用matlab做经典功率谱估计
- 格式:docx
- 大小:22.53 KB
- 文档页数:2
功率谱估计 matlab
在MATLAB中进行功率谱密度估计可以使用多种方法,其中最常
用的是基于信号处理工具箱中的函数。
功率谱密度估计是一种用于
分析信号频谱特性的方法,它可以帮助我们了解信号中不同频率成
分的能量分布情况。
在MATLAB中,可以使用periodogram函数来对信号进行功率谱
密度估计。
该函数可以接受原始信号作为输入,并返回频率和对应
的功率谱密度估计值。
另一个常用的函数是pwelch,它可以对信号
进行Welch方法的功率谱估计,该方法是一种常用的频谱估计方法,可以减小估计值的方差。
除了这些内置函数,MATLAB还提供了其他一些工具和函数用于
功率谱密度估计,比如spectrogram函数用于计算信号的短时功率
谱密度估计,cpsd函数用于计算信号的交叉功率谱密度估计等。
在进行功率谱密度估计时,需要注意选择合适的窗函数、重叠
比例等参数,以保证估计结果的准确性和可靠性。
此外,还需要考
虑信号长度、采样频率等因素对功率谱密度估计的影响。
总之,在MATLAB中进行功率谱密度估计有多种方法和工具可供选择,需要根据具体的应用场景和要求来选择合适的方法和函数进行使用。
希望这些信息能对你有所帮助。
在matlab中,功率谱估计是信号处理和频谱分析中常用的一种方法。
通过对信号的频谱特性进行估计,可以有效地分析信号的功率分布情况,从而为信号处理和系统设计提供重要的参考信息。
在matlab中,提供了多种功率谱估计的函数,以下将对其中几种常用的函数进行介绍和分析。
1. periodogram函数periodogram函数是matlab中用于估计信号功率谱密度的函数之一。
它基于傅里叶变换将离散时间信号转换成频域信号,然后计算频域信号的功率谱密度。
其调用格式为:[Pxx, F] = periodogram(x,window,nfft,fs)其中,x为输入的离散时间信号,window为窗函数,nfft为离散傅里叶变换的点数,fs为信号的采样频率。
periodogram函数返回的Pxx 为功率谱密度估计值,F为对应的频率。
2. pwelch函数pwelch函数也是用于估计功率谱密度的函数,它采用了Welch方法,通过对信号进行分段处理,然后对各段信号进行傅里叶变换,并对各段功率谱密度进行平均。
其调用格式为:[Pxx, F] = pwelch(x,window,noverlap,nfft,fs)其中,x为输入的离散时间信号,window为窗函数,noverlap为相邻分段的重叠点数,nfft为离散傅里叶变换的点数,fs为信号的采样频率。
pwelch函数返回的Pxx为功率谱密度估计值,F为对应的频率。
3. cpsd函数cpsd函数用于估计信号的交叉功率谱密度,即两个信号之间的频谱特性。
其调用格式为:[Pxy, F] = cpsd(x,y,window,noverlap,nfft,fs)其中,x和y为输入的两个离散时间信号,window为窗函数,noverlap为相邻分段的重叠点数,nfft为离散傅里叶变换的点数,fs为信号的采样频率。
cpsd函数返回的Pxy为交叉功率谱密度估计值,F为对应的频率。
4. mscohere函数mscohere函数用于估计信号的相干函数,即两个信号之间的相关性。
功率谱估计 matlab
在MATLAB中,可以使用多种方法来进行功率谱密度(PSD)的估计。
以下是一些常用的方法:
1. 通过信号处理工具箱中的函数进行估计:
MATLAB的信号处理工具箱提供了一些内置函数来进行功率谱密度估计,比如pwelch()和periodogram()函数。
这些函数可以直接对信号进行处理并估计其功率谱密度。
2. 基于频谱估计的方法:
在MATLAB中,你可以使用基于频谱估计的方法来进行功率谱密度估计,比如传统的傅里叶变换、Welch方法、Bartlett方法、Blackman-Tukey方法等。
这些方法可以通过MATLAB中的相关函数来实现,比如fft()函数用于傅里叶变换,pwelch()函数用于Welch 方法估计等。
3. 使用自相关函数:
自相关函数可以用于估计信号的功率谱密度。
在MATLAB中,你
可以使用xcorr()函数来计算信号的自相关函数,然后对自相关函
数进行傅里叶变换来得到功率谱密度估计。
4. 基于模型的方法:
MATLAB中还提供了一些基于模型的方法来进行功率谱密度估计,比如Yule-Walker方法、Maximum Entropy方法等。
你可以使用相
应的函数来实现这些方法,比如pyulear()函数用于Yule-Walker
方法估计。
