应用概率统计综合作业三
- 格式:doc
- 大小:687.55 KB
- 文档页数:8
概率论考核作业(综合测试题)完整版综合测试题概率论与数理统计(经管类)综合试题一(课程代码 4183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列选项正确的是 ( B ).A. A B A B +=+B.()A B B A B +-=-C. (A -B )+B =AD. AB AB = 2.设()0,()0P A P B >>,则下列各式中正确的是( D ).A.P (A -B )=P (A )-P (B )B.P (AB )=P (A )P (B )C. P (A +B )=P (A )+P (B )D. P (A +B )=P (A )+P (B )-P (AB )3.同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是 ( D ).A.18 B. 16 C. 14 D. 124.一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1,2,3,4,5顺序的概率为 ( B ).A.1120 B. 160C. 15D. 125.设随机事件A ,B 满足B A ?,则下列选项正确的是 ( A ).A.()()()P A B P A P B -=-B. ()()P A B P B +=C.(|)()P B A P B =D.()()P AB P A =6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足 ( C ).A. 0()1f x ≤≤B. f (x )连续C.()1f x dx +∞-∞=?D. ()1f +∞=7.设离散型随机变量X 的分布律为(),1,2,...2kbP X k k ===,且0b >,则参数b的值为( D ).A.12 B. 13 C. 15D. 1 8.设随机变量X , Y 都服从[0, 1]上的均匀分布,则()E X Y += ( A ). A.1 B.2 C.1.5 D.09.设总体X 服从正态分布,21,()2EX E X =-=,1210,,...,X X X 为样本,则样本均值101110ii X X ==∑~( D ).A.(1,1)N -B.(10,1)NC.(10,2)N -D.1(1,)10N - 10.设总体2123(,),(,,)X N X X X μσ 是来自X 的样本,又12311?42X aX X μ=++ 是参数μ的无偏估计,则a = ( B ).A. 1B.14 C. 12 D. 13二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
概率论与数理统计作业1(§1.1~§1.2)一、填空题1.设A、B、C表示三个随机事件,试将下列事件用A、B、C表示出来:(1)仅A发生;(2)A、B、C都不发生;(3)A、B、C不都发生;(4)A不发生,且B、C中至少有一个事件发生;(5)A、B、C中至少有两个事件发生;(6)A、B、C中最多有一个事件发生。
2.对飞机进行两次射击,每次射一弹,设事件A={第一次击中飞机},B={第二次击中飞机},试用A、B表示下列事件:(1)恰有一弹击中飞机;(2)至少有一弹击中飞机;(3)两弹都击中飞机。
3.设A、B、C是任意的三个随机事件,写出以下概率的计算公式:(1)=BP(AB)AP;)(P;(2)=(A=-)(3)=BP。
A⋃⋃)(C4.某市有50%住户订日报,65%住户订晚报,85%住户至少订这两种报纸中的一种,则同时订这两种报纸的住户所占的百分比是。
5.设A、B、C是三个随机事件,且25PB=CP,=AP).0(=)()((=)=BCP,则:(ABPP,0)125).0AC(=(1)A、B、C中都发生的概率为;(2)A、B、C中至少有一个发生的概率为;(3)A、B、C都不发生的概率为。
6.设()()P AB P AB =,且()P A p =,则()P B = .二、单项选择题1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为[]。
(A )“甲种产品滞销,乙种产品畅销”;(B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”;(D )“甲种产品滞销或乙种产品畅销”。
2.对于事件A 、B 有A B ⊂,则下述结论正确的是[]。
(A )A 与B 必同时发生;(B )A 发生,B 必发生;(C )B 发生,A 必发生;(D )B 不发生,A 必不发生。
3.对于任意两事件A 、B ,与B B A =⋃不等价的是[]。
(A )B A ⊂;(B )A B ⊂;(C )φ=B A ;(D )φ=B A 。
九年级数学上册综合算式专项练习题统计与概率应用在数学学科中,统计与概率是非常重要的概念。
通过统计,我们可以对数据进行收集、整理和分析,从而得出有关事件的一些信息。
而概率则是用来描述事件发生的可能性大小。
在九年级的数学上册中,有许多综合算式专项练习题涉及到统计与概率的应用。
本文就将从几个不同的角度来讨论这些题目的解题思路和方法。
一、统计与概率概念的复习在进行综合算式专项练习题之前,首先需要复习统计与概率的相关概念。
1. 统计的概念:统计是指通过对一定范围内的个别对象进行观察、测量和实验,并对所得数据进行整理、分析和解释的一种方法。
2. 频数和频率:在统计中,频数指的是某一事件出现的次数,频率则指的是该事件发生的概率。
频率可以通过频数除以总数得到。
3. 概率的概念:概率是指某个事件发生的可能性大小,通常用一个介于0和1之间的数值来表示,其中0表示不可能发生,1表示一定发生。
二、综合算式的统计与概率应用题实例下面我们将介绍几个综合算式的专项练习题,并利用统计与概率的方法进行解答。
1. 已知小明抛掷一枚均匀的骰子,求他抛掷10次后,恰好抛出4次的概率。
解析:这道题要求我们计算小明抛出4次的概率。
根据骰子的性质,每次抛掷的结果都是独立的,而且每个数字出现的可能性相等。
假设“抛出4次”事件的概率为P,那么P = (1/6)^4,即P = 1/1296。
所以小明抛出4次的概率为1/1296。
2. 一组学生进行了一个数学测验,结果如下:90分以上的有5人,80分至89分的有12人,70分至79分的有20人,60分至69分的有8人,60分以下的有5人。
求这组学生的平均成绩。
解析:为了计算平均成绩,首先需要确定每个分数段的中间值。
根据给定的数据,我们可以计算出每个分数段的总分。
90分以上的人数是5人,所以总分为5 * 90 = 450分;80分至89分的人数是12人,所以总分为12 * 85 = 1020分;70分至79分的人数是20人,所以总分为20 * 75 = 1500分;60分至69分的人数是8人,所以总分为8 * 65 = 520分;60分以下的人数是5人,所以总分为5 * 50 = 250分。
20天大《应用统计学》第三次在线作业习题+答案统计指数划分为个体指数和总指数的依据是(A)A.反映的对象范围不同B.指标性质不同C.采用的基期不同D.编制指数的方法不同不能提高工程能力指数的途径为(B)。
A.增大公差范围B.缩小公差范围C.减少加工工序的中心偏移量D.减少标准偏差在某高校中,管理学专业的学生占10%,如果从该高校中随机抽取200名学生进行调查,样本中管理学专业学生所占比例的期望值为(A)。
A.10%B.20%C.5%D.40%有一批灯泡共1000箱,每箱200个,现随机抽取20箱并检查这些箱中的全部灯泡,此种检验属于(C)。
A.纯随机抽样B.类型抽样C.整群抽样D.等距抽样当总体单位数越来越大时,重复抽样和不重复抽样之间的差异(B)。
A.越来越明显B.越来越小C.保持不变D.难以判断组内误差是衡量某一水平下样本数据之间的误差,它(A)A.只包括随机误差B.只包括系统误差C.既包括随机误差,也包括系统误差D.有时包括随机误差,有时包括系统误差若决策者感到客观形势确实不利,宜采用(A)。
A.最大的最小收益值准则B.等可能性准则C.最大的最大收益值准则D.折中准则样本均值与总体均值之间的差被称为(A)。
A.抽样误差B.点估计C.均值的标准误差D.区间估计无偏估计是指( B )。
A.本统计量的值恰好等于待估的总体参数B.所有可能样本估计值的数学期望等于待估总体参数C.样本估计值围绕待估参数使其误差最小D.样本量扩大到和总体单元相等时与总体参数一致绘制产品质量控制图的关键是(B)。
A.数据的选取和分组B.计算控制上下限和中心线C.计算各个样本数据D.确定使用哪种控制图在下面的假定中,哪一个不属于方差分析的假定(D)A.每个总体都服从正态分布B.各总体的方差相等C.观测值是独立的D.各总体的方差等于0假设总体服从均匀分布,从此总体中抽取容量为40的样本均值的抽样分布(B)。
A.服从均匀分布B.近似服从正态分布C.不可能服从正态分布D.无法确定贝叶斯决策需要调查取得信息来修正先验概率,这个调查是在(C)中进行的。
