时二力合成法与正交分解法连接体问题
- 格式:ppt
- 大小:532.50 KB
- 文档页数:15
正交分解法与合成法湖南省祁阳县第四中学黄冬成一、知识讲解1、正交分解法:将力分解到运动方向和垂直运动方向例1、如图所示,质量为4 kg 的物体静止于水平面上,物体与水平面间的动摩擦因数为0.5,物体受到大小为20N,与水平方向成30°角斜向上的拉力F 作用时沿水平面做匀加速运动,求物体的加速度是多大?(g 取10 m/s 2)解析:以物体为研究对象,其受力情况如图所示,建立平面直角坐标系把F 沿两坐标轴方向分解,则两坐标轴上的合力分别为,sin cos G F F F F F F N y x -+=-=θθμ物体沿水平方向加速运动,设加速度为a ,则x 轴方向上的加速度a x =a ,y 轴方向上物体没有运动,故a y =0,由牛顿第二定律得0,====yy xx maF ma maF所以0sin ,cos =-+=-G F F ma F F N θθμ 又有滑动摩擦力N F F μμ=以上三式代入数据可解得物体的加速度a =0.58 m/s 2 说明:当物体的受力情况较复杂时,根据物体所受力的具体情况和运动情况建立合适的直角坐标系,利用正交分解法来解.2、合成法:将力合成到运动方向 例2、如图,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向37°角,球和车厢相对静止,球的质量为1kg .(g =10m/s 2,sin37°=0.6,cos37°=0.8)(1)求车厢运动的加速度并说明车厢的运动情况. (2)求悬线对球的拉力.解析:(1)球和车厢相对静止,它们的运动情况相同,由于对球的受力情况知道的较多,故应以球为研究对象.球受两个力作用:重力mg 和线的拉力F T ,由球随车一起沿水平方向做匀变速直线运动,故其加速度沿水平方向,合外力沿水平方向.做出平行四边形如图所示.球所受的合外力为F 合=mg tan37°由牛顿第二定律F 合=ma 可求得球的加速度为=︒==37tan g mF a 合7.5m/s 2加速度方向水平向右.车厢可能水平向右做匀加速直线运动,也可能水平向左做匀减速直线运动. (2)由图可得,线对球的拉力大小为8.010137cos ⨯=︒=mg F T N=12.5 N说明:本题解题的关键是根据小球的加速度方向,判断出物体所受合外力的方向,然后画出平行四边形,解其中的三角形就可求得结果.二、课堂检测1.如图所示,悬挂于小车里的小球偏离竖直方向θ角,则小车可能的运动情况是( AD ) A .向右加速运动B .向右减速运动C .向左加速运动D .向左减速运动2、如图所示, m =4kg 的小球挂在小车后壁上,细线与竖直方向成37°角。
2014年高考物理重点难点透视平衡问题的二力合成法、正交分解法、动态分析法【题型攻略】1.求解平衡问题常用方法①正交分解法:处理四力或四力以上的平衡问题用该方法较为方便;②合成与分解法:对于三力平衡,可"任意两个力的合力与第三个力等大反向",借助几何知识求解;③矢量三角形法:若力的三角形为直角三角形,则运用勾股定理及三角函数求解比较方便; ④相似三角形法:通过力三角形与几何三角形相似求未知力,对解斜三角形的情况更显优越性;2.动态平衡问题:题目出现“缓慢”字眼表示动态平衡;平衡问题中动态分析要善于利用矢量三角形图解,图解时抓住其一个力大小方向不变,另一个力方向变化。
3.共点力平衡中的临界问题和极值问题:①动态图解法(图解时抓住其一个力大小方向不变,另一个力方向变化);②数学解析法。
4.异面共点力平衡问题:可通过力的合成或分解转化为共面力平衡问题。
【真题佐证】【2013·重庆卷1】如题1图所示,某人静躺在椅子上,椅子的靠背与水平面之间有固定倾斜角θ。
