投影与直观图(斜二测画法)资料
- 格式:ppt
- 大小:1001.50 KB
- 文档页数:18
课题 1.1.4投影与直观图课型主备人李冬旭上课教师李冬旭上课时间学习目标1、了解表示空间图形的投影方法原理2、掌握斜二测画法3、了解中心投影方法教学重点掌握斜二测画法教学难点正确的把握斜二测画法的要点以及选择放置直观图的角度教师准备教学过程时间分配集备修正一、投影法物体在光线的照射下,就会在地面或墙壁上产生影子。
人们将这种自然现象加以科学的抽象,总结其中的规律,提出了投影的方法。
如图1—1所示,以不在投影面上的定点S为投影中心,由S射出投影线,该投影线通过空间点A与投影面P相交于点ɑ,点ɑ就是空间点A在投影面P上的投影。
同理,点b则是空间点B在投影面P上的投影。
这种使物体在投影面上产生图像的方法叫投影法。
工程上常用各种投影法来绘制用途不同的工程图样。
二、投影法分类1.中心投影法投影线均通过投影中心的投影法称为中心投影法(图1—2)。
其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形。
图1—1 投影法图1—2 中心投影法2.平行投影法1’5x5’投影线相互平行的投影法称为平行投影法(图1—3)。
其中,投影线倾斜于投影面叫平行斜投影法〔图1—3(ɑ)〕;投影线垂直于投影面叫平行正投影法简称正投影法〔图1—3(b)〕。
(ɑ)平行斜投影 (b)平行正投影图1—3 平行投影法应用正投影法,能在投影面上反映物体某些面的真实形状及大小,且与物体到投影面的距离无关,因而作图方便,故在工程中得到广泛的应用。
工程图样就是用正投影法绘制的。
三、平行投影的基本特性平行投影的基本特性,是指空间几何要素——点、线、面经过平行投影后的特性。
1.点的投影仍为点如图1—4所示,空间A点的投影为点ɑ。
2.直线的投影一般仍为直线如图1—5所示,AB直线的投影为直线ɑb。
图1—4 点的投影图1—5 直线的投影3.一点在某直线上,则点的投影一定在该直线的投影上如图1—6所示,点M在直线AB上,那么点M的投影m也一定在直线AB的投影ɑb上。
8.2 立体图形的直观图(斜二测画法)【要点梳理】要点一、平行投影(选讲)1.中心投影我们把光由一点向外散射形成的投影叫做中心投影.中心投影的投影线交于一点,它的实质是一个点光源把一个物体射到一个平面上,这个物体的影子就是它在这个平面上的中心投影.2.平行投影我们把在一束平行光线照射下形成的投影叫做平行投影.投影线正对着投影面时,叫做正投影,否则叫做斜投影.3.中心投影与平行投影的区别与联系(1)平行投影包括斜二测画法和三视图.中心投影后的图形与原图形相比虽然改变较多,但直观性强,看起来与人的视觉效果一致,最像原来的物体.(2)画实际效果图时,一般用中心投影法,画立体几何中的图形时,一般用平行投影法.要点二、斜二测画法在立体几何中,空间几何体的直观图通常是在平行投影下画出的空间图形.要画空间几何体的直观图,首先要学会水平放置的平面图形的直观图画法.对于平面多边形,我们常用斜二测画法画它们的直观图,斜二测画法是一种特殊的平行投影画法.斜二测画法的步骤:(1)在已知图形中取互相垂直的z轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x'轴与y'轴,两轴交于点O',且使∠x'O'y'=45°(或135°),它们确定的平面表示水平面.(2)已知图形中,平行于x轴、y轴的线段,在直观图中分别画成平行于x'轴、y'轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.(3)已知图形中,平行于x轴或z轴的线段,在直观图中保持长度不变,平行于y轴的线段,长度变为原来的一半.画图完成后,擦去作为辅助线的坐标轴,就得到了平面图形的直观图.要点诠释:用斜二测画法画图的关键是在原图中找到决定图形位置与形状的点并在直观图中画出.一般情况下,这些点的位置都要通过其所在的平行于x、y轴的线段来确定,当原图中无需线段时,需要作辅助线段.要点三、立体图形的直观图(1)用斜二测画法画空间几何体的步骤①在已知图形中,取互相垂直的x轴和y轴,再取z轴,使∠xOz=90°,且∠yOz=90°;②画直观图时,把它们画成对应的轴x′,y′,z′,使∠x′O′y′=45°(或135°),∠x′O′z′=90°,x′O′y′所确定的平面表示水平平面;③已知图形中平行于x轴,y轴或z轴的线段,在直观图中分别画成平行于x′轴,y′轴或z′轴的线段;④在已知平面图形中平行于x轴和z轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度变为原来的一半;⑤擦去作为辅助线的坐标轴,就得到了空间几何体的直观图.