总的来说,MATLAB提供了丰富的工具和函数来进行功率谱密度
的估计,你可以根据具体的需求和信号特性选择合适的方法来进行
估计。
希望这些信息能够帮助到你。
功率谱估计案例 matlab在MATLAB中进行功率谱估计有许多不同的方法和工具。
其中,常用的方法包括周期图法(periodogram method)、Welch方法、Bartlett方法、Blackman-Tukey方法、自回归模型(autoregressive model)和傅里叶变换法等。
这些方法可以用于估计信号的功率谱密度,进而分析信号的频谱特性。
以周期图法为例,MATLAB提供了periodogram函数来实现功率谱估计。
用户可以直接输入信号数据并指定采样频率,函数将返回频率和对应的功率谱估计结果。
使用periodogram函数可以轻松地对信号进行功率谱分析,并可视化频谱特性。
另外,MATLAB还提供了pwelch函数来实现Welch方法,该方法可以对信号进行分段处理并计算每个段的功率谱估计,最后将结果进行平均以得到最终的功率谱密度估计。
这种方法可以降低估计的方差,更适用于非平稳信号的功率谱分析。
除了内置函数外,MATLAB还提供了丰富的工具箱,如信号处理工具箱(Signal Processing Toolbox)和控制系统工具箱(Control System Toolbox),这些工具箱中包含了更多高级的功率谱估计方法和工具,用户可以根据具体需求选择合适的方法进行功率谱分析。
在实际应用中,用户还可以结合MATLAB中的数据处理和可视化功能,对功率谱估计结果进行进一步分析和展示。
通过MATLAB强大的编程功能,用户可以灵活地定制功率谱估计的流程,并将分析结果以图表或报告的形式输出,从而更好地理解信号的频谱特性。
综上所述,MATLAB提供了丰富的功率谱估计方法和工具,用户可以根据具体需求选择合适的方法进行功率谱分析,并结合MATLAB 的数据处理和可视化功能进行全面的信号频谱特性分析。
上机作业:1、假设一平稳随机信号为()()()0.81x n x n w n =−+,其中 是均值为0,方差为1的白噪声,数据长度为1024。
(1)、产生符合要求的)(n w 和)(n x ;(2)、给出信号)(n x 的理想功率谱;(3)、编写周期图谱估计函数,估计数据长度N=1024及256时信号功率谱,分析估计效果。
(4)、编写Bartlett 平均周期图函数,估计当数据长度N=1024及256时,分段数L 分别为2和8时信号 的功率谱,分析估计效果。
一、解题思路w(n)可以通过随机序列randn(1,N)来产生,x(n)可以通过对w(n)滤波产生(由递推式可得系统的传递函数),也可以直接由递推式迭代产生。
由于线性系统的输出功率谱等于输入功率谱乘以传递函数模的平方,X(n)可以看做w(n)通过一线性系统的输出,H(z)=1/(1-0.8z)。
所以x(n)的理想功率谱P(e jw )=σw 2|H(e jw )|2。
周期图方法:直接对观测数据做FFT 变换,变换的结果取模的平方再除以数据长度,作为估计的功率谱。
256个观测点时可以对原观测数据以4为间隔提取得到。
Bartlett 法:将L 组独立的观测数据分别求周期图,再将L 个周期图求平均作为信号的功率谱估计。
L 组数据可以通过对原观测数据以L 为间隔提取得到。
二、MATLAB 实现程序及注解 clc;clear;close all;Fs=500; %采样率N=1024; %观测数据w=sqrt(1)+randn(1,N); %0均值,方差为1的白噪声,长度1024x=[w(1) zeros(1,N-1)]; %初始化x(n),长度1024,x(1)=w(1)for i=2:Nx(i)=0.8*x(i-1)+w(i); %迭代产生观测数据x(n)end%% 理想功率谱[h,w1]=freqz(x);figure,plot(w1*500/(2*pi),10*log10(abs(h).^2));grid on;title('理想功率谱');xlabel('频率'); ylabel('功率db');%% 周期图法%1024个观测点Pxx=abs(fft(x)).^2/N; %周期图公式Pxx=10*log10(Pxx(index+1)); %化为dbfigure;plot(k,Pxx);grid on;title('周期图1024点');xlabel('频率'); ylabel('功率db');% 周期图256个观测点x1=x(1:4:N);Pxx1=abs(fft(x1,1024)).