第 1 页/共 23 页2021全国中考真题分类汇编(统计与概率)----统计与概率的综合运用一、挑选题1. (2021•湖南省衡阳市)下列说法准确的是( )A .为了解我国中学生课外阅读情况,应采取全面调查方式B .某彩票的中奖机会是1%,买100张一定会中奖C .从装有3个红球和4个黑球的袋子里摸出1个球是红球的概率是D .某校有3200名学生,为了解学生最喜欢的课外体育运动项目,随机抽取了200名学生,其中有85名学生表示最喜欢的项目是跳绳,预计该校最喜欢的课外体育运动项目为跳绳的有1360人2. (2021•湖北省江汉油田)下列说法准确的是( )A. “打开电视机,正在播放《新闻联播》”是必然事件B. “明天下雨概率为0.5”,是指明天有一半的时光可能下雨C. 一组数据“6,6,7,7,8”的中位数是7,众数也是7D. 甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同.方差分离是2 0.2s =甲,20.4s =乙,则甲的成绩更稳定二.解答题1. (2021•黑龙江省大庆市)某校要从甲,乙两名学生中挑选一名学生参加数学比赛,在最近的8次选拔赛中,他们的成績(成绩均为整数,单位:分)如下: 甲:92,95,96,88,92,98,,99,100乙:100,87,92,93, 9 ,95,92,98因为保存不当,学生乙有一次成绩的个位数字含糊不清,(1)求甲成绩的平均数和中位数;(2)求事件“甲成绩的平均数大于乙成绩的平均数”的概率;(3)当甲成绩的平均数与乙成绩的平均数相等时,请用方差大小说明应选哪个学生参加数学比赛.2.(2021•山东省济宁市)某校为了解九年级学生体质健康情况,随机抽取了部分学生举行体能测试,并按照测试结果绘制了不残破的条形统计图和扇形统计图,请回答下列问题.(1)在这次调查中,“优秀”所在扇形的圆心角的度数是;(2)请补全条形统计图;(3)若该校九年级共有学生1200人,则预计该校“良好”的人数是;(4)已知“不及格”的3名学生中有2名男生、1名女生,倘若从中随机抽取两名学生举行体能加试,请用列表法或画树状图的主意,求抽到两名男生的概率是多少?3.(2021•湖南省常德市)我市华恒小区居民在“一针疫苗一份心,预防接种尽责任”的号召下,积极联系社区医院举行新冠疫苗接种.为了解接种进度,该小区管理人员对小区居民举行了抽样调查,按接种情况可分如下四类:A类——接种了只需要注射一针的疫苗:B类——接种了需要注射二针,且二针之间要间隔一定时光的疫苗;C类——接种了要注射三针,且每二针之间要间隔一定时光的疫苗;D类——还没有接种,图1与图2是按照此次调查得到的统计图(不残破).请按照统计图回答下列问题.(1)此次抽样调查的人数是多少人?(2)接种B类疫苗的人数的百分比是多少?接种C类疫苗的人数是多少人?(3)请预计该小区所居住的18000名居民中有多少人举行了新冠疫苗接种.(4)为了继续宣传新冠疫苗接种的重要性,小区管理部门决定在已经接种疫苗的居民中征集2名志愿宣传者,现有3男2女共5名居民报名,要从这5人中随机挑选2人,求恰好抽到一男和一女的概率是多少.4.(2021•湖南省衡阳市)“垃圾分类工作就是新时尚”,为了改善生态环境,有效利用垃圾剩余价值,2020年起,我市将生活垃圾分为四类:厨余垃圾、有害垃圾、可回收垃圾、其他垃圾.某学习研究小组在对我市垃圾分类实施情况的调查中,绘制了生活垃圾分类扇形统计图,如图所示.(1)图中其他垃圾所在的扇形的圆心角度数是度;(2)据统计,生活垃圾中可回收物每吨可发明经济总价值约为0.2万元.若我市某天生活垃圾清运总量为500吨,请预计该天可回收物所发明的经济总价值是多少万元?(3)为了调查学生对垃圾分类知识的了解情况,某校开展了相关知识比赛,要求每班派2名学生参赛.甲班经选拔后,决定从2名男生和2名女生中随机抽取2名学生参加比赛,求所抽取的学生中恰好一男一女的概率.第3 页/共23 页5.(2021•怀化市)某校开展了“禁毒”知识的宣传教诲活动.为了解这次活动的效果,现随机抽取部分学生举行知识测试,并将所得数据绘制成不残破的统计图表.频率等级频数(人数)优秀600.6良好a0.25合格10b50.05基本合格合计c1按照统计图表提供的信息,解答下列问题:(1)a=,b=,c=;(2)补全条形统计图;(3)该小学共有1600名学生,预计测试成绩等级在合格以上(包括合格)的学生约有多少人?(4)在这次测试中,九年级(3)班的甲、乙、丙、丁四位学生的成绩均为“优秀”,现班主任决定从这四名学生中随机选取两名学生出一期“禁毒”知识的黑板报,请用列表法或画树状图法求甲、乙两名学生同时被选中的概率.6.(2021•山东省泰安市)为欢庆中国共产党成立100周年,落实教诲部《关于在中小学组织开展“从小学党史,永远跟党走”主题教诲活动的通知》要求,某小学举行党史知识比赛,随机调查了部分学生的比赛成绩,绘制成两幅不残破的统计图表.按照统计图表提供的信息,解答下列问题:(1)本次共调查了名学生;C组所在扇形的圆心角为度;(2)该校共有学生1600人,若90分以上为优秀,预计该校优秀学生人数为多少?(3)若E组14名学生中有4人满分,设这4名学生为E1,E2,E3,E4,从其中抽取2名学生代表小学参加上一级比赛,请用列表或画树状图的主意求恰好抽到E1,E2的概率.比赛成绩统计表(成绩满分100分)组别分数人数A组75<x≤4第5 页/共23 页80B组80<x≤8510C组85<x≤90D组90<x≤9514E组95<x≤100合计7.(2021•广西玉林市)2021年是中国共产党建党100周年华诞.“五一”后某校组织了八年级学生参加建党100周年知识比赛,为了了解学生对党史知识的控制情况,小学随机抽取了部分学生的成绩作为样本,把成绩按不及格、合格、良好、优秀四个等级分离举行统计,并绘制了如下不残破的条形统计图与扇形统计图:请按照图中提供的信息解答下列问题:(1)按照给出的信息,将这两个统计图补充残破(不必写出计算过程);(2)该校八年级有学生650人,请预计成绩未达到“良好”及以上的有多少人?(3)“优秀”学生中有甲、乙、丙、丁四位学生表现突出,现从中派2人参加区级比赛,求抽到甲、乙两人的概率.8.(2021•湖北省随州市)疫苗接种初期,为更好地响应国家对符合条件的人群接种新冠疫苗的号召,某市教诲部门随机抽取了该市部分七、八、九年级教师,了解教师的疫苗接种情况,得到如下统计表:已接种未接种合计七年级301040八年级3515a九年级40b60合计105c150(1)表中,a=______,b=______,c=______;(2)由表中数据可知,统计的教师中接种率最高的是______年级教师;(填“七”或“八”或“九”)(3)若该市初中七、八、九年级一共约有8000名教师,按照抽样结果预计未接第7 页/共23 页种的教师约有______人;(4)为更好地响应号召,立德中学从最初接种的4名教师(其中七年级1名,八年级1名,九年级2名)中随机选取2名教师谈谈接种的感触,请用列表或画树状图的主意,求选中的两名教师恰好不在同一年级的概率.9.(2021•山东省菏泽市)2021年5月,菏泽市某中学对初二学生举行了国家义务教诲质量检测,随机抽取了部分参加15米折返跑学生的成绩,学生成绩划分为优秀、良好、合格与不合格四个等级,小学绘制了如下不残破的统计图.按照图中提供的信息解答下列问题:(1)请把条形统计图补充残破;(2)合格等级所占百分比为%;不合格等级所对应的扇形圆心角为度;(3)从所抽取的优秀等级的学生A、B、C…中,随机选取两人去参加即将举办的小学运动会,请利用列表或画树状图的主意,求出恰好抽到A、B两位学生的概率.10.(2021•四川省达州市)为欢庆中国共产党成立100周年,在中小学生心中厚植爱党情怀,我市开展“童心向党”教诲实践活动,舞蹈,书法,为了解学生的参加情况,该校随机抽取了部分学生举行“你愿意参加哪一项活动”(必选且只选一种),部分信息如下:(1)这次抽样调查的总人数为人,扇形统计图中“舞蹈”对应的圆心角度数为;(2)若该校有1400名学生,预计挑选参加书法的有多少人?(3)小学决定从推荐的4位学生(两男两女)中选取2人主持活动,利用画树状图或表格法求恰为一男一女的概率.11.(2021•四川省广元市)“此生无悔入华夏,来世再做中国人!”自疫情暴发以来,我国科研团队经过不懈努力,胜利地研发出了多种“新冠”疫苗,并在全国范围内免费接种.截止2021年5月18日16:20,全球接种“新冠”疫苗的比例为18.29%;中国累计接种4.2亿剂,占全国人口的29.32%.以下是某地甲、乙两家医院5月份某天各年龄段接种疫苗人数的频数分布表和接种总人数的扇形统计图:甲医院乙医院年龄段频数频率频数频率第9 页/共23 页18-29周岁9000.154000.130-39周岁a0.2510000.2540-49周岁2100b c0.22550-59周岁12000.212000.360周岁以上3000.055000.125(1)按照上面图表信息,回答下列问题:①填空:a=_________,b=_________,c=_________;②在甲、乙两医院当天接种疫苗的所有人员中,40-49周岁年龄段人数在扇形统计图中所占圆心角为_________;(2)若A、B、C三人都于当天随机到这两家医院接种疫苗,求这三人在同一家医院接种的概率.12. (2021•呼和浩特市))某大学为了解大学生对中国共产党党史识的学习情况,在大学一年级和二年级举行有关党史知识测试活动,现从一二两个年级中各随机抽取20名学生的测试成绩(满分50分,30分及30分以上为合格:40分及40分以上为优秀)举行收拾、描述和分析,给出了下面的部分信息.大学一年级20名学生的测试成绩为:39,50,39,50,49,30,30,49,49,4,43,43,43,37,37,37,43,43,37,25.大学二年级20名学生的测试成绩条形统计图如下图所示;两个年级抽取的学生的测试成绩的平均数、众数、中位数、优秀率如下表所示:年级平均数众数中位数优秀率大一a b43m大二39.544c n请你按照上面提供的所有信息,解答下列问题:(1)上表中a=__________,b=__________,c=__________,m=__________,n__________;按照样本统计数据,你认为该大学一、二年级中哪个年级学生控制党史知识较好?并说明理由(写出一条理由即可);(2)已知该大学一、二年级共1240名学生参加了此次测试活动,通过计算,预计参加此次测试活动成绩合格的学生人数能否超过1000人;(3)从样本中测试成绩为满分的一、二年级的学生中随机抽取两名学生,用列举法求两人在同一年级的概率.13.