第七章 不完全信息静态博弈资料
- 格式:ppt
- 大小:246.50 KB
- 文档页数:39
❑❑This chapter begins our study of games of incomplete information, also called Bayesian games. Recall that in a game of complete information the players’functions are common knowledge. In a game of incomplete information, in❑例如:❑❑K型集),既引入一个虚拟的参与人,记为定它的支付函数;它的唯一作用是决定TPN己,把P所有参与人同时行动,从各自的a由此变成BayesianDefinitionof an n-player static Bayesian game specifies the players’type spaces TP 1 , …, Pμ1known by player i, determines player i’s payoff function,member of the set of possible types, Ti’s belief Pn-1 other players’game by G={Aμ1Definition(T人si含了自然赋予己的策略空间的行动空间Definition T任意博弈方sias一个a❑❑❑❑如果在位者是高成本进入者进入者最优行为是进入,在位者最优行为是默许。
进入者如果在位者是低成本进入者进入者最优行为是不进入,在位者最优行为是斗争(一旦低成本者进入)。
进入者但进入者不知道在位者究竟是高成本还是低成本,因此,进入者的最优选择依赖于他对在位者成本的信念。
进入者❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑E ❑q❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑。
3 不完全信息静态博弈3.1 简介博弈论在1970年代之后逐渐进入主流经济学体系,主要是由于它在不完全信息条件下的经济分析中表现出特别的优势。
不完全信息指经济活动中一部分经济主体的某些特征对于其他主体来说是不清楚的。
如在拍卖商品或工程招投标中。
信息不完全又称为信息不对称,即其他局中人没有特定局中人清楚特定局中人自身的特征。
不完全信息静态博弈就是假定某些局中人具有其他局中人不清楚的某些特征的静态博弈。
但对于局中人本身来说,他自身的这些不为人所知的特征对于他自己来说是清楚的,因而称这些特征为局中人自己拥有的“私人信息”()。
在博弈论中,习惯地将局中人的“私人信息”集中表现为局中人的支付函数特征,也就是说,局中人的私人特征将完全通过其支付函数特征表征出来,而不完全信息就表现为一些局中人不清楚另一局中人的支付函数,当然,每个局中人是完全清楚自己的支付函数的。
3.2 理论: 静态贝叶斯博弈和贝叶斯纳什均衡在假定局中人拥有私人信息的情况下,其他局中人对特定局中人的支付函数类型并不清楚,局中人不知道他在与谁博弈,在1967年前,博弈论专家认为此时博弈的结构特征是不确定的,无法进行分析。
(1967、1968)提出了一种处理不完全信息博弈的方法,即引入一个虚拟的局中人——“自然N ”。
N 首先行动,决定每个局中人的特征。
每个局中人知道自己的特征,但不知道其他局中人特征。
这种方法将不完全信息静态博弈变成一个两阶段动态博弈,第一个阶段是自然N 的行动选择,第二阶段是除N 外的局中人的静态博弈。
这种转换被称为“转换”,它将不完全信息博弈转换为完全但不完美信息博弈。
局中人拥有的私人信息为他的“类型”,由其支付函数决定,故常将支付函数等同于类型。
用i θ表示局中人i 的一个特定类型,i H 表示局中人i 所有可能类型的集合,即i i H ∈θ,称i H 为局中人i 的类型空间,n i ,,1Λ=。
不完全信息静态博弈中,局中人的类型存在多种可能,因而与局中人相关的各种概念都随其类型的不同而不同。
第八章 不完全信息静态博弈这一章里我们讨论不完全信息静态博弈,也称为贝叶斯博弈(Bayes)。
不完全信息博弈中,至少有一个参与者不能确定另一参与者的收益函数。