若此人所受重力为G ,则椅子各部分对他的作用力的合力大小为A .GB .G sin θC .G cos θD .G tan θ【答案】A 【解析】本题主要考查受力分析和平衡条件的应用. 以人为研究对象进行受力分析(如图所示),他受到竖直向下的重力和椅子对他竖直向上的合力而处于静止状态,由人受力平衡可知:椅子各部分对他的作用力的合力大小与重力大小相等,故选项A 正确. (2012年山东卷)如图所示,两相同轻质硬杆OO 1、OO 2可绕其两端垂直纸面的水平轴O 、O 1、O 2转动,在O 点悬挂一重物M ,将两相同木块m 紧压在竖直挡板上,此时整个系统保持静止。
F f 表示木块与挡板间摩擦力的大小,F N 表示木块与挡板间正压力的大小。
若挡板间的距离稍许增大后,系统仍静止且O 1、O 2始终等高,则题1图A .F f 变小B .F f 不变C .F N 变小D .F N 变大【答案】BD【解析】对O 点受力分析可知杆中弹力1F =2cos G θ 杆对木块m 的压力可分解为水平分量F 3=21sin sin tan 2G F F θθθ==竖直分量42cos 2G F F θ==;当挡板间距离变大时,θ变大,F 3变大,木块对挡板的弹力F N 变大;F 4为定值,F f 大小不变。
第18讲力的合成实验、力的正交分解法一、实验原理1.合力F′的确定:两个力F1、F2共同作用,能把橡皮条末端小圆环拉到某点,一个力F′也可以把橡皮条末端的小圆环拉到同一点,则F′与F1和F2共同作用的效果相同,则F′是F1和F2的合力.2.合力理论值F的确定:根据平行四边形定则作出F1和F2的合力F的图示,求出合力的理论值F.3.在实验误差允许的范围内,比较F′和F是否大小相等、方向相同.二、实验器材方木板、白纸、弹簧测力计(两个)、橡皮条、细绳、轻质小圆环、三角板、刻度尺、图钉(若干)、铅笔.三、实验步骤1.在方木板上用图钉固定一张白纸,如图1甲所示,用图钉把橡皮条的一端固定在木板上A点,在橡皮条的另一端挂上轻质小圆环.图12.用两个弹簧测力计分别钩住小圆环,互成角度地拉橡皮条,将小圆环拉到某位置O,用铅笔描下小圆环O的位置和拉线的方向,并记录两弹簧测力计的读数.3.用一个弹簧测力计拉橡皮条,将小圆环拉到同一位置O,记下弹簧测力计的读数和拉线的方向.4.如图乙所示,利用刻度尺和三角板,按适当的比例作出用两个弹簧测力计拉时的拉力F1和F2的图示以及用一个弹簧测力计拉时的拉力F′的图示,以F1、F2为邻边画出平行四边形,并画出对角线F.5.比较F与F′的大小和方向,看它们在实验误差允许范围内是否相同,从而验证平行四边形定则.四、注意事项1.弹簧测力计使用前要检查指针是否指在零刻度线上,否则应校零.2.被测力的方向应与弹簧测力计轴线方向一致,拉动小圆环时弹簧不可与外壳相碰或摩擦.3.在同一次实验中,小圆环的位置O一定要相同.4.在具体实验时,两分力F1和F2间夹角不宜过大,也不宜过小,以60°~120°之间为宜.5.读数时应正视、平视刻度.6.使用弹簧测力计测力时,读数应适当大些,但不能超出它的测量范围.例题1.在“探究两个互成角度的力的合成规律”实验中,把橡皮条一端固定于P点,另一端(自由端)通过细绳套连接两个弹簧测力计a、b,并将该端拉至O点,如图所示。
力的合成与分解知识点总结力是物理学中的一个重要概念,力的合成与分解是解决力学问题的基础。
下面我们来详细总结一下力的合成与分解的相关知识点。
一、力的合成1、合力的概念如果一个力作用在物体上产生的效果跟几个力共同作用在物体上产生的效果相同,这个力就叫做那几个力的合力,那几个力就叫做这个力的分力。
2、共点力如果几个力都作用在物体的同一点,或者它们的作用线相交于一点,这几个力就叫做共点力。
3、力的合成法则(1)平行四边形定则两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向。