(2021•贵州省铜仁市)某校开展主题为“防疫常识知多少”的调查活动,抽取了部分学生举行调查,调查问卷设置了A:异常了解、B:比较了解、C:基本了解、D:不太了解四个等级,要求每个学生填且只能填其中的一个等级,采取随机抽样的方式,并按照调查结果绘制成如图所示不残破的频数分布表和频率第11 页/共23 页直方图,按照以上信息回答下列问题:等级频数频率A200.4B15bC100.2D a0.1(1)频数分布表中a=____________,b=____________,将频数分布直方图补充残破;(2)若该校有学生1000人,请按照抽样调查结果估算该校“异常了解”和“比较了解”防疫常识的学生共有多少人?(3)在“异常了解”防疫常识的学生中,某班有5个学生,其中3男2女,计划在这5个学生中随机抽选两个参加防疫志愿者团队,请用列表或画树状图的主意求所选两个学生中至少有一个女生的概率.14.(2021•湖北省黄石市)黄石是国家历史文化名城,素有“青铜故里、矿冶之都”的盛名.区域内矿冶文化旅游点有:A.铜绿山古铜矿遗址,B.黄石国家矿山公园,C.湖北水泥遗址博物馆,D.黄石园博园、矿博园.我市八年级某班计划暑假期间到以上四个地方开展研学旅游,学生分成四个小组,按照报名情况绘制了两幅不残破的统计图.请按照图中信息,解答下列问题:(1)全班报名参加研学旅游活动的学生共有______人,扇形统计图中A部分所对应的扇形圆心角是______;(2)补全条形统计图;(3)该班语文、数学两位学科教师也报名参加了本次研学旅游活动,他们随机参加A、B两个小组中,求两位教师在同一个小组的概率.15.(2021•辽宁省本溪市)为迎接建党100周年,某校组织学生开展了党史知识比赛活动.比赛项目有:A.回顾重要事件;B.列举革命先烈;C.讲述好汉故事;D.歌颂时代精神.小学要求学生全员参加且每人只能参加一项,为了解学生参加比赛情况,随机调查了部分学生,并将调查结果绘制成如下两幅不残破的统计图,请你按照图中信息解答下列问题:(1)本次被调查的学生共有________名;(2)在扇形统计图中“B项目”所对应的扇形圆心角的度数为________,并把第13 页/共23 页条形统计图补充残破;(3)从本次被调查的小华、小光、小艳、小萍这四名学生中,随机抽出2名学生去做宣讲员,请用列表或画树状图的主意求出恰好小华和小艳被抽中的概率.16.(2021•四川省乐山市)某中学全校师生听取了“禁毒”宣传报告后,对禁毒人员肃然起敬.小学德育处随后决定在全校1000名学生中开展“我为禁毒献爱心”的捐款活动.张教师在周五随机调查了部分学生随身携带零花钱的情况,并将收集的数据举行收拾,绘制了如图所示的条形统计图.(1)求这组数据的平均数和众数;(2)经调查,当学生身上的零花钱多于15元时,都到出零花钱的20%,其余学生不参加捐款.请你预计周五这一天该校可能收到学生自愿捐款多少元?(3)捐款最多的两人将和另一个小学选出的两人组成一个“禁毒”知识宣讲小组,若从4人中随机指定两人担任正、副组长,求这两人来自不同小学的概率.17.(2021•四川省凉山州)随着手机的日益普及,学生使用手机给小学管理和学生发展带来诸多不利影响,为了保护学生眼力,防止学生迷恋网络和游戏,让学生在小学用心学习,促进学生身心健康发展,教诲部办公厅于2021年1月15日颁发了《教诲部办公厅关于加强中小学生手机管理工作的通知》,为贯彻《通知》精神、某小学团委组织了“我与手机说再见”为主题的演讲比赛,按照参赛学生的得分情况绘制了如图所示的两幅不残破的统计图.(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”)请你按照统计图中所提供的信息解答下列问题:(1)获奖总人数为______人,m _______;(2)请将条形统计图补充残破;(3)小学将从获得一等奖的4名学生(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取学生中恰有一名男生和一名女生的概率.18.(2021•四川省眉山市))吸食毒品极易上瘾,不但对人的健康危害极大,而且严重影响家庭和社会的稳定.为了解学生们对禁毒知识的控制情况,从我市某校1000名学生中随机抽取部分学生举行问卷调查,调查评价结果分为:“了解较少”,“基本了解”,“了解较多”,“异常了解”四类,并按照调查结果绘制出如图所示的两幅不残破的统计图.第15 页/共23 页请按照统计图回答下列问题:(1)本次抽取调查的学生共有人,其中“了解较多”的占%;(2)请补全条形统计图;(3)预计此校“异常了解”和“了解较多”的学生共有人;(4)“了解较少”的四名学生中,有3名学生A1,A2,A3是初一学生,1名学生B为初二学生,为了提高学生对禁毒知识的认识,对这4人举行了培训,然后从中随机抽取2人对禁毒知识的控制情况举行检测.请用画树状图或列表的主意,求恰好抽到初一、初二学生各1名的概率.19.(2021•遂宁市)我市于2021年5月22-23日在遂宁观音湖举行了“龙舟赛”,吸引了全国各地选手参加.现对某校初中1000名学生就“比赛规矩”的了解程度举行了抽样调查(参加调查的学生只能挑选其中一项),并将调查结果绘制出以下两幅不残破的统计图表,请按照统计图表回答下列问题:类别频数频率不了解10m了解很少160.32基本了解b很了解4n合计a1(1)按照以上信息可知:a=,b=,m=,n=;(2)补全条形统计图;(3)预计该校1000名初中学生中“基本了解”的人数约有人;(4)“很了解”的4名学生是三男一女,现从这4人中随机抽取两人去参加全市举办的“龙舟赛”知识比赛,请用画树状图或列表的主意说明,抽到两名学生均为男生和抽到一男一女的概率是否相同.20. 2021•四川省自贡市)为了弘扬爱国主义精神,某校组织了“共和国成就”知识比赛,将成绩分为:A(优秀)、B(良好)、C(合格)、D(不合格)四个等级.小李随机调查了部分学生的比赛成绩,绘制了如下统计图.第17 页/共23 页(1)本次抽样调查的样本容量是_________,请补全条形统计图;(2)已知调查对象中惟独两位女生比赛成绩不合格,小李决定随机回访两位比赛成绩不合格的学生,请用树状图或列表法求出恰好回访到一男一女的概率;(3)该校共有2000名学生,请你预计该校比赛成绩“优秀”的学生人数.21.(2021•青海省)为了倡导“节约用水,从我做起”,某市政府决定对该市直属机关200户家庭用水情况举行调查.市政府调查小组随机抽查了其中部分家庭一年的月平均用水量(单位:吨),调查中发现,每户家庭月平均用水量在3~7吨范围内,并将调查结果制成了如下尚不残破的统计表:34567月平均用水量(吨)4a9107频数(户数)频率0.080.40b c0.14请按照统计表中提供的信息解答下列问题:(1)填空:a=,b=,c=.(2)这些家庭中月平均用水量数据的平均数是,众数是,中位数是.(3)按照样本数据,预计该市直属机关200户家庭中月平均用水量不超过5吨的约有多少户?(4)市政府决定从月平均用水量最省的甲、乙、丙、丁四户家庭中,选取两户举行“节水”经验分享.请用列表或画树状图的主意,求出恰好选到甲、丙两户的概率,并列出所有等可能的结果.22.(2021•湖北省荆门市)为欢庆中国共产党建党100周年,某校拟举办主题为“学党史跟党走”的知识比赛活动.某年级在一班和二班举行了预赛,两个班参加比赛的人数相同,成绩分为A、B、C、D四个等级,其等级对应的分值分离为100分、90分、80分、70分,将这两个班学生的最后等级成绩分析收拾绘制成了如图的统计图.(1)这次预赛中,二班成绩在B等及以上的人数是多少?(2)分离计算这次预赛中一班成绩的平均数和二班成绩的中位数;(3)已知一班成绩A等的4人中有两个男生和2个女生,二班成绩A等的都是女生,年级要求从这两个班A等的学生中随机选2人参加小学比赛,若每个学生被抽取的可能性相等,求抽取的2人中至少有1个男生的概率.第19 页/共23 页23. (2021•湖北省十堰市)为欢庆中国共产党成立100周年,某校举行党史知识比赛活动.赛后随机抽取了部分学生的成绩,按得分划分为A 、B 、C 、D 四个等级,并绘制了如下不残破的统计表和统计图. 等级 成绩(x ) 人数A 90100x ≤≤ 15B 8090x ≤< aC 7080x ≤<18 D70x <7按照图表信息,回答下列问题:(1)表中a =__________;扇形统计图中,C 等级所占的百分比是_________;D 等级对应的扇形圆心角为________度;若全校共有1800名学生参加了此次知识比赛活动,请预计成绩为A 等级的学生共有_______人.(2)若95分以上的学生有4人,其中甲、乙两人来自同一年级,小学将从这4人中随机选出两人参加市级比赛,请用列表或树状图法求甲、乙两人至少有1人被选中的概率24. (2021•湖南省张家界市))为了积极响应中共中央文明办关于“文明用餐”的倡议,某校开展了“你的家庭使用公筷了吗?”的调查活动,并随机抽取了部分学生,对他们家庭用餐使用公筷情况举行统计,统计分类为以下四种:A (彻低使用)、B (多数时光使用)、C (偶尔使用)、D (彻低不使用),将数据举行千里之行,始于足下。
