单片机交通灯课程设计报告(含电路图,源程序)
- 格式:doc
- 大小:242.50 KB
- 文档页数:37
80C51单片机交通灯课程设计报告目录第一章引言 (3)第二章单片机概述 (4)第三章芯片介绍 (6)3.1AT89S51单片机介绍 (6)3.1.1简介 (6)3.1.2主要管脚介绍 (6)3.274LS164介绍 (8)3.3共阳数码管介绍 (8)3.3.1分类简介 (8)图3.3LED数码管引脚定义 (9)3.3.2驱动方式 (9)3.3.3主要参数 (10)3.3.4应用范围 (10)第四章系统硬件设计 (11)4.1硬件设计要求 (11)4.2硬件设计所用元器件 (11)4.3硬件设计图 (11)4.4设计流程图 (12)第五章系统软件设计 (13)5.1流程图 (13)5.2程序设计 (14)第六章结论 (16)参考文献 (18)第一章引言在今天,红绿灯安装在各个道口上,已经成为疏导交通车辆最常见和最有效的手段。
但这一技术在19世纪就已出现了。
1858年,在英国伦敦主要街头安装了以燃煤气为光源的红,蓝两色的机械扳手式信号灯,用以指挥马车通行。
这是世界上最早的交通信号灯。
1868年,英国机械工程师纳伊特在伦敦威斯敏斯特区的议会大厦前的广场上,安装了世界上最早的煤气红绿灯。
它由红绿两以旋转式方形玻璃提灯组成,红色表示“停止”,绿色表示“注意”。
1869年1月2日,煤气灯爆炸,使警察受伤,遂被取消。
1914年,电气启动的红绿灯出现在美国。
这种红绿灯由红绿黄三色圆形的投光器组成,安装在纽约市5号大街的一座高塔上。
红灯亮表示“停止”,绿灯亮表示“通行”。
智能的交通信号灯指挥着人和各种车辆的安全运行,实现红、黄、绿灯的自动指挥是城乡交通管理现代化的重要课题.在城乡街道的十字交叉路口,为了保证交通秩序和行人安全,一般在每条道路上各有一组红、黄、绿交通信号灯,其中红灯亮,表示该条道路禁止通行;黄灯亮,表示该条道路上未过停车线的车辆停止通行,已过停车线的车辆继续通行;绿灯亮,表示该条道路允许通行.交通灯控制电路自动控制十字路口两组红、黄、绿交通灯的状态转换,指挥各种车辆和行人安全通行,实现十字路口城乡交通管理自动化。
单片机课程设计报告题目:交通灯院系电子工程学院专业:电子信息工程姓名:学号:指导教师:完成日期:2011年6月10日目录1 设计任务和性能指标 (1)1.1设计任务 (1)1.2性能指标 (1)2 设计方案 (2)2.1任务分析 (2)2.2方案设计 (2)3 系统硬件设计 (3)3.1单片机的最小系统 (3)3.3数码管显示时间电路设计 (4)3.4信号灯控制电路设计 (5)4 系统软件设计 (5)4.1主程序设计 (5)5 调试及性能分析 (6)5.1调试分析 (6)5.1.1 软件调试 (6)5.1.2 硬件调试 (6)5.1.3 系统功能调试 (6)6 心得体会 (6)参考文献 (8)附录1 系统原理图 (9)附录2 系统实物图 (10)附录3 程序清单 (11)1 设计任务和性能指标1.1设计任务利用单片机完成交通信号灯控制器的设计,该交通信号灯控制器由一条主干道和一条支干道汇合成十字路口,在每个入口处设置红、绿、黄三色信号灯,红灯亮禁止通行,绿灯亮允许通行,黄灯亮则给行驶中的车辆有时间停在禁行线外。
用红、绿、黄发光二极管作信号灯。
如图上图所示。
设东西向为主干道,南北为支干道。
1.2性能指标(1)处于常允许通行的状态,支干道有车来时才允许通行。
主干道亮绿灯时,支干道亮红灯;支干道亮绿灯时,主干道亮红灯。
(2)干道均有车时,两者交替允许通行,主干道每次放行60秒,支干道每次放行40秒,设立10秒计时、显示电路。