非完全信息静态博的一个常见例子是密封报价拍卖(sealed —bid auction):每一报价方知道自己对所售商品的估价,但不知道任何其他报价方对商品的估价;各方的报价放在密封的信封里上交,从而参与者的行动可以被看作是同时的。
静态贝叶斯博弈问题的主要来源也是现实经济活动,许多静态博弈关系都有不完全信息的特征,研究贝叶斯博弈不仅是完善博弈理论的需要,也是解决实际问题的需要。
8.1 静态贝叶斯博弈和贝叶斯纳什均衡为了更好的说明不完全信息与完全信息之间的差异,我们用一个典型静态贝叶斯博弈作为例子,自然的引进静态贝叶斯博弈概念。
考虑如下两寡头进行同时决策的产量竞争模型。
其中市场反需求函数由Q a Q P -=)(给出,这里21q q Q +=为市场中的总产量。
企业1的成本函数为1111)(q c q C =,不过企业2的成本函数以θ的概率为222)(q c q C H =,以θ-1的概率为222)(q c q C L =,这里H L c c <。
并且信息是不对称的:企业2知道自己的成本函数和企业1的成本函数,企业1知道自己的成本函数,但却只知道企业2边际成本为高的概率是θ,边际成本为低的概率是θ-1(企业2可能是新进入这一行业的企业,也可能刚刚发明一项新的生产技术)。
上述一切都是共同知识:企业1知道企业2享有信息优势,企业2知道企业1知道自己的信息优势,如此等等。
现在我们来分析这个静态贝叶斯博弈。
一般情况下,企业2的边际成本较高时选择较低的产量,边际成本较低时,选择较高的产量。
企业1从自己的角度,会预测到企业2根据其成本情况将选择不同的产量。
设企业1的最佳产量选择为*1q ,企业2 边际成本为H c 时的最佳产量选择为)(*2H c q ,企业2 边际成本为L c 时的最佳产量选择为)(*2L c q ,如果企业2的成本较高,它会选择)(*2H c q 满足:类似地,如果企业2的成本较低,)(*2L c q 应满足:从而,企业l 为了使利润最大化,选择*1q 应满足:三个最优化问题的一阶条件为:及 ]})()[(1(])([({211*21*2*1c c q a c c q a q L H ---+--=θθ 三个一阶条件构成的方程组的解为:及 3)1(2*1L H c c c a q θθ-++-=把这里的*1q 、)(*2H c q 和)(*2L c q 与成本分别为1c 和2c 的完全信息古诺均衡相比较,假定1c 和2c 的取值可使得两个企业的均衡产量都为正,在完全信息的条件下,企业的产出为3/)2(*j i i c c a q +-=。
不完全信息静态博弈:贝叶斯纳什均衡海萨尼1、前两篇⽂章讲的博弈都包含⼀个基本假设,即所有参与⼈都知道博弈的结构、规则、⽀付函数,因⽽称为完全信息博弈。
然⽽现实中,参与者并不了解其他参与者的⼀些信息,即不完全信息博弈(games of incomplete information)。
2、当对⼿有多种情况时,⽐如市场博弈的例⼦,在位者成本函数可能有需求⾼、需求中、需求低三种情况,那么可以采取“海萨尼转换”,即引⼊⼀个虚拟的参与⼈“⾃然”,⾃然⾸先⾏动,选择参与⼈的类型,被选择的参与⼈知道⾃⼰的真实类型,其他参与⼈并不清楚这个参与⼈的真实类型,但知道各种可能类型的概率分布。
如下图所⽰:3、这种情况下,可以通过海萨尼转换(Harsanyi transformation)把不完全信息博弈转换成完全但不完美信息博弈(complete but inprefer information)。
“不完美信息”指“⾃然”作出了选择,但其他参与⼈并不知道它的具体选择是什么,仅知道各种选择的概率分布。
4、在静态不完全信息博弈中,参与⼈同时⾏动,每个参与⼈的最优战略依赖于⾃⼰的类型,他不可能准确的知道其他参与⼈实际上会做出什么选择,但他能正确的预测其他参与⼈的选择是如何依赖于各⾃的类型的。
决策的⽬标就是在给定⾃⼰的类型和别⼈的类型依从战略的情况下,最⼤化⾃⼰的期望效⽤。
海萨尼定义了“贝叶斯纳什均衡”,给定⾃⼰的类型和别⼈类型的概率分布,每个参与⼈的期望效⽤达到了最⼤化,没有⼈有积极性选择其他战略。
5、举个例⼦,某⼀市场原来被A企业所垄断,现在B企业考虑是否进⼊。
B企业知道,A企业是否允许它进⼊,取决于A企业阻挠B企业进⼊所花费的成本。
如果阻挠的成本⾼,A企业的最优战略是默许B进⼊。
如果阻挠的成本低,A企业的最优战略是阻挠。
⽀付矩阵如下表所⽰:B企业并不知道A企业的阻挠成本是⾼还是低。
这⾥,某⼀参与⼈本⼈知道、其他参与⼈不知道的信息称为私⼈信息。