(2)三角形定则将两个分力首尾相接,连接始端与末端的有向线段就表示合力的大小和方向。
4、合力的计算(1)已知两个分力的大小和方向,求合力的大小和方向,直接运用平行四边形定则或三角形定则计算。
(2)已知两个分力的大小和夹角θ,合力的大小可以通过公式:$F =\sqrt{F_1^2 + F_2^2 + 2F_1F_2\cos\theta}$计算,合力的方向可以通过三角函数关系求得。
5、合力的范围(1)两个力的合力范围:$|F_1 F_2| \leq F \leq F_1 + F_2$。
(2)三个力的合力范围:先求出其中两个力的合力范围。
再看第三个力在这个范围内的情况,从而确定三个力的合力范围。
二、力的分解1、力的分解的概念求一个已知力的分力,叫做力的分解。
2、力的分解遵循的原则力的分解是力的合成的逆运算,同样遵循平行四边形定则或三角形定则。
3、力的分解的方法(1)按照力的实际作用效果进行分解。
例如,放在斜面上的物体受到的重力可以分解为沿斜面方向向下的分力和垂直斜面方向向下的分力。
(2)正交分解法将一个力沿着互相垂直的两个方向进行分解。
4、力的分解的唯一性(1)已知两个分力的方向,有唯一解。
(2)已知一个分力的大小和方向,有唯一解。
(3)已知两个分力的大小,其解的情况可能有:两力之和大于合力时,有两解。
G一、正交分解法的目的和原则把力沿着两个经选定的互相垂直的方向分解叫力的正交分解法,在多个共点力作用下,运用正交分解法的目的是用代数运算公式来解决矢量的运算。
在力的正交分解法中,分解的目的是为了求合力,尤其适用于物体受多个力的情况,物体受到F1、F2、F3…,求合力F 时,可把各力沿相互垂直的x 轴、y 轴分解,则在x 轴方向各力的分力分别为 F1x 、F2x 、F3x…,在y 轴方向各力的分力分别为F1y 、F2y 、F3y…。
那么在x 轴方向的合力Fx = F1x+ F2x+ F3x+ … ,在y 轴方向的合力Fy= F2y+ F3y+ F3y+…。
合力22y x F +=,设合力与x 轴的夹角为θ,则x yF F =θtan 。
在运用正交分解法解题时,关键是如何确定直角坐标系,在静力学中,以少分解力和容易分解力为原则;二、运用正交分解法解题步骤如图所示:求F1、F2在X 轴、Y 轴方向的合力2、求F1、F2、F3、F4的合力3、如图所示,求F1、F2、F3的合力步骤:①建坐标,原则少分解力②分解不在坐标轴上的力 ③表示分力 ④求X 轴上的合力 Y 轴上的合力 ⑤求合力1. 物体放在粗糙的水平地面上,物体重50N ,受到斜向上方向与水平面成300角的力F 作用,F = 50N ,物体仍然静止在地面上,如图1所示,求:物体受到的摩擦力和地面的支持力分别是多少?2如图所示,用绳AO 和BO 吊起一个重100N 的物体,两绳AO 、BO 与竖直方向的夹角分别为30o 和40o ,求绳AO 和BO 对物体的拉力的大小。
3. 如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体,当绳与水平面成60o 角时,物体静止,不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。
3. (8分)如图6所示,θ=370,sin370=0.6,cos370=0.8。
箱子重G =200N ,箱子与地面的动摩擦因数μ=0.30。
力的合成与分解解析力的合成与分解问题的方法力的合成与分解是力学中常见的一个重要问题,对于力的分析和计算有着重要的意义。
本文将介绍解析力的合成与分解的方法。
一、力的合成力的合成是指将两个或多个力合成为一个力的过程。
当多个力作用于一个物体时,它们的合力可以表示为力的矢量和。
合力的大小、方向与这些力的大小、方向有关。