^2/N;Pxx1=10*log10(Pxx1(index+1)); %化为dbfigure;plot(k,Pxx1);grid on;title('周期图256点');xlabel('频率'); ylabel('功率db');%% Bartlett平均周期图,N=1024%分段L=2L=2;x_21=x(1:L:N);x_22=x(2:L:N);Pxx_21=abs(fft(x_21,1024)).^2/length(x_21);Pxx_22=abs(fft(x_22,1024)).^2/length(x_22);Pxx_2=(Pxx_21+Pxx_22)/L;figure;subplot(2,2,1),plot(k,10*log10(Pxx_2(index+1)));grid on;title('N=1024,L=2');xlabel('频率'); ylabel('功率db');%分段L=8L1=8;x3=zeros(L1,N/L1); %产生L1行,N/L1列的矩阵用以存储分组的数据for i=1:L1x3(i,:)=x(i:L1:N); %将原始数据分为8组endPxx3=zeros(L1,1024); %产生L1行,1024列矩阵用以存储分组的周期图for i=1:L1Pxx3(i,:)=abs(fft(x3(i,:),1024)).^2/length(x3(i,:)); %分别求周期图,结果保存在Pxx3中,FFT长度为1024endfor i=1:1024Pxx3_m(i)=sum(Pxx3(:,i))/L1; %求平均endsubplot(2,2,2),plot(k,10*log10(Pxx3_m(index+1)));grid on;title('N=1024,L=8');xlabel('频率'); ylabel('功率db');%% Bartlett平均周期图,N=256,求法同上%分段L=2,分别计算周期图,再取平均x=x(1:4:N);L2=2;x_31=x(1:L2:length(x));x_32=x(2:L2:length(x));Pxx_31=abs(fft(x_31,1024)).^2/length(x_31);Pxx_32=abs(fft(x_32,1024)).^2/length(x_32);Pxx_3=(Pxx_31+Pxx_32)/L2;subplot(2,2,3),plot(k,10*log10(Pxx_3(index+1)));grid on;title('N=256,L=2');xlabel('频率'); ylabel('功率db');%分段L=8L3=8;x4=zeros(L3,length(x)/L3);for i=1:L3x4(i,:)=x(i:L3:length(x)); %将原始数据分为8组endPxx4=zeros(L3,1024);for i=1:L3Pxx4(i,:)=abs(fft(x4(i,:),1024)).^2/length(x4(i,:)); %分别求周期图,FFT长度为1024endfor i=1:1024Pxx4_m(i)=sum(Pxx4(:,i))/L3; %求平均endsubplot(2,2,4),plot(k,10*log10(Pxx4_m(index+1)));grid on;title('N=256,L=8');xlabel('频率'); ylabel('功率db');三、结果及分析图1 理想功率谱图2 周期图1024点及256点从上图可以看出,周期图法得到的功率谱估计,谱线的起伏较大,即估计所得的均方误差较大。
matlab 功率谱计算在MATLAB中,可以使用多种方法来计算信号的功率谱。
下面我将从多个角度介绍几种常用的方法。
方法一,使用fft函数计算功率谱。
1. 首先,将信号进行零均值化,即减去信号的均值。
2. 然后,使用fft函数对零均值化后的信号进行傅里叶变换,得到频域表示。
3. 对频域表示进行平方运算,得到每个频率分量的幅度平方。
4. 最后,对幅度平方进行归一化处理,即除以信号长度和采样频率的乘积,得到功率谱密度。
示例代码如下:matlab.% 假设信号为x,采样频率为Fs.x = % 输入信号。
Fs = % 采样频率。
% 零均值化。
x = x mean(x);% 计算功率谱。
N = length(x); % 信号长度。
X = fft(x); % 傅里叶变换。
Pxx = (abs(X).^2)/(NFs); % 幅度平方归一化。
% 绘制功率谱图。
f = (0:N-1)(Fs/N); % 频率轴。
plot(f, 10log10(Pxx));xlabel('频率 (Hz)');ylabel('功率谱密度 (dB/Hz)');方法二,使用pwelch函数计算功率谱。
MATLAB还提供了pwelch函数,可以更方便地计算信号的功率谱密度估计。