专项三概率与统计考点4 统计与概率的综合应用大题拆解技巧【母题】(2020年全国Ⅰ卷)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级A B C D频数40202020乙分厂产品等级的频数分布表等级A B C D频数28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率.(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【拆解1】已知条件不变,分别估计甲、乙两分厂加工出来的一件产品为A级品的概率.【拆解2】已知条件不变,分别求甲、乙两分厂加工出来的100件产品的平均利润.【拆解3】甲分厂加工100件产品的平均利润为15元/件,乙分厂加工100件产品的平均利润为10元/件.以平均利润为依据,厂家应选哪个分厂承接加工业务?2021年是中国共产党成立100周年,中共中央要求我们要熟悉党史、学习党史.某社区为了解居民对党史的认知情况,举行了一次党史知识竞赛,并从所有的居民竞赛试卷中随机抽取n份试卷进行成绩分析,得到成绩频率分布直方图(如图所示),其中成绩在[50,60)的试卷份数是24.(1)求m,n的值;(2)用分层抽样的方法在成绩为[80,90)和[90,100]这两组中共抽取5份试卷,并从这5份试卷中任取2份试卷的居民进行点评,求成绩在[90,100]恰有1份试卷的概率.【拆解1】已知条件不变,求m,n的值.【拆解2】已知条件不变,且m=0.03,n=200,用分层抽样的方法在成绩为[80,90)和[90,100]这两组中共抽取5份试卷,则成绩在[80,90)和[90,100]这两组中应分别抽取多少份试卷?【拆解3】用分层抽样的方法在成绩为[80,90)和[90,100]这两组中分别抽取3份试卷和2份试卷,并从这5份试卷中任取2份试卷的居民进行点评,求成绩在[90,100]恰有1份试卷的概率.通法技巧归纳1.计算古典概型事件的概率可分三步:(1)计算基本事件总个数n;(2)计算事件A所包含的基本事件的个数m;(3)代入公式求出概率.2.求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤:(1)将题目条件中的相关知识转化为事件;(2)判断事件是否为古典概型;(3)选用合适的方法确定基本事件个数;(4)代入古典概型的概率公式求解.<基础过关>1.党的十八大以来,习总书记在不同场合多次强调要“厉行节约,反对浪费”,要加大宣传引导力度,大力弘扬中华民族勤俭节约的优秀传统.某自助餐厅为响应号召,通过就餐人员用餐后的剩余食物情况进行调查后并采取适当的奖惩政策.(1)现有5人用餐,互相之间都不认识.若这5人中有3男2女,从这5人中任取2人,求恰有1男1女的概率.(2)若每人每次用餐需68元,用餐后若无剩余食物,则返回5元奖励;若剩余在0克到50克之间,则不奖不罚;若剩余在50克到100克之间,则罚10元;若剩余在100克以上,则罚20元.近期调查200位来就餐人员,统计结果如下表:食物剩余量(克)无剩余(0,50](50,100]100克以上人数1801262将频率当作概率,求某人来就餐消费的总费用的平均值.2.2021年3月5日,人社部和全国两会政府工作报告中针对延迟退休给出了最新消息,人社部表示正在研究延迟退休改革方案,两会上指出十四五期间要逐步延迟法定退休年龄.现对某市工薪阶层关于延迟退休政策的态度进行调查,随机调查了50人,他们月收入的频数分布及对延迟退休政策赞成的人数如下表:月收入(单位:百元)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]频数510151055赞成人数123534 (1)根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有99%的把握认为“月收入以55百元为分界点”对延迟退休政策的态度有差异;月收入高于55百元的人数月收入低于55百元的人数合计赞成不赞成合计(2)若采用分层抽样从月收入在[25,35)和[65,75]的被调查人中选取6人进行跟踪调查,并随机给其中3人发放奖励,求获得奖励的3人中至少有1人月收入在[65,75)的概率.参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2≥k)0.0500.0100.001 k 3.841 6.63510.8283.第24届冬季奥林匹克运动会将于2022年2月在中国北京举行.为迎接此次冬奥会,北京市组织大学生开展冬奥会志愿者的培训活动,并在培训结束后统一进行了一次考核.为了了解本次培训活动的效果,从A,B两所大学随机各抽取10名学生的考核成绩,并作出如图所示的茎叶图.(1)计算A,B两所大学学生的考核成绩的平均值;(2)由茎叶图判断A,B两所大学学生考核成绩的稳定性;(不用计算)(3)将学生的考核成绩分为两个等级,如表所示,现从样本考核等级为优秀的学生中任取2人,求2人来自同一所大学的概率.考核成绩[60,85][86,100]考核等级合格优秀4.某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,若备件不足再购买,则每个500元,现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)从这100台机器中随机抽取1台,求该台机器两年内更换的易损零件数为8的概率;(2)求X的分布列;(3)以购买易损零件所需费用的期望值为决策依据,在n=18与n=19之中选其一,应选用哪个?<能力拔高>5.有甲、乙两家公司都需要招聘求职者,这两家公司的聘用信息如下:甲公司乙公司职位A B C D职位A B C D 月薪/千元5678月薪/千元46810获得相应职位的概率0.40.30.20.1获得相应职位的概率0.40.30.20.1(1)若两人分别去应聘甲、乙两家公司的C职位(一人只应聘一家公司),记这两人被甲、乙两家公司录用的人数和为η,求η的分布列.(2)根据甲、乙两家公司的聘用信息,如果你是求职者,你会选择哪一家公司?说明理由.(3)若小王和小李分别被甲、乙两家公司录用,求小王月薪高于小李的概率.6.已知某单位甲、乙、丙三个部门的员工人数分别为32,48,32.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有3人睡眠不足,4人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.①用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的数学期望和方差;②设事件A为“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.<拓展延伸>7.为了了解某小区业主与物业满意度情况之间的关系,某兴趣小组按性别采用分层抽样的方法,从全小区中抽取容量为200的样本进行调查.被抽中的居民分别对物业服务进行评分,满分为100分.调查结果显示:最低分为40分,最高分为90分.随后,兴趣小组将男、女居民的评分结果按照相同的分组方式分别整理成了频数分布表和频率分布直方图,图表如下:男居民评分结果的频数分布表分数区间频数[40,50)3[50,60)3[60,70)16[70,80)38[80,90]20女居民评分结果的频率分布直方图为了便于研究,兴趣小组将居民对物业服务的评分转换成了“满意度情况”,二者的对应关系如下:分数[40,50)[50,60)[60,70)[70,80)[80,90]满意度情况不满意一般比较满意满意非常满意(1)求m的值;(2)为进一步改善物业服务状况,从评分在[40,60)的男居民中随机抽取3人进行座谈,记这3人中对物业服务“不满意”的人数为X,求X的分布列与数学期望;(3)以调查结果的频率估计概率,从该小区所有居民中随机抽取一名居民,求其对物业服务“比较满意”的概率.8.人耳的听力情况可以用电子测听器检测,正常人听力的等级为0~25 dB(分贝),并规定测试值在区间(0,5]为非常优秀,测试值在区间(5,10]为优秀.某校500名同学参加了听力测试,从中随机抽取了50名同学的测试值作为样本,制成如下频率分布直方图:(1)从总体的500名学生中随机抽取1人,估计其测试值在区间(0,10]内的概率.(2)已知样本中听力非常优秀的学生有4人,估计总体中听力为优秀的学生人数.(3)现选出一名同学参加另一项测试,测试规则如下:四个音叉的发音情况不同,由强到弱的编号分别为1,2,3,4.测试前将音叉顺序随机打乱,被测试的同学依次听完后,将四个音叉按发音由强到弱重新排序,所对应的音叉编号分别为a1,a2,a3,a4(其中集合{a1,a2,a3,a4}={1,2,3,4}).记Y=|1-a1|+|2-a2|+|3-a3|+|4-a4|,可用Y描述被测试者的听力偏离程度,求Y≤2的概率.。
5.某校开展为“希望小学”捐书活动,以下是八名学生捐书的册数:2,3,2,2,6,7,6,5,则这组数据的中位数为( )A .4B .4.5C .3D .26.一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是( ) A .100元 B .105元 C .108元 D .118元 19.(本题7分)某校为了了解本校八年级学生课外阅读的喜欢,随机抽取了该校八年级部分学生进行问卷调查(每人只选一种书籍)。
图8是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:图8 (1)这次活动一共调查了_________名学生;(2)在扇形统计图中,“其他”所在扇形圆心角等于_________度; (3)补全条形统计图;(4)若该年级有600人,请你估计该年级喜欢“科普常识”的学生人数约是_________人。