方法一:图示法在图示法中,我们将力用箭头表示,箭头的长度表示了力的大小,箭头的方向表示了力的方向。
要得到合力,只需将各个力的箭头首尾相连,然后连接首尾的直线即可。
方法二:正弦定理和余弦定理正弦定理和余弦定理是解析力合成的数学方法。
假设有两个力F1和F2,它们的夹角为θ。
若要计算合力的大小F和方向α,可以使用以下公式:F = √(F1^2 + F2^2 + 2F1F2cosθ)α = arctan(F2sinθ / (F1 + F2cosθ))通过正弦定理和余弦定理,可以较为准确地计算出合力的大小和方向。
这在实际问题中非常常见。
二、力的分解力的分解是指将一个力分解为两个或多个分力的过程。
通过力的分解可以将一个复杂的问题简化为若干个简单的问题。
方法一:图示法与力的合成相反,在图示法中,我们将一个力的箭头按照一定的比例分解为两个或多个力的箭头,各个力的大小和方向可以根据实际问题中的要求确定。
方法二:正弦定理和余弦定理正弦定理和余弦定理同样适用于力的分解问题。
假设有一个力F,我们将其分解为与x轴和y轴方向夹角分别为α和β的两个分力F1和F2。
根据正弦定理和余弦定理,可以得到以下公式:F1 = FcosαF2 = Fcosβ通过力的分解,我们可以得到力的水平方向和垂直方向上的分量,从而更好地进行力的分析和计算。
总结:力的合成与分解是力学中非常重要的概念和方法。
在实际问题中,通过力的合成与分解,我们可以更好地理解和分析力的作用,从而得到准确的结果。
通过图示法和正弦定理、余弦定理,我们可以在解决力的合成与分解的问题时选择合适的方法。
§3.3二力合成法与正交分解法高考考点:牛顿定律的应用(2)复习内容:一.二力合成法:1.如果物体在运动过程中,仅仅受到两个力的作用,采用这种方法求合力,此合力方向与物体运动的加速度方向相同。
2.合成法求加速度a:注意合力与分力的“特效性”,是一中等效替代关系,因此它们不能同时存在。
应用1-1,如图:小车的运动情况如何?加速度多大?方向怎样?o分析:如上图所示,F合不等于0,且a与F合的方向一致,在与球有共同的水平向左的加速度,合力水平向左,加速度水平向左,则有:F=mg tanαF=maa=F/m=g tanα两钟运动情况:①.向左做匀加速直线运动②.想右做匀减速直线运动课堂练习:P83第3题二. 正交分解法:若物体同时受到三个以上的共点力作用,建立平面直角坐标系,利用正交分解法:两种情况: F x 合=ma1.分解力不分解加速度,此时一般规定a 的方向为x 轴正方向:F y 合=02.分解加速度不分解力,此种方法以某力方向为x 轴正方向,把加速度分解在x 轴和y 轴上。
注:这种方法通常用于物体所受的几个力,起方向都沿正交方向,分解各个力反而不如分解加速度方便,简捷!应用2-1如图,质量为m 的人站在自动扶梯上,扶梯以加速度a 向上减速运动,a 与水平方向夹角为θ,求人受到的支持力和摩擦力。
解法一:以人为研究对象,受力分析如图建立好坐标系:根据牛顿第二定律得:x 方向:Fsin θ+fcos θ-mgsin θ=ma ① y 方向:F N cos θ+fsin θ-mgcos θ=0 ②由①②可得: F N =m(g-a sin θ)f=m a cos θf 为负,说明摩擦力的实际方向与假设方向相反,即水平向左解法二:以人为研究对象,沿水平竖直方向建立坐标系,则:a x =a cos θ,a y =a sin θf=ma x ,mg -F N =ma yF 合=m a x F 合=m a yF 合=m a求得:f=ma cosθ,F N=m(g-asinθ)课堂训练2:P82 1,2作业:课堂练习册P83 1,2,3,4,6,7,10,13。
专题1合成法正交分解法【知能整合】一、合力的求法1、若物体受到两个力的作用而做加速(减速)运动,则采用合成法求合力。