(2)斜二测画法保留了原图形中的三个性质①平行性不变,即在原图中平行的线在直观图中仍然平行;②共点性不变,即在原图中相交的直线仍然相交;③平行于x,z轴的长度不变.(3)画立体图形与画水平放置的平面图形相比多了一个z轴,其直观图中对应于z轴的是z'轴,平面x'O'y'表示水平平面,平面y'O'z'和x'O'z'表示直立平面.平行于z轴(或在:轴上)的线段,其平行性和长度都不变.(4)三视图与直观图的联系与区别三视图与直观图都是用平面图形来刻画空间图形的位置特征与度量特征,二者有以下区别:①三视图从细节上刻画了空间几何体的结构,由三视图可以得到一个精确的几何体,如零件、建筑图纸等都是三视图.②直观图是对空间几何体的整体刻画,可视性高,立体感强,由此可以想象实物的形状.要点四、已知三视图画直观图三视图和直观图是空间几何体的两种不同的表现形式.直观图是在某一定点观察到的图形,三视图是投射线从不同位置将物体按正投影向投影面投射所得到的图形,对于同一个物体,两者可以相互转换.由三视图画直观图,一般可分为两步:第一步:想象空间几何体的形状.三视图是按照正投影的规律,使平行光线分别从物体的正面、侧面和上面投射到投影面后得到的投影图,包括正视图、侧视图和俯视图.正视图反映出物体的长和高,侧视图反映出物体高和宽,所以正视图和侧视图可以确定几何体的基本形状,如柱体、锥体或台体等.俯视图反映出物体的长和宽.对于简单几何体来说,当俯视图是圆形时,该几何体是旋转体;当俯视图是多边形时,该几何体是多面体。
诚西郊市崇武区沿街学校.4投影与直观图文艺复兴以前的透视图远处的东西画小,方形四角的饭桌画成梯形的,圆盘画成椭圆形的,无论大人、小孩,还是东洋、西洋,自古至今如此。
有在人物画的角落画这种饭桌的,也有在一幅画中将左看的形状与右看的形状掺杂着一起画的。
这种画与其称之为原始的,不如说是朴素的透视画。
整幅画,根本上是从一个视点且只向一个方向看时的统一景物,才能叫做。
透视画。
,现存最古的透视画大概是庞贝的壁画。
人们还不明白当时的画家是怎样画出的。
与庞贝城建筑的同时,罗马的建筑家维特鲁威写了建筑十书,其中有所谓。
斯卡伊诺哥拉菲亚。
,可解释成:剧场舞台背景透视画与庞贝的壁画不谋而合的说法可能是正确的。
在维特鲁威的书里的很多地方能看到关于光学和视觉的表达,因此欧几里德有同样说法是可理解的。
虽然中世纪的学者阿尔哈真和培卡姆,也有与欧几里德相似的表达,遗憾的是那一时期的透视图,除了朴素透视画以外几乎没有留下别的。
课程学习目的[课程目的]目的重点:平行投影的性质和斜二测画法。
目的难点:正确地把握斜二测画法的要点以及选择放置直观图的角度。
[学法关键]画程度放置的空间图形的直观图,一般采用斜二测画法。
对于斜二测画法,应当结实掌握画法的规那么,再认真地画几个常见图形的直观图,从中领会斜二测画法的要领。
对三视图的学习要严密地结合实际应用。
可以到工厂去考察机器零件的实物和图纸,要认真完成教材中的实习作业,可以利用课外活动时间是是探究与研究本节后面提出的问题,看一看旋转体的三视图中是否一定有两个视图一样,这两个一样的视图中是否都包含有这个旋转体的轴截面。
研习教材重难点研习点1.平行投影1.点的平行投影:图形F,直线l与平面α相交,过F上任一点M作直线l’平行于l,交平面α于点M’,那么M’叫做点M在平面α内关于直线l的平行投影〔或者者像〕.2.图形的平行投影:假设图形F上的所有点在平面α内关于直线l的平行投影构成图形F’,那么F’叫做图形F在α内关于直线l的平行投影,平面α叫做投射面,l叫做投射线。
空间几何体的直观图知识点:平面图形的直观图要点诠释:1.用来表示空间图形的平面图形叫作空间图形的直观图;2.用斜二测画法画平面图形的步骤:(1)建系:在已知图形中建立直角坐标系,画直观图时,把它们画成对应的轴和轴,两轴交于点,且使(或);(2)位置关系:已知图形中平行于轴和轴的线段在直观图中分别画成平行于轴和轴的线段;(3)长度规则:已知图形中平行于轴的线段,在直观图中保持长度不变,平行于轴的线段,长度变为原来的一半.经典例题透析:类型一:平面图形的直观图1、画出水平放置的等边三角形的直观图.解:画法,如图:(1)在三角形ABC中,取AB所在直线为x轴,AB边的高所在直线为y轴;画出相应的轴和轴,两轴交于点,且使;(2)以为中点,在轴上取,在轴上取;(3)连接、,并擦去辅助线轴和轴,便获得正△ABC的直观图△.总结升华:斜二测画法的作图技巧:1.在已知图中建立直角坐标系,理论上在任何位置建立坐标系都行,但实际作图时,一般建立特殊的直角坐标系,尽量运用原有直线为坐标轴或图形的对称轴为坐标轴,以线段的中点或图形的对称点为原点;2.在原图中平行于轴和轴的线段在直观图中仍然平行于轴和轴,原图中不与坐标轴平行的线段可以先画出线段的端点再连线,画端点时利用与坐标轴平行的线段;3.