力的正交分解法
- 格式:ppt
- 大小:371.00 KB
- 文档页数:57
力的正交分解导读:(1)概念:把力沿着两个经选定的互相垂直的方向分解叫力的正交分解。
(2)目的:在多个共点力作用下,运用正交分解法的目的是用代数运算公式来解决矢量的运算。
分解的目的是为了求合力,尤其适用于物体受多个力的情况。
(3)应用:当物体受到不在同一直线上的多个共点力时,正交分解法可以把物体受到的所有力分解到两个互相垂直的坐标轴上,分别求出两个不同方向上的合力x F 和y F ,然后就可以求出物体所受的合力F 。
(4)应用正交分解法求合力的步骤: ① 确定研究对象,进行受力分析。
② 建立直角坐标系(让尽可能多的力落在坐标轴上)。
③ 将不在坐标轴上的各力分解在坐标轴上。
④ 分别求出x 轴和y 轴上各力的合力x F 和y F F x = F 1x + F 2x + F 3x + … F y = F 2y + F 3y + F 3y +…⑤ 求出x F 和y F 的合力,即为多个力的合力。
合力的大小:22y x F F F +=合力的方向:xy F F =θtan (合力与x 轴的夹角为θ)例1.大小均为F 的三个力共同作用在O 点,如图1所示,F 1、F 2与F 3之间的夹角均为600,求这三个力的合力。
例2. 如图2所示,物体放在粗糙的水平地面上,物体重50N ,受到斜向上与水平面成300角的力F 作用,F = 50N ,物体仍然静止在地面上,求:物体受到的摩擦力和地面的支持力分别是多少?例3:如图3所示,重为G 的物体放在水平面上,推力F 与水平面夹角为α,物体做匀速直线运动,已知物体与地面间的动摩擦因数为μ,则物体所受摩擦力的大小为( )A.G μB.)sin αμF G +(C.F αcos D αμsin F例4.如图4所示,斜面上质量为m 的物体在水平力F 的作用下保持静止,已知斜面的倾角为θ,试分析摩擦力的大小和方向。
图2图1F 1F 2F 3图3 图4。
第五讲力的正交分解法力的正交分解法:即是把力沿着两个经选定的互相垂直的方向作分解,其目的是便于运用普通代数运算公式来解决矢量的运算,坐标轴的选取是以使问题的分析简化为原则,通常选取坐标轴的方法是:选取一条坐标轴与物体运动的速度方向或加速度的方向相同(包括处理物体在斜面上运动的问题),以求使物体沿另一条坐标轴的加速度为零,这样就可得到外力在该坐标轴上的分量之和为零,从而给解题带来方便,物体受力个数较多时,常用正交分解法来解。
例1:如图5-1所示,用与水平成θ=37°的拉力F=30N ,拉着一个重为G=50N 的物体在水平地面上匀速前进,则物体与地面间的动摩擦因数μ为( )A 、0.2B 、0.3C 、0.6D 、0.75【巧解】物体受四个力作用而匀速,这四个力分别为重力G 、拉力F 、地面的支持力N 、地面的摩擦力f ,由于受多个力作用,用正交分解法来解题较为简单。
怎样选取坐标轴呢?选水平方向与竖直方向为坐标轴,只需分解F ,最简单,如图5-2所示,将F 进行正交分解,由平衡条件可得:cos 0sin 0cos 300.80.75sin 50300.6x y F F f F F N G F G F θθμθμθ=-==+-=⨯==--⨯合合而f=N化简可得:=【答案】D例2:如图5-3所示,重为G=40N 的物体与竖直墙间的动摩擦因数μ=0.2,若受到与水平线成45°角的斜向上的推力F 作用而沿竖直墙匀速上滑,则F 为多大?【巧解】物体受四个力作用而匀速上滑,这四个力分别为重为N 、推力F 、墙的支持力N 、墙的摩擦力f ,由于受多个力作用,用正交分解法来解题较为简单。