(3)信号灯有9种状态,分别为南北绿灯,东西红灯绿灯,倒计时10;南北绿灯闪烁,东西红灯;南北黄灯,东西红灯;南北红灯,东西黄灯;南北红灯,东西绿灯;南北红灯,东西绿灯闪烁;南北红灯,东西黄灯;南北黄灯,东西红灯;南北红灯南北东西.。
(4)紧急状态时,东西南北四个方向都为红灯。
2 设计方案2.1任务分析模拟交通灯控制器就是使用单片机来控制一些LED 和数码管,模拟真实交通灯的功能。
《单片机原理与应用》课程设计报告题目:学院:姓名:学号:日期:指导老师:交通灯的设计一、课程设计的目的1、进一步熟悉和掌握单片机的结构及工作原理。
2、掌握单片机的接口技术及相关外围芯片的特性,控制方法。
3、通过课程设计,掌握以单片机核心的电路设计的基本方法和技术,了解有关电路参数的计算方法。
4、通过实际程序设计和调试,逐步掌握模块化程序设计方法和调试技术。
5、通过完成一个包括电路设计和程序开发的完整过程,使学生了解开发一单片机应用系统的全过程,为今后从事相应工作打下基础。
6、通过课程设计,培养学生综合运用所学专业知识分析问题和解决问题的能力。
二、仪器设备伟福Lab8000系列单片机仿真实验系统。
三、课程设计主要内容及技术指标基本要求:设计由红黄绿三色灯组成的交通信号灯,各灯逐次点亮,按照红灯亮63秒——绿灯亮60秒——黄灯亮3秒——红灯亮63秒的顺序反复循环。
利用单片机片内的定时计数器定时,红黄绿灯用发光二极管表示,计时值用数码管以十进制数字显示。
要求定时准确,数码管和二极管显示正确。
拓展要求:要有较好的人机对话界面;由单向路口的红绿灯循环点亮拓展为十字路口红绿灯的循环点亮;在十字路口的某一方向设定紧急通行开关,闭合开关时要求此方向绿灯点亮,另一方向红灯点亮,且倒计时的显示数码管停止计时。
四、系统工作原理该系统以89C51单片机为控制核心,由外接三色(红绿黄)LED灯同步八段数码管的倒计时显示,外接两开关电路控制两方向的应急中断。
单片机上电后,系统进入正常工作状态,执行交通灯状态显示控制,同时将时间数据倒计时输入到八段数码管上实时显示。
在此过程中随时通过开关调用LED灯常亮显示和清除数码管显示的中断。
五、系统的硬件设计注:单片机的晶振电路的复位电路略去连线时,伟福Lab8000系列单片机仿真实验系统的数码管显示打到外驱,P2口连接数码管的段码口,P3连接位选通口;用P1.0~P1.5分别选连两组红绿黄灯,P1.6~P1.7连接两控制开关key和key1.六、系统的软件设计1、系统工作过程(1) 在一个十字路口的两条主干道上,分别装上一套红、黄、绿3种信号灯。
单片机c语言程序设计---C51-交通灯实验报告课程名称:单片机c语言设计实验类型:设计型实验实验项目名称: C51-交通灯实验一、实验目的和要求1.熟悉单片机的硬件结构及其工作原理2.掌握单片机的C51编程二、实验内容和原理(1)硬件设计使用P1端口连接VD1、VD2、VD3,模拟路口东面的红、黄、绿灯;P0端口连接VD9、VD10、VD11,模拟路口西面的红、黄、绿灯;P3端口连接VD17、VD18、VD19,模拟路口南面的红、黄、绿灯;P2端口连接VD25、VD26、VD27,模拟路口北面的红、黄、绿灯。
路口红绿灯的显示规律为:①南面和北面显示红灯(即VD17和VD25为红灯)时,东面和西面显示绿灯(即VD3和VD11为绿灯)。
②南面和北面,东面和西面都变成黄灯。
③南面和北面显示绿灯,东面和西面显示红灯④南面和北面,东面和西面都变成黄灯,然后再从①进行循环(需注意:此处设置的黄灯显示时长应短于红灯或绿灯的显示时长)(2)protues仿真通过Keil编译后,利用protues软件进行仿真。
在protues ISIS 编译环境中绘制仿真电路图,将编译好的“xxx.hex”文件加入AT89C51。