10.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是A .13B .12C .23D .34 19.(本题7分)低碳发展是今年深圳市政府工作报告提出的发展理念.近期,某区与某技术支持单位合作,组织策划了该区“低碳先锋行动”,开展低碳测量和排行活动.根据调查数据制作了频数分布直方图和扇形统计图,图6中从左到右各长方形的高度之比为2:8:9:7:3:1.人数常识种类(1)已知碳排放值5≤x <7(千克/平方米·月)的单位有16个,则此次行动调查了________个单位;(3分)(2)在图7中,碳排放值5≤x <7(千克/平方米·月)部分的圆心角为________度;(2分)(3)小明把图6中碳排放值1≤x <2的都看成1.5,碳排放值2≤x <3的都看成2.5,以此类推,若每个被检单位的建筑面积均为10000平方米,则按小明的办法,可估算碳排放值x ≥4(千克/平方米·月)的被检单位一个月的碳排放总值约为________________吨.(2分) 6.下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从中抽出一张,则抽到偶数的概率是( )A .13B .12C .34D .2311.小明在7次百米跑练习中成绩如下:次成绩的中位数是 秒20.(7分)深圳大学青年志愿者协会对报名参加2011年深圳大运会志愿者选拔活动的学生进行了一次与大运知识有关的测试,小亮对自己班有报名参加测试的同学的测试成绩作了适当的处理,将成绩分成三个等级:一般、良好、优秀,并将统计结果绘成了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)小亮班共有 名学生参加了这次测试,如果青年志愿者协会决定让成绩为“优秀”的学生参加下一轮的测试,那么小亮班有 人将参加下轮测试;(3)若这所高校共有1200名学生报名参加了这次志愿者选拔活动的测试,请以小亮班的测试成绩的统计结果来估算全校共有多少名学生可以参加下一轮的测试。
三年级数学上册综合应用概率与统计在三年级数学上册的学习中,综合应用概率与统计是一个重要的知识点。
通过学习这一内容,学生可以了解到统计数据的收集和整理,并且能够应用概率来解决一些实际问题。
下面将从实际生活中的案例出发,详细介绍三年级数学上册综合应用概率与统计的相关内容。
案例一:小明的植物种子小明是一个热爱植物的孩子,他购买了一包花草种子,准备种植在花盆里。
他想知道这包种子中不同种类花卉的比例。
为了回答这个问题,小明随机抽取了10颗种子,并统计了其中各种花卉的数量。
统计结果如下:玫瑰花:4颗向日葵:2颗郁金香:1颗牵牛花:3颗根据这个统计数据,小明可以通过简单的计算得出每种花卉在种子包中的概率。
玫瑰花的概率为4/10,向日葵的概率为2/10,郁金香的概率为1/10,牵牛花的概率为3/10。
同时,小明还可以绘制饼图来直观展示这几种花卉的比例。
通过这个案例,孩子们不仅可以学习到如何进行统计数据的收集和整理,还可以通过计算概率来解答问题。
同时,饼图的绘制也有助于孩子们更好地理解各种花卉在种子包中的比例关系。
案例二:小王的零食盒小王是一个爱吃零食的孩子,他把自己最喜欢的零食收集在一个小盒子里。
他想知道在这个零食盒里,不同种类零食的比例。
为了回答这个问题,小王随机抽取了15个零食,并统计了其中各种零食的数量。
统计结果如下:薯片:5个巧克力:4个饼干:2个糖果:4个根据这个统计数据,小王可以通过计算概率的方式得出薯片的概率为5/15,巧克力的概率为4/15,饼干的概率为2/15,糖果的概率为4/15。
此外,小王还可以绘制柱状图来展示这几种零食的比例关系。
通过这个案例,孩子们不仅可以学习到如何统计数据,还可以通过计算概率来得到各种零食的比例。
同时,柱状图的绘制也能够帮助孩子们更好地理解零食种类的分布情况。
通过以上两个案例的介绍,我们可以看出,在三年级的数学上册中,综合应用概率与统计是一个很实用的知识点。
通过学习这一内容,孩子们可以了解到统计数据的收集和整理的方法,并能够运用概率的思想解决实际问题。
专题21概率与统计的综合运用目录01 求概率及随机变量的分布列与期望 (2)02 超几何分布与二项分布 (3)03 概率与其它知识的交汇问题 (4)04 期望与方差的实际应用 (6)05 正态分布与标准正态分布 (8)06 统计图表及数字特征 (10)07 线性回归与非线性回归分析 (13)08 独立性检验 (16)09 与体育比赛规则有关的概率问题 (18)10 决策型问题 (20)11 递推型概率命题 (21)12 条件概率、全概率公式、贝叶斯公式 (23)13 高等背景下的概统问题 (25)01 求概率及随机变量的分布列与期望1.(2022•甲卷)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望.2.(2024·河南·统考模拟预测)盒中有标记数字1,2,3,4的小球各2个,随机一次取出3个小球.(1)求取出的3个小球上的数字两两不同的概率;E X.(2)记取出的3个小球上的最小数字为X,求X的分布列及数学期望()3.(2024·全国·模拟预测)某科研所计划招聘两名科研人员,共有4人报名应聘.科研所组织了专业能力、创新意识和写作水平三场测试,每场测试满分100分,每名选手在三场测试中的得分分别按50%,30%和20%计入总分,按总分排序,若总分相同,则依次按专业能力、创新意识和写作水平的得分从高到低排序,前两名录取.下表是4名应聘者的三场测试成绩:项目选手1选手2选手3选手4专业能力/分85808284创新意识/分80808582写作水平/分86858688(1)该科研所应招聘哪两名选手?并说明你的理由.(2)该科研所要求新招聘的两名科研人员上岗前参加线上培训.已知专业能力、创新意识和写作水平各有两个线上报告,培训者需从每个项目的两个报告中选择一个学习,记新招聘的两名科研人员参加学习的相同报告的数目为X ,求X 的概率分布列和数学期望.4.(2024·全国·模拟预测)班会课上,甲、乙两位同学参加了“心有灵犀”活动:从5个成语中随机抽取3个,甲同学负责比划,乙同学负责猜成语.甲会比划其中3个,甲会比划的成语,乙猜对的概率为12,甲不会比划的成语,乙无法猜对.(1)求甲乙配合猜对2个成语的概率;(2)设甲乙配合猜对成语个数为X ,求X 的分布列和数学期望.02 超几何分布与二项分布5.(2024·云南曲靖·高三曲靖一中校考阶段练习)某兴趣小组利用所学统计与概率知识解决实际问题.(1)现有甲池塘,已知小池塘里有10条鲤鱼,其中红鲤鱼有4条.若兴趣小组捉取3次,每次从甲池塘中有放回地捉取一条鱼记录相关数据.用X 表示其中捉取到红鲤鱼的条数,请写出X 的分布列,并求出X 的数学期望()E X .(2)现有乙池塘,已知池塘中有形状大小相同的红鲤鱼与黑鲤鱼共10条,其中红鲤鱼有()010,a a a *<<ÎN条,身为兴趣小组队长的骆同学每次从池塘中捉了1条鱼,做好记录后放回池塘,设事件A 为“从池塘中捉取鱼3次,其中恰有2次捉到红鲤鱼”.当0a a =时,事件A 发生的概率最大,求0a 的值.6.(2024·云南昆明·高三云南师大附中校考阶段练习)某校高一年级举行数学史知识竞赛,每个同学从10道题中一次性抽出4道作答.小张有7道题能答对,3道不能答对;小王每道答对的概率均为(01)p p <<,且每道题答对与否互不影响.(1)分别求小张,小王答对题目数的分布列;(2)若预测小张答对题目数多于小王答对题目数,求p 的取值范围.7.(2024·广东肇庆·统考一模)在数字通信中,信号是由数字“0”和“1”组成的序列.现连续发射信号n 次,每次发射信号“0”和“1”是等可能的.记发射信号1的次数为X .(1)当6n =时,求()2P X £(2)已知切比雪夫不等式:对于任一随机变最Y ,若其数学期望()E Y 和方差()D Y 均存在,则对任意正实数a ,有()()()21D Y P Y E Y a a-<³-.根据该不等式可以对事件“()Y E Y a -<”的概率作出下限估计.为了至少有98%的把握使发射信号“1”的频率在0.4与0.6之间,试估计信号发射次数n 的最小值.03 概率与其它知识的交汇问题8.(2024·全国·高三专题练习)如图,已知三棱锥-P ABC 的三条侧棱PA ,PB ,PC 两两垂直,且PA a =,PB b =,PC c =,三棱锥-P ABC 的外接球半径2R =.(1)求三棱锥-P ABC 的侧面积S 的最大值;(2)若在底面ABC 上,有一个小球由顶点A 处开始随机沿底边自由滚动,每次滚动一条底边,滚向顶点B 的概率为12,滚向顶点C 的概率为12;当球在顶点B 处时,滚向顶点A 的概率为23,滚向顶点C 的概率为13;当球在顶点C 处时,滚向顶点A 的概率为23,滚向顶点B 的概率为13.若小球滚动3次,记球滚到顶点B 处的次数为X ,求数学期望()E X 的值.9.(2024·全国·高三阶段练习)如图所示,一只蚂蚁从正方体1111ABCD A B C D -的顶点1A 出发沿棱爬行,记蚂蚁从一个顶点到另一个顶点为一次爬行,每次爬行的方向是随机的,蚂蚁沿正方体上、下底面上的棱爬行的概率为16,沿正方体的侧棱爬行的概率为23.(1)若蚂蚁爬行n 次,求蚂蚁在下底面顶点的概率;(2)若蚂蚁爬行5次,记它在顶点C 出现的次数为X ,求X 的分布列与数学期望.10.(2024·安徽·蚌埠二中校联考模拟预测)某从事智能教育技术研发的科技公司开发了一个“AI作业”项目,并且在甲、乙两个学校的高一学生中做用户测试.经过一个阶段的试用,为了解“AI作业”对学生学习的促进情况,该公司随机抽取了200名学生,对他们“向量数量积”知识点掌握情况进行调查,样本调查结果如下表:甲校乙校使用AI作业不使用AI作业使用AI作业不使用AI作业基本掌握32285030没有掌握8141226用样本频率估计概率,并假设每位学生是否掌据“向量数量积”知识点相互独立.(1)从两校高一学生中随机抽取1人,估计该学生对“向量数量积”知识点基本掌握的概率;(2)从样本中没有掌握“向量数量积”知识点的学生中随机抽取2名学生,以x表示这2人中使用AI作业的人数,求x的分布列和数学期望;(3)从甲校高一学生中抽取一名使用“Al作业”的学生和一名不使用“AI作业”的学生,用“1X=”表示该使用“AI=”表示该使用“AI作业”的学生没有掌握“向量数量积”,用作业”的学生基本掌握了“向量数量积”,用“X0=”表示该不使用“AI作业”的学生没“1Y=”表示该不使用“AI作业”的学生基本掌握了“向量数量积”,用“Y0有掌握“向量数量积”.直接写出方差DX和DY的大小关系.(结论不要求证明)04 期望与方差的实际应用11.