怎样选取坐标轴呢?选水平方向与竖直方向为坐标轴,只需分解F ,最简单,如图5-4所示,将F 进行正交分解,由平衡条件可得:cos 450sin 45071(sin 45cos 45x y F N F F F G f G N μμ=-︒==︒--==︒-︒)合合而f=N化简可得:F=【答案】推力F 为71N例3:如图5-5所示,物体Q 放在固定的斜面P 上,Q 受到一水平作用力F ,Q 处于静止状态,这时Q 受到的静摩擦力为f ,现使F 变大,Q 仍静止,则可能( )A 、f 一直变大B 、f 一直变小C 、f 先变大,后变小D 、f 先变小后变大【巧解】隔离Q ,Q 物体受重力G 支持力N ,外力F 及摩擦力f 四个力而平衡,但f 的方向未知(当F 较小时,f 沿斜面向上;当F 较大时f 沿斜面向下),其受力图如图5-6所示。
专题:正交分解法 共点力的平衡一、知识必备1.力的正交分解法:当物体受力较多时,经常采用正交分解法.步骤:(1)建轴.以物体为坐标点,建立适当的直角坐标系;(2)正交分解.把不在坐标轴上的力分解到坐标轴上;(3)根据物体的运动状态列方程;(4)解方程求得未知量.注意:建立直角坐标系时,使尽可能多的力在坐标轴上,以减少分解力的次数,使问题简化.2.共点力的平衡(1)平衡状态:物体在共点力的作用下,保持匀速直线运动状态或静止状态.(2)平衡条件:物体所受合外力为零.3.物体平衡时的受力特点二力平衡:两力等大反向,作用在一条直线上,称为平衡力.三力平衡:任意两个力的合力与第三个力等大反向.多力平衡:经常使用正交分解法来处理.⎩⎨⎧==00yx F F 二、错因分析1.不能抓住"静止"、“匀速”等关键词从而联想到物体受力特点三、讲练结合【例1】在同一平面内共点的四个力1F 、2F 、3F 、4F 的大小依次为N 19、N 40、N 30和N 15,方向如图所示,求它们的合力.【训练1】如图所示,共点的三个力N F 51=,N F 102=,N F 153=,o 60=θ,它们的合力在x 轴方向的分量x F 为 ,y 轴方向的分量y F 为 ,合力的大小为 ,合力方向与x 轴正方向夹角为 .【例2】用三根轻绳将质量为m 的物块悬挂在空中,如图.已知ac 和bc 与竖直方向的夹角分别为o 30和o 60,求ac 和bc 绳中的拉力分别为多少?【训练2】如图所示,在倾角为θ的斜面上,放一质量为m 的光滑小球,小球被竖直挡板挡住,求:(1)球对挡板的压力大小;(2)球对斜面的压力大小.【例3】如图所示,在与水平地面成θ角的拉力F 作用下,质量为m 的物块沿地面向右做匀速直线运动.试求地面对物块的支持力,以及物体与地面间的滑动摩擦因数.【训练3】质量为m 的木块在推力F 的作用下,在水平地面上做匀速运动.已知木块与地面间的动摩擦因数为μ,那么木块受到的滑动摩擦力为下列各值的哪一个( )A.mg μB. )sin (θμF mg +C. )sin (θμF mg -D. θcos F【训练4】如图所示,质量为m ,横截面为直角三角形的物块ABC ,α=∠ABC .AB 边紧靠在竖直墙面上,F 是垂直于斜面BC 的推力.现物块静止不动,则物块所受的摩擦力的大小为 .。
第四讲力的正交分解和三角形法则姓名【知识要点】1.正交分解法把力沿两个互相垂直的方向进行分解的方法叫正交分解法。
sinα2.正交分解法求合力的步骤(1)对物体进行受力分析(2)选择并建立坐标系以共点力的作用点为坐标原点,建立正交直角坐标系,一般要让尽量多的力在坐标轴上,使所有的力与坐标轴的夹角尽量为特殊角。
(3(4)同一坐标轴上的矢量进行合成。
F x=F1x+F2x= F1cosα-F2cosβF y= F1y+ F2y= F1sinα+F2sinβ由此式可见,力的个数越多,此方法显得越方便。
(5)然后把x轴方向的F x与y轴方向的F y进行合成,这时这两个分力的方向夹角为特殊角90°。
所以F合=22yxFF ,合力的方向与x轴正方向的夹角为θ=arctan(F y/F x)注:正交分解法求合力时,先交各力分解为两个不同的坐标上的力,依据同向或反向的简单代数运算,再进行(互成直角的)合成,在计算不同角度的多个力的合成中具有十分明显的优越性。
正交分解法求合力,运用了“欲合先分”的策略,降低了运算的难度,是解题中的一种重要思想方法。
3.三角形定则合力与分力的关系遵循平行四边形定则,根据平行四边形的性质,对应边平行相等,即分力与2x1xxx定义:将表示两个分力的有向线段首尾相接,从第一个力的始端指向第二个力的末端的有向线段,就表示这两个力的合力的大小和方向。