启动仿真,观察仿真结果。
三、主要仪器设备四、操作方法与实验步骤1.按照硬件设计在protues上按照所给硬件设计绘制电路图。
2.在keil上进行编译后生成“xxx.hex”文件。
3.编译好的“xxx.hex”文件加入AT89C51。
启动仿真,观察仿真结果。
五、实验结果与分析void S_N(void){VD1=0;VD9=0;VD19=0;VD27=0;Delay(1000);VD1=1;VD9=1;VD19=1;VD27=1;}int main (void) {while(1){E_W();NOT();S_N();NOT();}}六、讨论和心得。
基于单片机的交通灯课程设计报告(含源程序+仿真)
一、课程设计目的
本课程设计的目的是使用单片机实现二级智能信号灯控制系统,实现智能交通控制。
对于二级智能信号灯控制装置,电路中涉及到各种元器件,包括单片机控制器、执行元件、电源元件、信号识别器等,采用单片机作为控制器,在单片机编程时,配合交通信息识别器,实现自主的交通控制系统,实现智能控制。
根据交通控制装置的物理结构,开发出相应的单片机程序控制系统。
具体的程序设计和控制流程如下:
1、根据需要确定路口的信号方案;
2、在单片机软件模块中添加车辆检测功能;
3、控制信号灯运行,当检测到车辆时,调整信号灯运行;
4、编写交通控制程序,实现对信号灯及其信号闪烁序列的控制;
5、编写车辆检测控制程序,实现对道路中车辆的检测和判断;
6、完成软件调试,将控制程序上传至单片机;
7、实现仿真测试,检验交通控制系统的实际效果。
本课程设计最终实现了一个完整的实时交通控制系统,它具有以下特性:
(1)具有交通灯自动变换功能;
(2)拥堵及女性模式,即可以根据车流量多少,判断如何安排红绿灯;
(3)可以根据实际情况,启动信号灯控制系统,控制信号灯的变换。
本课程设计实现了对交通控制系统的简单控制,可以满足城市交通的需求,减少城市交通拥堵的程度。
第一章微控制器应用系统综合课程设计的目的意义1.1 设计目的自动化工程训练是为自动化专业开设的课程设计教学环节,其目的在于培养学生综合运用理论知识来分析和解决实际问题的能力,是通过设计以微控制器为核心的单片机检测系统,加深学生对微控制器技术的了解,进一步掌握其程序设计与硬件接口技术。
本课程的主要任务是运用所学微控制器技术、微机原理等方面的知识,设计出一台以80C32MCU为核心的单片机数据采集、通讯或测控系统,完成信息的采集、处理、输出及人机接口电路等部分的软、硬件设计。
1.2 课程设计的基本要求本课程设计涉及《微控制器技术》课程的基本概念和理论,主要要求学生掌握微控制器的指令系统、中断技术、总线扩展、模拟与数字I/O接口技术与通讯技术等,重点是培养学生掌握微控制器在自动化测控应用系统中的设计与开发方法。
课程设计的基本要求如下:1.掌握单片微控制器硬件结构和工作原理、中断与定时系统、嵌入式应用、现场总线等基本概念和原理;2.熟悉8/16位单片微控制器(8X51/196系列)的主要功能单元和指令系统;3.熟悉测控网络中嵌入式微控制器的应用和现场总线应用技术。
4.利用微控制器的接口技术进行简单的测控及自动化应用系统设计;5.每人提交系统设计报告一份,现场演示验收设计系统。
第二章交通信号灯实时控制系统设计任务2.1 设计内容及要求本课题是设计制作一个交通信号灯实时控制系统。
①在一个十字路口的一条主干道和一条支干道上分别装上一套红、黄、绿3种信号灯:用按键开关模拟十字路口的车辆检测传感器信号。
在一般情况下,主干道上的绿灯常亮,而支干道总是红灯。
②当检测到支干道上来车时(用按键开关模拟),主干道的绿灯转为黄灯,持续4S后,又变为红灯,同时支干道由红灯变为绿灯。