(2024·北京西城·高三统考期末)生活中人们喜爱用跑步软件记录分享自己的运动轨迹.为了解某地中学生和大学生对跑步软件的使用情况,从该地随机抽取了200名中学生和80名大学生,统计他们最喜爱使用的一款跑步软件,结果如下:跑步软件一跑步软件二跑步软件三跑步软件四中学生80604020大学生30202010假设大学生和中学生对跑步软件的喜爱互不影响.(1)从该地区的中学生和大学生中各随机抽取1人,用频率估计概率,试估计这2人都最喜爱使用跑步软件一的概率;(2)采用分层抽样的方式先从样本中的大学生中随机抽取8人,再从这8人中随机抽取3人.记X 为这3人中最喜爱使用跑步软件二的人数,求X 的分布列和数学期望;(3)记样本中的中学生最喜爱使用这四款跑步软件的频率依次为1x ,2x ,3x ,4x ,其方差为21s ;样本中的大学生最喜爱使用这四款跑步软件的频率依次为1y ,2y ,3y ,4y ,其方差为22s ;1x ,2x ,3x ,4x ,1y ,2y ,3y ,4y 的方差为23s .写出21s ,22s ,23s 的大小关系.(结论不要求证明)12.(2024·广东东莞·高三统考期末)某区域中的物种C 有A 种和B 种两个亚种.为了调查该区域中这两个亚种的数目比例(A 种数目比B 种数目少),某生物研究小组设计了如下实验方案:①在该区域中有放回的捕捉50个物种C ,统计其中A 种数目,以此作为一次试验的结果;②重复进行这个试验n 次(其中*n ÎN ),记第i 次试验中的A 种数目为随机变量i X (1,2,,i n =×××);③记随机变量11ni i X X n ==å,利用X 的期望()E X 和方差()D X 进行估算.设该区域中A 种数目为M ,B 种数目为N ,每一次试验都相互独立.(1)已知()()()i j i j E X X E X E X +=+,()()()i j i j D X X D X D X +=+,证明:()()1E X E X =,()()11D X D X n=;(2)该小组完成所有试验后,得到i X 的实际取值分别为i x (1,2,,i n =×××),并计算了数据i x (1,2,,i n =×××)的平均值x 和方差2s ,然后部分数据丢失,仅剩方差的数据210.5s n=.(ⅰ)请用x 和2s 分别代替()E X 和()D X ,估算MN和x ;(ⅱ)在(ⅰ)的条件下,求1X 的分布列中概率值最大的随机事件{}1X k =对应的随机变量的取值.13.(2024·贵州贵阳·高三校联考阶段练习)某校为了庆祝建校100周年,举行校园文化知识竞赛.某班经过层层选拔,还有最后一个参赛名额要在甲、乙两名学生中产生,该班设计了一个选拔方案:甲,乙两名学生各自从6个问题中随机抽取3个问题作答.已知这6个问题中,学生甲能正确回答其中的4个问题,而学生乙能正确回答每个问题的概率均为12.甲、乙两名学生对每个问题回答正确与否都是相互独立的.(1)分别求甲、乙两名学生恰好答对2个问题的概率;(2)设甲答对的题数为X ,乙答对的题数为Y ,若让你投票决定参赛选手,你会选择哪名学生?请说明理由.05 正态分布与标准正态分布14.(2024·全国·模拟预测)某市有20000名学生参加了一项知识竞赛活动(知识竞赛分为初赛和复赛),并随机抽取了100名学生的初赛成绩作为样本,绘制了频率分布直方图,如图所示.(1)根据频率分布直方图,求样本平均数的估计值和80%分位数.(2)若所有学生的初赛成绩X 近似服从正态分布()2,N m s,其中m 为样本平均数的估计值,11s »,初赛成绩不低于89分的学生才能参加复赛,试估计能参加复赛的人数.(3)复赛设置了三道试题,第一、二题答对得30分,第三题答对得40分,答错得0分.已知某学生已通过初赛,他在复赛中第一题答对的概率为23,后两题答对的概率均为12,且每道题回答正确与否互不影响,记该考生的复赛成绩为Y ,求Y 的分布列及数学期望.附:若随机变量X 服从正态分布()2,N m s,则()0.6827P X m s m s -<£+»,()220.9545P X m s m s -<£+»,()330.9973P X m s m s -<£+».15.(2024·海南省直辖县级单位·高三校考阶段练习)红松树分布在我国东北的小兴安岭到长白山一带,耐荫性强.在一森林公园内种有一大批红松树,为了研究生长了4年的红松树的生长状况,从中随机选取了12棵生长了4年的红松树,并测量了它们的树干直径i x (单位:厘米),如下表:i123456789101112ix 28.727.231.535.824.333.536.326.728.927.425.234.5计算得:1212211360,10992i i i i x x ====åå.(1)求这12棵红松树的树干直径的样本均值m 与样本方差2s .(2)假设生长了4年的红松树的树干直径近似服从正态分布.记事件A :在森林公园内再从中随机选取12棵生长了4年的红松树,其树干直径都位于区间[22,38].①用(1)中所求的样本均值与样本方差分别作为正态分布的均值与方差,求()P A ;②护林员在做数据统计时,得出了如下结论:生长了4年的红松树的树干直径近似服从正态分布()230,8N .在这个条件下,求()P A ,并判断护林员的结论是否正确,说明理由.参考公式:若()2,Y N m s :,则()()()0.6827,20.9545,30.9973P Y P Y P Y m s m s m s -£»-£»-£».参考数据:1212120.68270.01,0.95450.57,0.99730.97»»».16.已知某高校共有10000名学生,其图书馆阅览室共有994个座位,假设学生是否去自习是相互独立的,且每个学生在每天的晚自习时间去阅览室自习的概率均为0.1.(1)将每天的晚自习时间去阅览室自习的学生人数记为X ,求X 的期望和方差;(2)18世纪30年代,数学家棣莫弗发现,当n 比较大时,二项分布可视为正态分布.此外,如果随机变量()2~,Y N m s ,令Y Z ms-=,则~(0,1)Z N .当~(0,1)Z N 时,对于任意实数a ,记()()F =<a P Z a .已知下表为标准正态分布表(节选),该表用于查询标准正态分布(0,1)N 对应的概率值.例如当0.16a =时,由于0.160.10.06=+,则先在表的最左列找到数字0.1(位于第三行),然后在表的最上行找到数字0.06(位于第八列),则表中位于第三行第八列的数字0.5636便是(0.16)F 的值.a0.000.010.020.030.040.050.060.070.080.090.00.50000.50400.50800.51200.51600.51990.52390.52790.53190.53590.10.53980.54380.54780.55170.55570.55960.56360.56750.57140.57530.20.57930.58320.58710.59100.59480.59870.60260.60640.61030.61410.30.61790.62170.62550.62930.63310.63680.64040.64430.64800.65170.40.65540.65910.66280.66640.67000.67360.67720.6808,0.68440.68790.50.69150.69500.69850.70190.70540.70880.71230.7157'0.71900.7224①求在晚自习时间阅览室座位不够用的概率;②若要使在晚自习时间阅览室座位够用的概率高于0.7,则至少需要添加多少个座位?06 统计图表及数字特征17.(2022•北京)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m 以上(含9.50)m 的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:):m 甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(Ⅰ)估计甲在校运动会铅球比赛中获得优秀奖的概率;(Ⅱ)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望EX ;(Ⅲ)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)18.(2024·江西·高三校联考阶段练习)某学校即将迎来建校80周年,为了增进学生爱校、荣校意识,团委组织学生开展“迎校庆、知校史”的知识竞赛活动,共有100名同学参赛.为了解竞赛成绩的分布情况,将100名同学的竞赛成绩按[)70,75,[)75,80,[)80,85,[)85,90,[)90,95,[]95,100分成6组,绘制成如图所示的频率分布直方图.(1)用样本估计总体,求图中a 的值及此次知识竞赛成绩的80%分位数;(2)现从竞赛成绩在[)80,95的学生中以分层抽样的方式抽取15人进行培训,经过一轮培训后再选取2人担任主持人工作,求在至少1人来自分数段[)90,95的条件下,另外1人来自分数段[)80,85的概率.19.在全球抗击新冠肺炎疫情期间,我国医疗物资生产企业加班加点生产口罩、防护服、消毒水等防疫物品,保障抗疫一线医疗物资供应,在国际社会上赢得一片赞誉.我国某口罩生产企业在加大生产的同时,狠抓质量管理,不定时抽查口罩质量,该企业质检人员从所生产的口罩中随机抽取了100个,将其质量指标值分成以下六组:[)40,50,[)50,60,[)60,70,…,[]90,100,得到如下频率分布直方图.(1)求出直方图中m 的值;(2)利用样本估计总体的思想,估计该企业所生产的口罩的质量指标值的平均数和中位数(中位数精确到0.01);(3)现规定:质量指标值小于70的口罩为二等品,质量指标值不小于70的口罩为一等品.