注:相似形问题的解题步骤 :1.对物体进行受力分析2.画出力的矢量三角形与几何三角形3.由对应边成比例关系求出未知力【典型例题】例1:确定正六边形内五个力的合力例2:如图所示,细线的一端固定于A点,线的中点挂一质量为m的物体,另一端B用手拉住,当AO与竖直方向成θ角,OB沿水平方向时,AO及BO对O点的拉力分别是多大?例3:如图所示,力F1、F2、F3、F4在同一平面内构成共点力,其中F1=20N、F2=20N、F3=N2=,各力之间的夹角在图中已标出,求这四个力的合力大小和方20,20N3F4向.例4:如图所示,拉力F作用在重为G的物体上,使它沿水平地面匀速前进,若物体与地面的动摩擦因数为μ,当拉力最小时和地面的夹角θ为多大?例5.将一个20N的力进行分解,其中一个分力的方向这个力成30度角,试讨论:(1)另一个分力的大小不会小于多少?20,则已知方向的分力的大小是多少?(2)若另一个分力大小是N3例6:如图所示,将质量为m的小球,用长为L的轻绳吊起来,并靠在光滑的半径为r的半球体上,绳的悬点A到球面的最小距离为d.(1)求小球对绳子的拉力和对半球体的压力.(2)若L变短,问小球对绳子的拉力和对半球体的压力如何变化?【经典练习】1.已知两个力的合力大小为10N ,其中一个分力与合力夹角为37°,则另一个分力的大小是( )A .不可能大于8N B.不可能小于8N C.不可能大于6N D.不可能小于6N 2.如图所示,将力F (大小已知)分解为两个分力F 1和F 2,F 2与F 的夹角θ小于90°,则( )A.当F1>F sin θ时,肯定有两组解B.当F >F 1>F sin θ时,肯定有两组解C.当F 1<F sin θ时,有惟一一组解D.当F 1<F sin θ时,无解3.如图所示,物体重15N ,当对物体施加20N 与水平方向成60°角的力的作用,物体沿竖直墙壁向上匀速滑动.求(1)物体对墙壁的压力大小.(2)物体与墙壁间的动摩擦因数.4.如图所示,为一悬挂重物的三角支架示意图,三角形三边长长度之比为4:3:2:: BC AC AB L L L ,当支架顶端悬挂的重物为G 时,BC 杆和AC 绳受到的力分别为多少?第四讲 力的正交分解和三角形法则(作业)姓名1.一根轻质细绳能承受的最大拉力为G ,现将一重量为G 的物体系于绳的中点,两手分别握住绳的两端,先并拢,然后缓慢地左右对称地分开,若想绳不断,两段绳间的夹角不能超过( )A.45°B.60°C.120°D.135°2.若两个共点力的大小均为10N ,欲使其合力也为10N ,则这两个力的夹角一定是( )A .30°B .60°C .90°D .120° 3.下列各图中三角形的三边各代表一个力,以下说法中正确的是( )A.图①中三个力的合力为零B.图②中三个力的合力为2F 3C.图③中三个力的合力为2F 1D.图④中三个力的合力为2F 2 4.如图所示,小船在河流中逆水行驶,右岸上一个纤夫用力F 1拉小船,F 1与河的中心线夹角为 试求:在左岸上的一个小孩至少用多大的力F 2拉小船,才能使小船受的合力F 的方向沿河的中心线?F 2的方向如何?设F 2与F 1共点.5.已知共面的三个力F 1=20N ,F 2=30N ,F 3=40N 力作用在物体的同一点上,三力之间的夹角都是0120,求合力的大小和方向。
补充知识:力的正交分解法
在处理力的合力和分解的复杂问题上的一种较简便方法-----正交分解法。
正交分解法:即是把力沿着两个经选定的互相垂直的方向作分解。
其目的是便于运用普通代数运算公式来解决矢量的运算。
力的正交分解法步骤:
1. 正确选定直角坐标系:通常选共点力的作用点为坐标原点。
坐标轴的方向的选择则应根据实际问题来确定。
原则是使坐标轴与尽可能多的力重合,即使需要向两坐标轴投影分解的力尽可能少。
2分别将各个力投影到坐标轴上,分别求X轴和Y轴上各力的投影合力F x,F y其中
F x=F1x+F2x+F3x+……
F y=F1y+F2y+F3y+……。