pwelch函数使用了Welch方法,可以自动进行分段加窗、重叠和平均处理,得到更准确的功率谱估计结果。
示例代码如下:matlab.% 假设信号为x,采样频率为Fs.x = % 输入信号。
Fs = % 采样频率。
% 计算功率谱。
[Pxx, f] = pwelch(x, [], [], [], Fs);% 绘制功率谱图。
plot(f, 10log10(Pxx));xlabel('频率 (Hz)');ylabel('功率谱密度 (dB/Hz)');以上是两种常用的计算信号功率谱的方法,你可以根据实际需求选择适合的方法进行计算。
功率谱密度估计方法的MATLAB实现功率谱密度估计是信号处理领域中常用的一种方法,用于分析信号的频率特性。
MATLAB提供了多种功率谱密度估计方法的函数,包括传统的傅里叶变换方法和更现代的自相关方法。
以下是一些常见的功率谱密度估计方法及其MATLAB实现。
1.傅里叶变换方法:傅里叶变换方法是最常用的功率谱密度估计方法之一、MATLAB提供了`pwelch`函数来实现傅里叶变换方法的功率谱密度估计。
以下是一个简单的使用例子:```matlabfs = 1000; % 采样率t = 0:1/fs:1-1/fs; % 时间序列x = cos(2*pi*50*t) + randn(size(t)); % 生成一个包含50 Hz 正弦波和噪声的信号[Pxx, f] = pwelch(x, [],[],[], fs); % 估计功率谱密度plot(f, 10*log10(Pxx)); % 画出功率谱密度曲线xlabel('Frequency (Hz)');ylabel('Power Spectral Density (dB/Hz)');```2.自相关方法:自相关方法是另一种常用的功率谱密度估计方法。
MATLAB提供了`pcov`函数来实现自相关方法的功率谱密度估计。
以下是一个简单的使用例子:```matlabfs = 1000; % 采样率t = 0:1/fs:1-1/fs; % 时间序列x = cos(2*pi*50*t) + randn(size(t)); % 生成一个包含50 Hz 正弦波和噪声的信号[Rxx, lags] = xcorr(x, 'biased'); % 估计自相关函数[Pxx, f] = pcov(Rxx, [], fs, length(x)); % 估计功率谱密度plot(f, 10*log10(Pxx)); % 画出功率谱密度曲线xlabel('Frequency (Hz)');ylabel('Power Spectral Density (dB/Hz)');```3.周期图方法:周期图方法是一种能够处理非平稳信号的功率谱密度估计方法。
matlab功率谱计算在MATLAB中,可以使用函数`pwelch`来计算信号的功率谱。
具体步骤如下:1. 准备信号数据。
您可以将信号数据保存在一个向量或数组中。
2. 设置参数。
您需要设置窗口长度(窗长)和窗口重叠。
窗长(window length)指的是计算功率谱时使用的每个窗口的数据点数。
通常情况下,窗长应该是2的幂次方,这样计算效率更高。
窗口重叠(window overlap)指的是每个窗口之间数据点的重叠数。
通常情况下,窗口重叠为窗长的一半。
3. 使用`pwelch`函数计算功率谱。
根据您的需求,可以指定输出参数和输入参数。
常见的输入参数有信号数据、窗长和窗口重叠数;常见的输出参数有频率和功率谱密度。
示例代码如下:```matlab% 准备信号数据signal = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];% 设置参数windowLength = 4; % 窗长windowOverlap = windowLength / 2; % 窗口重叠% 计算功率谱[powerSpectrum, frequencies] = pwelch(signal, windowLength, windowOverlap);% 绘制功率谱图plot(frequencies, 10*log10(powerSpectrum));xlabel('Frequency (Hz)');ylabel('Power Spectral Density (dB/Hz)');```这段代码会计算信号的功率谱,并绘制功率谱图。
其中,`powerSpectrum`为计算得到的功率谱密度,`frequencies`为对应的频率。
注意:`pwelch`函数还有许多其他的输入参数和输出参数,您可以根据自己的需求进行配置。
具体可参考MATLAB的帮助文档。