利用分层抽样的方法从该企业所抽取的100个口罩中抽出5个口罩,并从中再随机抽取2个作进一步的质量分析,试求这2个口罩中恰好有1个口罩为一等品的概率.20.(2024·全国·高三期末)武汉外国语学校预筹办“六十周年校庆”庆典活动,需要对参与校庆活动的志愿者进行选拔性面试.现随机抽取了100名候选者的面试成绩,并分成五组:第一组[45,55),第二组[55,65),第三组[65,75),第四组[75,85),第五组[]85,95,绘制成如图所示的频率分布直方图.已知第三、四、五组的频率之和为0.7,第一组和第五组的频率相同.(1)求a ,b 的值;(2)估计这100名候选者面试成绩的第70百分位数(结果精确到0.1);(3)在第二,第五两组志愿者中,采用分层抽样的方法从中抽取6人,然后再从这6人中选出2人,以确定组长人选,求选出的两人来自同一组的概率.07 线性回归与非线性回归分析21.(2024·吉林·东北师大附中校考模拟预测)2015年7月31日,在吉隆坡举行的国际奥委会第128次全会上,北京获得2022年冬奥会举办权.在申冬奥过程中,中国正式向国际社会作出“带动三亿人参与冰雪运动”的庄严承诺.这一承诺,既是我国为国际奥林匹克运动做出重大贡献的大国担当展现,也是根据我国经济水平和全民健身需求做出的群众性运动的战略部署.从北京冬奥会申办成功到2021年10月,全国参与冰雪运动人数累计达到3.46亿,实现了“带动三亿人参与冰雪运动”的目标,这是北京冬奥会给予全球冬季体育运动和奥林匹克运动的最为重要的遗产,可以说是2022年北京冬奥会的第一块金牌.“冬奥热”带动“冰雪热”,也带动了冰雪经济,以冰雪运动为主要内容的冰雪旅游近年来发展迅速,2016至2022六个冰雪季的旅游人次y (单位亿)的数据如下表:年度2016—20172017—20182018—20192019—20202020—20212021—2022年度代号t 123456旅游人次y1.71.972.240.942.543.15(1)求y 与t 的相关系数(精确到0.01),并回答y 与t 的线性相关关系的强弱;(2)因受疫情影响,现将2019—2020年度的异常数据剔除,用剩下的5个年度数据(年度代号不变),求y 关于t 的线性回归方程(系数精确到0.01),并推测没有疫情情况下,2019—2020年度冰雪旅游人次的估计值.附注:参考数据:611 3.56ii t t ===å,611 2.096i i y y ===å,6147.72i i i t y ==å,62191i i t ==å,7».参考公式:相关系数r 线的斜率和截距的最小二乘估计公式分别为:ˆb22.(2024·全国·高三专题练习)数独是源自18世纪瑞士的一种数学游戏,玩家需要根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个粗线宫(3×3)内的数字均含1~9,且不重复.数独爱好者小明打算报名参加“丝路杯”全国数独大赛初级组的比赛.参考数据11t x =:71i ii t y=åt72217ii tt=-å1 7500.370.55参考公式:对于一组数据1122(,)(,)(,)n n u v u v u v L ,,,,其经验回归方程 µv a bm =+ 的斜率和截距的最小二乘估计分别为µ1221ni i i nii n n mnmn bmm==-=-åå, µav bm =- .(1)赛前小明进行了一段时间的训练,每天解题的平均速度y (秒/题)与训练天数x (天)有关,经统计得到如下数据:x (天)1234567y (秒/题)910800600440300240210现用 b y a x=+ 作为回归方程模型,请利用表中数据,求出该回归方程;( a,b 用分数表示)(2)小明和小红玩“对战赛”,每局两人同时开始解一道数独题,先解出题的人获胜,不存在平局,两人约定先胜3局者赢得比赛.若小明每局获胜的概率为23,且各局之间相互独立,设比赛X 局后结束,求随机变量X 的分布列及均值.23.(2024·全国·模拟预测)近三年的新冠肺炎疫情对我们的生活产生了很大的影响,当然也影响着我们的旅游习惯,乡村游、近郊游、周边游热闹了许多,甚至出现“微度假”的概念.在国家有条不紊的防疫政策下,旅游又重新回到了老百姓的日常生活中.某乡村抓住机遇,依托良好的生态环境、厚重的民族文化,开展乡村旅游.通过文旅度假项目考察,该村推出了多款套票文旅产品,得到消费者的积极回应.该村推出了六条乡村旅游经典线路,对应六款不同价位的旅游套票,相应的价格x 与购买人数y 的数据如下表.旅游线路奇山秀水游古村落游慢生活游亲子游采摘游舌尖之旅套票型号A B C D E F 价格x /元394958677786经数据分析、描点绘图,发现价格x 与购买人数y 近似满足关系式()0,0by ax a b =>>,即()ln ln ln 0,0y b x a a b =+>>,对上述数据进行初步处理,其中ln i i v x =,ln i i w y =,1i =,2, (6)附:①可能用到的数据:6175.3i i i v w ==å,6124.6i i v ==å,6118.3i i w ==å,621101.4i i v ==å.②对于一组数据()12,v w ,()22,v w ,…,(),n n v w ,其回归直线ˆˆˆw bv a =+的斜率和截距的最小二乘估计值分别为()()()1122211ˆn niii ii i nniii i v v w w v w nvwbv v vnv ====---==--åååå,ˆˆa w bv=-.(1)根据所给数据,求y 关于x 的回归方程.(2)按照相关部门的指标测定,当套票价格[]49,81x Î时,该套票受消费者的欢迎程度更高,可以被认定为“热门套票”.现有三位游客,每人从以上六款套票中购买一款旅游,购买任意一款的可能性相等.若三人买的套票各不相同,记三人中购买“热门套票”的人数为X ,求随机变量X 的分布列和期望.08 独立性检验24.(2024·湖北武汉·高三统考期末)数学运算是数学学科的核心素养之一,具备较好的数学运算素养一般体现为在运算中算法合理、计算准确、过程规范、细节到位,为了诊断学情、培养习惯、发展素养,某老师计划调研准确率与运算速度之间是否有关,他记录了一段时间的相关数据如下表:项目速度快速度慢合计准确率高102232准确率低111728合计213960(1)依据0.010a =的独立性检验,能否认为数学考试中准确率与运算速度相关?(2)为鼓励学生全面发展,现随机将准确率高且速度快的10名同学分成人数分别为3,3,4的三个小组进行小组才艺展示,若甲、乙两人在这10人中,求甲在3人一组的前提下乙在4人一组的概率.附:a0.1000.0500.0250.0100.0050.001x a2.7063.8415.0246.6357.87910.828()()()()()22n ad bc a b c d a c b d c -=++++其中n a b c d =+++.25.(2024·陕西榆林·校考模拟预测)由于人类的破坏与栖息地的丧失等因素,地球上濒临灭绝生物的比例正在以惊人的速度增长.在工业社会以前,鸟类平均每300年灭绝一种,兽类平均每8000年灭绝一种,但是自工业社会以来,地球物种灭绝的速度已经超出自然灭绝率的1000倍.所以保护动物刻不容缓,全世界都在号召保护动物,动物保护的核心内容是禁止虐待、残害任何动物,禁止猎杀和捕食野生动物,某动物保护机构为了调查研究人们“保护动物意识的强弱与性别是否有关联”,从某市市民中随机抽取400名进行调查,得到统计数据如下表:保护动物意识强保护动物意识弱合计男性14060200女性80120200合计220180400(1)根据以上数据,依据小概率值0.001a=的独立性检验,能否认为人们保护动物意识的强弱与性别有关联?(2)将频率视为概率,现从该市女性的市民中用随机抽样的方法每次抽取1人,共抽取4次.记被抽取的4人中“保护动物意识强”的人数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式:()()()()()22n ad bca b c d a c b dc-=++++,其中n a b c d=+++.附:a0.100.050.0100.0050.001xa2.7063.841 6.6357.87910.82826.(2024·全国·高三专题练习)为加快推动旅游业复苏,进一步增强居民旅游消费意愿,山东省人民政府规定自2023年1月21日起至3月31日在全省实施景区门票减免.据统计,活动开展以来游客至少去过两个及以上景区的人数占比为90%.某市旅游局从游客中随机抽取100人(其中年龄在50周岁及以下的有60人)了解他们对全省实施景区门票减免活动的满意度,并按年龄(50周岁及以下和50周岁以上)分类统计得到如下不完整的2×2列联表:不满意满意总计50周岁及以下5550周岁以上15总计100(1)根据统计数据完成以上2×2列联表,根据小概率值0.001a=的独立性检验,能否认为对全省实施景区门票减免活动是否满意与年龄有关联(结果精确到0.01)?(2)现从本市游客中随机抽取3人了解他们的出游情况,设其中至少去过两个及以上景区的人数为X,若以本次活动中至少去过两个及以上景区的人数的频率为概率,求X的分布列和数学期望.参考公式及数据:()()()()()22n ad bca b c d a c b dc-=++++,其中n a b c d=+++.a0.1000.0500.0100.001xa2.7063.841 6.63510.82809 与体育比赛规则有关的概率问题27.(2024·吉林·通化市第一中学校校联考模拟预测)2022年12月18日,第二十二届男足世界杯决赛在梅西率领的阿根廷队与姆巴佩率领的法国队之间展开,法国队在上半场落后两球的情况下,下半场连进两球,2比2战平进入加时赛,加时赛两队各进一球(比分3∶3)再次战平,在随后的点球大战中,阿根廷队发挥出色,最终赢得了比赛的胜利,时隔36年再次成功夺得世界杯冠军,梅西如愿以偿,成功捧起大力神杯.(1)法国队与阿根廷队实力相当,在比赛前很难预测谁胜谁负.赛前有3人对比赛最终结果进行了预测,假设每人预测正确的概率均为12,求预测正确的人数X的分布列和期望;(2)足球的传接配合非常重要,传接球训练也是平常训练的重要项目,梅西和其他4名队友在某次传接球的训练中,假设球从梅西脚下开始,等可能地随机传向另外4人中的1人,接球者接到球后再等可能地随机传向另外4人中的1人,如此不停地传下去,假设传出的球都能接住,记第n次传球之前球在梅西脚下的概率为n P,求n P.。