2、若物体受到三个或三个以上的力的作用而做加速(减速)运动,则采用正交分解法求合力。
即将力沿x 、y 两个正交方向分解,得到牛顿第二定律的分量式:x x F ma =,y y F ma =。
应用时要选好正方向并明确各力的方向.....和加速度方向.....,并在受力图上标出。
二、加速度方向的判定1、从运动学的角度分析:根据物体的运动性质可判断加速度方向。
如匀加速(匀减速)直线运动的加速度方向与速度方向相同(相反)。
注意加速度方向与速度方向的区别。
2、从动力学的角度分析:根据物体的受力情况可判断加速度的方向。
分析物体受力情况并判断其合力方向,加速度方向应与合力的方向相同。
三、应用牛顿第二定律的解题步骤1、明确研究对象;2、正确进行受力分析,并明确加速度方向;3、对物体受到的力进行等效处理(合成或正交分解);4、根据牛顿第二定律列方程求解结果。
【典例剖析】【例1】(合成法)如图所示,小车沿倾角为θ的斜面做匀加速直线运动,小车支架上有一单摆,在运动过程中,摆线为水平状态,则小车运动的加速度大小为()A .g sin θB .g tan θC .g /sin θD .g /tan θ【例2】(正交分解法——分解力)质量为m 的三角形木楔A 置于倾角为θ的固定斜面上,它与斜面间的动摩擦因数为μ,一水平力F 作用在木楔A 的竖直平面上,在力F 的推动下,木楔A 沿斜面以恒定的加速度a 向上滑动,则F 的大小为()A .θθμθcos )]cos (sin [++g a mB .θμθθsin cos)sin (+-g a m C .θμθθμθsin cos )]cos (sin [-++g a m D .θμθθμθsin cos )]cos (sin [+++g a m 【例3】(正交分解法——分解加速度)如图所示,电梯与水平面的夹角为300,当电梯加速向上运动时,人对梯面的压力是其重力的65,求人对梯面的摩擦力是其重力的多少倍?a 300【例4】(正交分解法解动态问题)如图所示,光滑水平面上放置一斜面体A ,在其粗糙斜面上静止一物块B .从某时刻开始,一个从零逐渐增大的水平向左的力F 作用在A 上,使A 和B 一起向左做变加速直线运动.则在B 与A 发生相对运动之前的一段时间内()A .B 对A 的压力和摩擦力均逐渐增大B .B 对A 的压力和摩擦力均逐渐减小C .B 对A 的压力逐渐增大,B 对A 的摩擦力逐渐减小D .B 对A 的压力逐渐减小,B 对A 的摩擦力逐渐增大【例5】(多解)如图,将质量m =0.1kg 的圆环套在固定的水平直杆上。
力的合成与分解解析力的合成与分解问题的解法力的合成与分解解析力的合成和分解是力学中的基本概念,用于描述多个力对一个物体产生的合力和分力。
在解决力的合成与分解问题时,我们需要使用一些特定的解法和方法。
本文将详细介绍力的合成与分解的解法,并通过实例帮助读者更好地理解这些概念。
一、力的合成解析力的合成是指将多个力的作用效果合并为一个力的过程。
这在实际生活中非常常见,比如我们常常要计算多个斜向的力合成后的结果。
下面将通过一个例子来说明力的合成的解法。
假设有两个力,F1=10N,方向为东,F2=15N,方向为北东。
我们需要求出这两个力合成后的结果。
我们可以将F1和F2分别在坐标系中表示出来,然后通过向量相加的方法求解。
首先,我们假设东方向为x轴正方向,北方向为y轴正方向。
根据F1和F2的方向,我们可以将F1表示为F1x和F1y,F2表示为F2x和F2y。
根据三角函数的知识,我们可以得到以下结果:F1x = F1 * cosα1F1y = F1 * sinα1F2x = F2 * cosα2F2y = F2 * sinα2其中,α1和α2分别为F1和F2与x轴的夹角。