[matlab实现经典功率谱估计]matlab功率谱估计1、直接法:直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。
Matlab代码示例:clear;Fs=1000; %采样频率n=0:1/Fs:1;%产生含有噪声的序列xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); window=boxcar(length(xn)); %矩形窗nfft=1024;[Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法plot(f,10*log10(Pxx));2、间接法:间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。
Matlab代码示例:clear;Fs=1000; %采样频率n=0:1/Fs:1;%产生含有噪声的序列xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); nfft=1024;cxn=xcorr(xn,”unbiased”); %计算序列的自相关函数CXk=fft(cxn,nfft);Pxx=abs(CXk);index=0:round(nfft/2-1);k=index*Fs/nfft;plot_Pxx=10*log10(Pxx(index+1));plot(k,plot_Pxx);3、改进的直接法:对于直接法的功率谱估计,当数据长度N太大时,谱曲线起伏加剧,若N太小,谱的分辨率又不好,因此需要改进。
3.1、Bartlett法Bartlett平均周期图的方法是将N点的有限长序列x(n)分段求周期图再平均。
Matlab代码示例:clear;Fs=1000;n=0:1/Fs:1;xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); nfft=1024;window=boxcar(length(n)); %矩形窗noverlap=0; %数据无重叠p=0.9; %置信概率[Pxx,Pxxc]=psd(xn,nfft,Fs,window,noverlap,p);index=0:round(nfft/2-1);k=index*Fs/nfft;plot_Pxx=10*log10(Pxx(index+1));plot_Pxxc=10*log10(Pxxc(index+1));figure(1)plot(k,plot_Pxx);pause;figure(2)plot(k,[plot_Pxx plot_Pxx-plot_Pxxc plot_Pxx+plot_Pxxc]);3.2、Welch法Welch法对Bartlett法进行了两方面的修正,一是选择适当的窗函数w(n),并再周期图计算前直接加进去,加窗的优点是无论什么样的窗函数均可使谱估计非负。
Matlab技术功率谱估计在信号处理中,功率谱估计是一个重要的概念,它可以帮助我们分析信号的频谱特征。
Matlab作为一种功能强大的计算工具,提供了许多方法来进行功率谱估计。
一、功率谱估计简介功率谱估计可以用来分析信号的频谱密度,即信号在不同频率上的能量分布。
在Matlab中,我们可以使用多种方法来进行功率谱估计,其中常用的方法有时域法和频域法。
二、时域法功率谱估计时域法是一种基于波形信号的分析方法,它通过对信号的时序波形进行统计分析来估计功率谱。
在Matlab中,我们可以使用 periodogram 函数来实现时域法功率谱估计。
例如,假设我们有一个长度为 N 的信号 x,我们可以使用以下代码来计算其功率谱估计:```Matlab[Pxx, f] = periodogram(x, [], [], Fs);```其中,Pxx 是信号的功率谱密度估计,f 是频率向量,Fs 是信号的采样频率。
三、频域法功率谱估计频域法是一种基于信号的频谱特性进行分析的方法,可以将信号分解为不同频率成分的加权和。
在Matlab中,我们可以使用 pwelch 函数来实现频域法功率谱估计。
例如,假设我们有一个长度为 N 的信号 x,我们可以使用以下代码来计算其功率谱估计:```Matlab[Pxx, f] = pwelch(x, [], [], [], Fs);```其中,Pxx 是信号的功率谱密度估计,f 是频率向量,Fs 是信号的采样频率。
四、窗函数的选择功率谱估计的结果受到窗函数的选择影响较大。
在Matlab中,我们可以使用不同的窗函数来进行功率谱估计,常用的窗函数有矩形窗、汉宁窗、汉明窗等。
窗函数可以通过指定窗函数参数来选择,不同的窗函数对于不同类型的信号有不同的适应性。