③支干道绿灯亮后,或者检测到主干道上来了3辆(用3个按键开关模拟),或者虽未来3辆车,但支干道绿灯已经持续了25s,则支干道立即变为黄灯,4s 后转为红灯,同时主干道由红灯变为绿灯。
课程设计报告:交通灯单片机控制系统1. 设计目的本课程设计旨在让学生通过使用单片机开发一个简单的交通灯控制系统来加深对单片机编程和控制原理的理解。
该系统可以模拟道路上的交通灯,实现红灯、绿灯和黄灯的循环控制,并可以通过按键进行手动控制。
2. 设计原理2.1 交通灯状态交通灯状态包括红灯、黄灯和绿灯,它们按照固定的时间间隔循环切换。
2.2 按键控制设计中使用一个按键用于手动控制交通灯状态切换。
按下按键时,会切换到下一个灯状态。
3. 硬件方案3.1 单片机本设计采用ATmega328P单片机,它具有足够的GPIO引脚用于控制交通灯的LED。
3.2 LED使用红色、黄色和绿色LED模拟交通灯的三种状态。
3.3 按键一个按键连接到单片机的GPIO引脚,用于手动切换交通灯状态。
4. 软件方案4.1 控制逻辑编写单片机程序,实现交通灯状态的循环切换和按键控制逻辑。
4.2 定时器使用定时器来控制交通灯状态切换的时间间隔。
4.3 中断配置按键的中断,以便在按下按键时进行状态切换。
5. 实施过程连接硬件组件,包括LED、按键和单片机。
编写单片机程序,包括交通灯状态切换逻辑、定时器配置和按键中断处理。
编译并烧录程序到单片机。
运行程序,观察交通灯的状态切换和按键控制是否正常。
6. 测试结果经过测试,交通灯控制系统能够正常运行。
交通灯状态按照预定的时间间隔循环切换,同时按下按键可以手动切换状态,符合设计要求。
7. 问题解决在实施过程中,遇到了一些问题,如硬件连接错误和程序逻辑错误。
通过仔细检查和调试,成功解决了这些问题。
8. 总结本课程设计使我深入了解了单片机编程和控制系统的原理,通过实际动手操作,更好地掌握了这些概念。
设计交通灯控制系统是一个有趣且教育性的项目,我对单片机编程有了更深入的理解,这对我的学习和职业发展都有所帮助。
这个示例课程设计报告可以作为参考,你可以根据具体的课程设计要求和硬件平台的不同来进行调整和扩展。
单片机课程设计报告1 交通灯1. 引言本文档是单片机课程设计的报告,主题为交通灯。
交通灯是城市交通管理的重要组成部分,合理的交通灯设置可以提高交通效率、保障交通安全。
本文将介绍交通灯的设计方案、实现过程以及遇到的问题及解决方法。
2. 设计方案2.1 总体设计思路本次交通灯设计采用的是基于单片机的控制系统。
通过在单片机上编程设计,控制交通灯的状态和时间,实现交通灯的自动切换,并保证交通流畅。
2.2 硬件设备本次设计所需的硬件设备包括:•单片机:采用STC89C52型单片机•交通灯信号灯模块:包括红灯、黄灯、绿灯三个灯泡及控制电路板•电源模块:用于提供电力供给2.3 软件设计本次设计的软件部分主要包括:•交通灯控制程序:通过编写程序控制单片机,实现交通灯的自动切换3. 实现过程3.1 准备工作在开始设计之前,我们首先进行了一些准备工作。
包括准备好所需的硬件设备,如单片机、交通灯信号灯模块和电源模块;同时也对单片机进行了初始化配置,以及编写好了交通灯控制程序的框架。
3.2 硬件连接我们将单片机与交通灯模块进行连接。
具体的连接方式如下:1.将单片机的IO口与交通灯模块的各个灯泡的控制引脚相连,以实现对灯泡亮灭的控制。
2.将电源模块与单片机进行连接,以提供电力供给。
3.3 软件设计与编程在硬件连接完成后,我们开始着手进行软件设计和编程。
主要的步骤包括:1.定义交通灯的状态:根据交通灯的信号变化规律定义交通灯状态,如红灯亮、黄灯亮、绿灯亮等。
2.编写控制程序的逻辑:根据交通灯的状态定义,编写控制程序的逻辑,实现不同状态之间的切换和持续时间的控制。