《应用概率统计》综合作业三一、填空题(每小题2分,共20分)1.在天平上重复称量一重为a 的物品,测量结果为1X ,2X ,…,n X ,各次结果相互独立且服从正态分布)2.0,(2a N ,各次称量结果的算术平均值记为n X ,为使95.0)1.0(≥<-a X P n ,则n 的值最小应取自然数 16 .2.设1X ,2X ,…,n X 是来自正态总体)4,(2μN 的容量为10的简单随机样本,2S 为样本方差,已知1.0)(2=>a s P ,则a = 1 .3.设随机变量Y 服从自由度为n 的t 分布,则随机变量2Y 服从自由度为 (1,n ) 的 F分布.4.设总体X 服从正态分布),12(2σN ,抽取容量为25的简单随机样本,测得样本方差为57.52=S ,则样本均值X 小于12.5的概率为 4/25 .5.从正态分布),(2σμN 中随机抽取容量为16的随机样本,且σμ,未知,则概率=⎪⎪⎭⎫⎝⎛≤041.222σS P 1 .6.设总体X 的密度函数为⎩⎨⎧<<+=,其他,0,10 , )1(),(x x x f a αα其中1->α,1X ,2X ,…,n X 是取自总体X 的随机样本,则参数α的极大似然估计值为.7.设总体X 服从正态分布),(2σμN ,其中μ未知而2σ已知,为使总体均值μ的置信度为α-1的置信区间的长度等于L ,则需抽取的样本容量n 最少为u=(x-u0)×sqrt(n)/σ .8.设某种零件的直径(mm )服从正态分布),(2σμN ,从这批零件中随机地抽取16个零件,测得样本均值为075.12=X ,样本方差00244.02=S ,则均值μ的置信度为0.95的置信区间为 :(1025.75-21.315,1025.75+21.315)=(1004.435,1047.065). . 9.在假设检验中,若2σ未知,原假设00: μμ=H ,备择假设01: μμ>H 时,检验的拒绝域为 .10.一大企业雇用的员工人数非常多,为了探讨员工的工龄X (年)对员工的月薪Y (百元)的影响,随机抽访了25名员工,并由记录结果得:∑==251100i iX,∑==2512000i i Y ,∑==2512510i iX,∑==2519650i i i Y X ,则Y 对X 的线性回归方程为 y = 11.47+2.62x .二、选择题(每小题2分,共20分)1.设1X ,2X ,…,n X 是来自正态总体),0(~2σN X 的一个简单随机样本,X 为其样本均值,令212)(σ∑=-=ni iX XY ,则Y ~( D )(A ))1(2-n χ (B ))(2n χ (C )),(σμN (D )),(2nN σμ2.设1X ,2X ,…,n X 是来自正态总体),(~2σμN X 的简单随机样本,X 为样本均值,记( )∑=--=n i i X X n S 1221)(11,∑=-=n i i X X n S 1222)(1, ∑=--=n i i X n S 1223)(11μ,∑=-=n i i X n S 1224)(1μ, 则服从自由度为1-n 的t 分布的随机变量是( B )(A )1/1--=n S X T μ (B )1/2--=n S X T μ (C )nS X T /3μ-=(D )nS X T /4μ-=3.设1X ,2X ,3X ,4X 是来自正态总体)2,(~2μN X 的简单随机样本,若令2432212)43()2(X X X X a Y -+-=,则当2Y 服从2χ分布时,必有( D )(A )91=a ;1441=b (B )1441=a ;91=b (C )1001=a ;201=b (D )201=a ;1001=b4.设简单随机样本1X ,2X ,…,n X 来自于正态总体),(~2σμN X ,则样本的二阶原点矩∑==n i i X n A 1221的数学期望为( D )(A )241σ (B )221σ (C )2σ (D )22σ5.设随机变量X 服从自由度为(n ,n )的F 分布,已知α满足条件05.0)(=>αX P ,则)1(α>X P 的值为(C )(A )0.025 (B )0.05 (C )0.95 (D )0.9756.设总体X 服从正态分布),(2σμN ,1X ,2X ,…,n X 是从X 中抽取的简单随机样本,其中μ,2σ未知,则μ的)%1(100α-的置信区间(A ) (A )(n S z X 2α-,n S z X 2α+) (B )(n S n t X )1(2--α,n Sn t X )1(2-+α) (C )(nz X σα2-,nz X σα2+) (D )(n S n t X )(2α-,n Sn t X )(2α+) 7.设总体X 服从正态分布),(2σμN ,其中μ未知,2σ未知,1X ,2X ,…,n X 是简单随机样本,记∑==ni i X n X 11,则当μ的置信区间为(nz X σ05.0-,n z X σ05.0+)时,其置信水平为( C )(A )0.90 (B )0.95 (C )0.975 (D )0.05 8.从总体中抽取简单随机样本1X ,2X ,3X ,易证估计量3211613121ˆX X X ++=μ,3212414121ˆX X X ++=μ3213613131ˆX X X ++=μ,3214525251ˆX X X ++=μ 均是总体均值μ的无偏估计量,则其中最有效的估计量是( B )(A )1ˆμ(B )2ˆμ (C )3ˆμ (D )4ˆμ 9.从一批零件中随机地抽取100件测量其直径,测得平均直径为5.2cm ,标准差为1.6cm ,现想知道这批零件的直径是否符合标准5cm ,采用t 检验法,并取统计量为10/6.12.5-=X t ,则在显著性水平α下,其接受域为( D )(A ))99(2αt t < (B ))100(2αt t < (C ) )99(2αt t ≥ (D ) )100(2αt t ≥10.在假设检验中,方差2σ已知,00: μμ=H ( B ) (A )若备择假设01: μμ≠H ,则其拒绝域为)2(/10αμ-≥-=n t n S X T(B )若备择假设01: μμ≠H ,则其拒绝域为20/ασμu n X U ≥-=(C )若备择假设01: μμ>H ,则其拒绝域为ασμu nX U ≥-=/0(D )若备择假设01: μμ>H ,则其拒绝域为ασμu nX U -≤-=/0三、(10分)现有一批种子,其中良种数占61,从中任选6000粒,问能从0.99的概率保证其中良种所占的比例与61相差多少?这时相应的良种数在哪一个围? 解答:这个问题属于“二项分布”,且n=6000, p=1/6。
故μ=E(X)=np=6000x1/6=1000, D(X)=σ²=np(1-p)=6000x(1/6)x(1-1/6)=833.33。
切比雪夫不等式为P{|X-μ|<ε}≥1-σ²/ε²。
我们取 ε=6000 x (1/100)=60粒。
所以,P{|X-μ|<ε}≥1-833.33/60² = 1-833.33/3600 = 0.7685。
换句话说,“任意选出6000粒种子的良种比例与1/6相比上下不超过1/100的概率”大于等于0.7685。
这个概率(0.7685)不算很低,也就是说,良种比例与1/6相比很可能不超过1/100。
四、(10分)设总体X 服从正态分布),(2σμN ,假如要以99%的概率保证偏差1.0<-μX ,试问:在2.02=σ时,样本容量n 应取多大?五、(10分)设总体X 服从0-1分布:x x q p x X P -==1)(,1.0=x ;其中10<<p ,p q -=1,从总体X 中抽取样本1X ,2X ,…,n X ,求样本均值X 的期望和方差、样本方差2S 的期望.解答:E (ΣXi)=ΣE(Xi)=nE(X)=np E[(ΣXi)/n]=[ΣE(Xi)]/n=E(X)=pD[(ΣXi)/n]=[ΣD(Xi)]/n 2=D(X)/n=p(1-p)/n六、(10分)某商店为了解居民对某种商品的需求,调查了100家住户,得出每户每月平均需要量为10kg ,方差为9.设居民对某种商品的需求量服从正态分布,如果此种商品供应该地区10 000户居民,在01.0=α下,试求居民对该种商品的平均需求量进行区间估计;并依此考虑最少要准备多少商品才能以0.99的概率满足需要?七、(10分)某种零件的长度服从正态分布,它过去的均值为20.0现换了新材料,为此从产品中随机抽取8个样品,测量长度为:20.0 20. 0 20.1 20.0 20.2 20.3 19.8 20.2 问用新材料做的零件的平均长度是否起了变化(05.0=α)?解答:(1)因为样本数据在20.0上下波动,所以x 甲˙¯¯¯¯¯¯=0.210+20.0=20.02,x 乙˙¯¯¯¯¯¯=0.210+20.0=20.02, S 2甲=110[0.34−10×(0.210)2]=0.0336(mm 2) S 2乙=110[0.52−10×(0.210)2]=0.0516(mm 2)八、(10分)设总体X 服从正态分布),(2σμN ,1X ,2X ,…,n X 是从X 中抽取的简单随机样本,其中μ,2σ未知,选择常数c ,使统计量∑-=+-=1121)(n i i i X Xc T 是2σ的无偏估计量.。