画立体图形的直观图,在画轴时,要再画一条与平面垂直的轴,平行于轴的线段长度保持不变.举一反三:【变式1】等腰梯形ABCD,上底边CD=1,腰,下底AB=3,按平行于上下底边取x轴,则直观图的面积是多少?解:1.以等腰梯形的下底边所在直线为x轴,以过D点的高所在直线为y轴,建立平面直角坐标系;过C点做垂直于AB的直线与AB相交于点E;∵DC=1,,AB=3,∴AO=OE=EB=DO=1;2.建立坐标系,,在轴上取,且,,在轴上取线段;过点做;连接和,则梯形为等腰梯形ABCD的直观图;3.过点做垂直于下底边的垂线段,则△为等腰直角三角形,斜边,所以梯形的高;4.梯形面积.【变式2】正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是多少?1.直观图中平行于轴和轴的线段在原图中分别为平行于轴和轴的线段;2.直观图中平行于轴的线段,在原图中保持长度不变;平行于轴的线段,长度变为原来的两倍.解:1.建立平面直角坐标系,在x轴上取;2.为正方形的对角线,且在轴上,则,所以在y轴上取;3.取,且平行于x轴;4.连接AB、CO,所得图形OABC即为直观图的原图;四边形OABC为平行四边形;5.因为,,由勾股定理,BA=3,所以平行四边形OABC周长为8.学习成果测评基础达标:一、选择题1.下列说法正确的是( )A.相等的线段在直观图中仍然相等B.若两条线段平行,则在直观图中对应的两条线段仍然平行C.两个全等三角形的直观图一定也全等D.两个图形的直观图是全等的三角形,则这两个图形一定是全等三角形.2.用长为4,宽为2的矩形做侧面围成一个圆柱,此圆柱轴截面面积为( )A.8 B.C.D.3.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84,则圆台较小底面的半径为( )A.7 B.6 C.5 D.34.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )A.B.C.D.5.三棱锥的底面ABC的面积为12,顶点V到底面ABC的距离为3,侧面V AB的面积为9,则点C到侧面V AB的距离为( )A.3 B.4 C.5 D.66.正方体的内切球和外接球的半径之比为( )A.B.C.D.7.长方体的一个顶点上三条棱长分别是3、4、5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A.25B.50C.125D.都不对8.一个圆锥与一个球的体积相等,圆锥的底面半径是球的半径的3倍,圆锥的高与底面半径之比为( ) A.B.C.D.二、填空题1.一个平面的斜二测图形是边长为2的正方形,则原图形的高是________.答案:42.利用斜二测画法得到的图形,有下列说法:①三角形的直观图仍是三角形;②正方形的直观图仍是正方形;③平行四边形的直观图仍是平行四边形;④菱形的直观图仍是菱形.其中说法正确的序号依次是__________.3.已知两个母线长相等的圆锥的侧面展开图恰能拼成一个圆,且它们的侧面积之比为1:2,则它们的高之比为_________.能力提升:一、选择题1.对于一个底边在x轴上的三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ).A.2倍B.倍C.倍D.倍2.如图所示的直观图,其平面图形的面积为( ).A.3B.6C.D.3.已知正方形的直观图是有一条边长为4的平行四边形,则此正方形的面积是( )A.16 B.16或64 C.64 D.以上都不对4.一个直棱柱(侧棱垂直于底面的棱柱)的底面是菱形,对角线长分别是9cm和15cm,高是5cm.则这个直棱柱的侧面积是( ).A.B.C.D.二、填空题1.关于“斜二测”直观图的画法,有如下说法:①原图形中平行于y轴的线段,其对应线段平行于y轴,长度变为原来的;②画与直角坐标系对应的必须是45°;③在画直观图时,由于选轴的不同,所得的直观图可能不同;④等腰三角形的直观图仍为等腰三角形;⑤梯形的直观图仍然是梯形;⑥正三角形的直观图一定为等腰三角形.其中说法正确的序号依次是___________.答案解析:基础达标:一、选择题:BBAAB,DBC二、填空题:1、或;2、①③;3、;4、;5、,.三、解答题:解:由题意有,,∴即油槽的深度为75cm.能力提升:一、选择题:CBBA BCAD二、填空题:1、①⑤;2、三、解答题:1.解:一个侧面如右图,易知,.则,,所以,表面积为综合探究:解:(1)如果按方案一,仓库的底面直径变成16m,则仓库的体积.如果按方案二,仓库的高变成8m,则仓库的体积.(2)如果按方案一,仓库的底面直径变成16m,半径为8m.棱锥的母线长为则仓库的表面积;如果按方案二,仓库的高变成8m,棱锥的母线长为,则仓库的表面积;(3)∵,,∴方案二比方案一更加经济.。