信号处理Digital Signal Processing全通滤波器与最小相位系统◆全通滤波器及特性◆最小相位系统定义◆全通滤波器的应用◆最小相位系统应用非线性相位响应0dB 的通带幅度响应相比于x (t ),y (t )x [y [k ]采用全通系统与原系统级联,整个系统可以保留原有的幅度响应,且在要求范围内满足预先要求的相位或群延迟特性,实现此目的的全通滤波器被称为相位均衡器。
x[]相位均衡后的系统H equal(z)设计一个全通滤波器,对非线性相位系统通带进行相位均衡。
x[k]y[k]H(z )A m(z)相位均衡后的系统H equal(z)近似线性的相位响应均衡后的系统通带响应输入输出信号对比x[※构造逆系统,进行幅度均衡()()()b z H z a z =设稳定系统1()()()a z H zb z −=,其逆系统1()()1H z H z −=H −1(z )可以抵消H (z )的影响,称为H (z )的均衡器。
[]x k [][]y k x k =※构造逆系统,进行幅度均衡()()()b z H z a z =1()()()a z H z b z −=若有单位圆外零点,则()H z 求出与H (z )具有相同幅度响应的H min (z )min ()H z 1min ()H z −获得稳定的逆系统x [equal (z )※构造逆系统,进行幅度均衡1equal min ()()()H z H z H z −=1min min ()()()m Hz H z A z −=()m A z =j j equal (e )(e )1m H A ΩΩ==均衡后的系统函数均衡后的幅度响应x [equal (z )H −1min (z )均衡了H (z )的幅度响应,称为H (z )的幅度均衡器。
谢谢本课程所引用的一些素材为主讲老师多年的教学积累,来源于多种媒体及同事和同行的交流,难以一一注明出处,特此说明并表示感谢!。