将以上数值代入公式,我们可以得到F1x = 10 * cos0° = 10,F1y = 10 * sin0° = 0,F2x = 15 * cos45° = 10.6,F2y = 15 * sin45° = 10.6。
接下来,我们可以将F1x和F2x相加得到合力在x轴上的分量Fx,将F1y和F2y相加得到合力在y轴上的分量Fy。
即:Fx = F1x + F2x = 10 + 10.6 = 20.6Fy = F1y + F2y = 0 + 10.6 = 10.6最后,根据合力的两个分量Fx和Fy,我们可以使用勾股定理求解出合力的大小F和合力的方向θ。
即:F = √(Fx^2 + Fy^2) = √(20.6^2 + 10.6^2) ≈ 23.17θ = arctan(Fy/Fx) = arctan(10.6/20.6) ≈ 27.8°因此,两个力合成后的结果为F ≈ 23.17N,方向为27.8°,即东北偏北方向。
二力合成法与正交分解法要点一 二力合成法1.一辆小车在水平面上行驶,悬挂的摆球相对于小车静止,并且悬绳与竖直方向成θ角,如图所示, 下列关于小车的运动情况正确的是( )A .加速度方向向左,大小为g tan θB .加速度方向向右,大小为g tan θC .加速度方向向左,大小为g sin θD .加速度方向向右,大小为g sin θ 答案 A要点二 正交分解法2.如图所示,质量为m 的人站在自动扶梯上,扶梯正以加速度a 向上减速运动,a 与水平方向的夹 角为θ.求人受的支持力和摩擦力.请用两种建立坐标系的方法分别求解. 答案 m (g-a sin θ),方向竖直向上 ma cos θ,方向水平向左题型1 根据二力合成法确定物体的加速度【例1】如图所示,小车在斜面上沿斜面向下运动,当小车以不同的加速度运动时,系在小车顶 部的小球分别如图中①②③所示三种状态.①中细线呈竖直方向,②中细线垂直斜面,③中细 线水平.试分别求出上述三种状态中小车的加速度.(斜面倾角为θ) 答案 ①a =0 ②a=g sin θ,方向沿斜面向下 ③a =sin g ,方向沿斜面向下题型2 正交分解法的应用【例2】风洞实验室中可产生水平方向的、大小可以调节的风力,现将一套有小球的细直杆 放入风洞实验室中,小球孔径略大于细杆直径(如图所示).(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上做匀速运动,这时小球所受 的风力为小球所受重力的0.5倍,求小球与杆之间的动摩擦因数.(2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球从静止出发在细杆上滑下距离s 所需时间为多少?(sin 37°=0.6,cos 37°=0.8) 答案 (1)0.5 (2)gs 38题型3 传送带上的物理问题【例3】如图所示,传送带与水平面的夹角为θ=37°,其以4 m/s 的速度向上运行,在传送 带的底端A 处无初速度地放一个质量为0.5 kg 的物体,它与传送带间动摩擦因数μ=0.8, AB 间(B 为顶端)长度为25 m.试回答下列问题: (1)说明物体的运动性质(相对地球).(2)物体从A 到B 的时间为多少?(g =10 m/s 2)答案 (1)由题设条件知tan 37°=0.75,μ=0.8,所以有tan 37°<μ,这说明物体在斜面(传送带)上能处于静止状态,物体开始无初速度放在传送带上,起初阶段:对物体受力分析如右图所示. 根据牛顿第二定律可知: f 滑-mg sin 37°=ma ① f 滑=μN② N=mg cos 37°③ 求解得a=g (μcos 37°-sin 37°)=0.4 m/s2④设物体在传送带上做匀加速直线运动时间t 1及位移s 1,因 v 0=0⑤ a =0.4 m/s2⑥ v t =4 m/s⑦根据匀变速直线运动规律得: v t =at 1⑧s 1=221at ⑨代入数据得: t 1=10 s⑩s 1=20 m <25 m说明物体将继续跟随传送带一起向上匀速运动,物体在第二阶段匀速运动时间t 2:t 2=1.25s 42025=-=∆v s所以物体运动性质为:物体起初由静止起以a =0.4 m/s 2做匀加速直线运动,达到传送带速度后,便以传送带速度做匀 速运动.