五、信号模拟与功率谱估计在实际的信号处理应用中,我们经常需要模拟一些信号以及对其进行功率谱估计。
Matlab提供了一系列函数来实现信号模拟与功率谱估计,例如 awgn 函数可以用来添加高斯白噪声信号,chirp 函数可以用来生成线性调频信号。
用matlab做经典功率谱估计
经典功率谱估计
直接法:
直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。
Matlab代码示例:
clear;
Fs=1000; %采样频率
n=0:1/Fs:1;
%产生含有噪声的序列
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
window=boxcar(length(xn)); %矩形窗
nfft=1024;
[Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法
plot(f,10*log10(Pxx));
间接法:
间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。
Matlab代码示例:
clear;
Fs=1000; %采样频率
n=0:1/Fs:1;
%产生含有噪声的序列
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
nfft=1024;
cxn=xcorr(xn,'unbiased'); %计算序列的自相关函数
CXk=fft(cxn,nfft);
Pxx=abs(CXk);
index=0:round(nfft/2-1);
k=index*Fs/nfft;
plot_Pxx=10*log10(Pxx(index+1));
plot(k,plot_Pxx);
改进的直接法:
对于直接法的功率谱估计,当数据长度N太大时,谱曲线起伏加剧,若N太小,谱的分辨率又不好,因此需要改进。
1. Bartlett法
Bartlett平均周期图的方法是将N点的有限长序列x(n)分段求周期图再平均。
Matlab代码示例:
clear;
Fs=1000;
n=0:1/Fs:1;
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
nfft=1024;
window=boxcar(length(n)); %矩形窗
noverlap=0; %数据无重叠
p=0.9; %置信概率
[Pxx,Pxxc]=psd(xn,nfft,Fs,window,noverlap,p);
index=0:round(nfft/2-1);
k=index*Fs/nfft;
plot_Pxx=10*log10(Pxx(index+1));
plot_Pxxc=10*log10(Pxxc(index+1));
figure(1)
plot(k,plot_Pxx);
pause;
figure(2)
plot(k,[plot_Pxxplot_Pxx-plot_Pxxcplot_Pxx+plot_Pxxc]);
2. Welch法
Welch法对Bartlett法进行了两方面的修正,一是选择适当的窗函数w(n),并再周期图计算前直接加进去,加窗的优点是无论什么样的窗函数均可使谱估计非负。
二是在分段时,可使各段之间有重叠,这样会使方差减小。
Matlab代码示例:
clear;
Fs=1000;
n=0:1/Fs:1;
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
nfft=1024;
window=boxcar(100); %矩形窗
window1=hamming(100); %海明窗
window2=blackman(100); %blackman窗
noverlap=20; %数据无重叠
range='half'; %频率间隔为[0 Fs/2],只计算一半的频率
[Pxx,f]=pwelch(xn,window,noverlap,nfft,Fs,range);
[Pxx1,f]=pwelch(xn,window1,noverlap,nfft,Fs,range);
[Pxx2,f]=pwelch(xn,window2,noverlap,nfft,Fs,range);
plot_Pxx=10*log10(Pxx);
plot_Pxx1=10*log10(Pxx1);
plot_Pxx2=10*log10(Pxx2);
figure(1)
plot(f,plot_Pxx);
pause;
figure(2)
plot(f,plot_Pxx1);
pause;
figure(3)
plot(f,plot_Pxx2);。