3.编程实现:根据以上设计,在单片机上编写程序,并通过烧录将程序烧录到单片机上。
3.4 测试与调试在程序编写完成后,我们进行了测试与调试。
通过在交通灯工作状态下的观察与测试,我们可以判断出程序是否符合设计要求,并进行必要的调试。
4. 遇到的问题与解决方法在设计与实现过程中,我们遇到了一些问题,具体包括:•问题1:单片机与交通灯模块的连接出现问题,导致交通灯无法正常工作。
摘要 (2)1.引言 (3)2.总体设计方案 (3)2.1. 设计思路 (3)2.1.1.设计目的 (3)2.1.2.设计任务和内容 (4)2.1.3.方案比较、设计与论证 (4)2.1.4.芯片简介 (6)2.2. 设计方框图 (9)3.设计原理分析 (9)3.1. 交通灯显示时序的理论分析与计算 (9)3.2. 交通灯显示时间的理论分析与计算 (11)3.3. 电路模块 (12)3.3.1.LED数码管显示模块 (12)3.3.2.LED红绿灯显示模块 (14)3.3.3.复位电路 (16)3.3.4.晶振电路 (17)4.结束语 (17)5.参考文献 (17)6.附录 (18)6.1. 附录1:程序清单 (18)6.2. 附录2:电路设计总图 (23)6.3附录3:实物图.......................................................................... 错误!未定义书签。
摘要交通在人们的日常生活中占有重要的地位,随着人们社会活动的日益频繁,这点更是体现的淋漓尽致。
交通信号灯的出现,使交通得以有效管制,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。
近年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制检测技术日益更新。
在实时检测和自动控制的单片机应用系统中,单片机往往作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构软硬件结合,加以完善。
本系统采用单片机AT89S52为中心器件来设计交通灯控制器,系统实用性强、操作简单、扩展性强。
本设计就是采用单片机模拟十字路口交通灯的各种状态显示以及倒计时时间。
本设计系统由单片机I/O口扩展系统、交通灯状态显示系统、LED数码显示系统、复位电路等几大部分组成。
系统除基本的交通灯功能外,还具有倒计时等功能,较好的模拟实现了十字路口可能出现的状况。
目录一•交通灯课程设计功能描述 (2)1.1芯片简介 (2)1.2技术指标 (4)二•课程设计分析设计 (4)2.1设计分析 (4)三•绘制硬件图并对硬件电路进行说明 (4)3.1 MCS-51单片机内部结构 (5)3.2 MCS-51单片机芯片引脚位置及功能符号如下图所示 (6)3.3 51系列单片机运行的硬件条件 (6)3.4单片机的特点与应用 (7)四•绘制软件流程图并对软件流程图进行说明 (7)4.1软件设计 (7)4.2电路连接分配 (8)4.3 主程序流程图 (8)五•程序的源代码清单 (9)六•上机调试运行结果及分析 (13)七•课程设计的经验教训总结 (14)参考文献 (15)一•交通灯课程设计功能描述红黄绿交通灯控制器采用单片机及程序存储器的扩展控制,实现控制器的功能要求,例如红黄绿灯的交替闪烁,定时等等。
单片机将CPU,存储器,定时器/计数器及各接口电路组成,具有良好的性价比。
本控制器可分时段进行道路的管制,还可在紧急时刻进行手动控制,实施道路路况的控制。
交通信号灯控制方式很多。