(2)11.25 s1.如图所示,动力小车上有一竖杆,杆顶端用细绳拴一质量为m 的小球.当小车沿倾角为30° 的斜面匀加速向上运动时,绳与杆的夹角为60°,小车的加速度为( )A .g 23B .gC .3D .2g答案 B2.如图所示,倾斜索道与水平面夹角为37°,当载人车厢沿钢索匀加速向上运动时,车厢里的 人对厢底的压力为其重量的1.25倍,那么车厢对人的摩擦力为其体重的 ( ) A .41倍 B .31倍 C .45倍 D .34倍答案 B3.如图所示,质量为m 的物体放在倾角为α的斜面上,物体和斜面间的动摩擦因数为μ,如沿水平方向 加一个力F ,使物体沿斜面向上以加速度a 做匀加速直线运动,则F 为多少?答案αμααμαsin cos )cos sin (-++g g a m4.如图所示,传送带以恒定的速度v =10 m/s 运动,传送带与水平面的夹角θ为37°,PQ =16 m,将一小物块无初速地放在传送带上P点,物块与此传送带间的动摩擦因数μ=0.5,g=10 m/s2. 求当传送带顺时针转动时,小物块运动到Q点的时间为多少?(sin 37°=0.6,cos 37°=0.8) 答案 4 s。
连接体问题一、连接体与隔离体两个或两个以上物体相连接组成的物体系统,称为连接体。
如果把其中某个物体隔离出来,该物体即为隔离体。
二、外力和内力如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的外力,而系统内各物体间的相互作用力为内力。
应用牛顿第二定律列方程不考虑内力。
如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的外力。
三、连接体问题的分析方法1.整体法连接体中的各物体如果加速度相同,求加速度时可以把连接体作为一个整体。
运用牛顿第二定律列方程求解。
2.隔离法如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用牛顿第二定律求解,此法称为隔离法。
3.整体法与隔离法是相对统一,相辅相成的。
本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。
如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用整体法法求出加速度,再用隔离法法求物体受力。
简单连接体问题的分析方法1.连接体:两个(或两个以上)有相互作用的物体组成的具有相同大小加速度的整体。
2.“整体法”:把整个系统作为一个研究对象来分析(即当做一个质点来考虑)。
注意:此方法适用于系统中各部分物体的加速度大小方向相同情况。
3.“隔离法”:把系统中各个部分(或某一部分)隔离作为一个单独的研究对象来分析。
注意:此方法对于系统中各部分物体的加速度大小、方向相同或不相同情况均适用。
4.“整体法”和“隔离法”的选择求各部分加速度相同的连结体的加速度或合外力时,优选考虑“整体法”;如果还要求物体之间的作用力,再用“隔离法”,且一定是从要求作用力的那个作用面将物体进行隔离;如果连结体中各部分加速度不同,一般都是选用“隔离法”。
5.若题中给出的物体运动状态(或过程)有多个,应对不同状态(或过程)用“整体法”或“隔离法”进行受力分析,再列方程求解。
针对训练1.如图用轻质杆连接的物体AB沿斜面下滑,试分析在下列条件下,杆受到的力是拉力还是压力。