本系统采用MSC-51系列单片机ATSC51和可编程并行I/O接口芯片8255A为中心器件来设计交通灯控制器,实现了能根据实际车流量通过8051 芯片的P1 口设置红、绿灯燃亮时间的功能;红绿灯循环点亮,倒计时剩5秒时黄灯闪烁警示(交通灯信号通过PA口输出,显示时间直接通过8255的PC 口输出至双位数码管);车辆闯红灯报警;绿灯时间可检测车流量并可通过双位数码管显示。
本系统实用性强、操作简单、扩展功能强。
1.1 芯片简介MSC-51芯片简介8051是MCS-51系列单片机的典型产品,我们以这一代表性的机型进行系统的讲解。
8051单片机包含中央处理器、程序存储器(ROM)数据存储器(RAM)定时/计数器、并行接口、串行接口和中断系统等几大单元及数据总线、地址总线和控制总线等三大总线,现在我们分别加以说明:中央处理器:中央处理器(CPU)是整个单片机的核心部件,是8位数据宽度的处理器,能处理8位二进制数据或代码,CPU负责控制、指挥和调度整个单元系统协调的工作,完成运算和控制输入输出功能等操作。
1.引言 (4)2.总体设计方案 (5)2.1. 设计思路 (5)2.1.1.设计目的 (5)2.1.2.设计任务和内容 (6)2.1.3.方案比较、设计与论证 (6)2.1.4.芯片简介 (9)2.2. 设计方框图 (15)3.设计原理分析 (16)3.1. 交通灯显示时序的理论分析与计算 (16)3.2. 交通灯显示时间的理论分析与计算 (18)3.3. 电路模块 (19)3.3.1.LED数码管显示模块 (19)3.3.2.LED红绿灯显示模块 (22)3.3.3.复位电路 (25)3.3.4.晶振电路 (26)4.结束语 (26)6.附录 (28)6.1. 附录1:程序清单 (28)6.2. 附录2:电路设计总图 (36)6.3附录3:实物图 ....................................... 错误!未定义书签。
摘要交通在人们的日常生活中占有重要的地位,随着人们社会活动的日益频繁,这点更是体现的淋漓尽致。
交通信号灯的出现,使交通得以有效管制,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。
近年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制检测技术日益更新。
在实时检测和自动控制的单片机应用系统中,单片机往往作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构软硬件结合,加以完善。
本系统采用单片机AT89S52为中心器件来设计交通灯控制器,系统实用性强、操作简单、扩展性强。
本设计就是采用单片机模拟十字路口交通灯的各种状态显示以及倒计时时间。
本设计系统由单片机I/O口扩展系统、交通灯状态显示系统、LED 数码显示系统、复位电路等几大部分组成。
系统除基本的交通灯功能外,还具有倒计时等功能,较好的模拟实现了十字路口可能出现的状况。
软件上采用C51编程,主要编写了主程序,LED数码管显示程序,中断程序延时程序等。
经过整机调试,实现了对十字路口交通灯的模拟。
关键字:电子线路 AT89S52 LED 交通灯1.引言当今,红绿灯安装在各个道口上,已经成为疏导交通车辆最常见和最有效的手段。
但这一技术在19世纪就已出现了。
1858年,在英国伦敦主要街头安装了以燃煤气为光源的红,蓝两色的机械扳手式信号灯,用以指挥马车通行。
这是世界上最早的交通信号灯。
1868年,英国机械工程师纳伊特在伦敦威斯敏斯特区的议会大厦前的广场上,安装了世界上最早的煤气红绿灯。
它由红绿两以旋转式方形玻璃提灯组成,红色表示“停止”,绿色表示“注意”。
1869年1月2日,煤气灯爆炸,使警察受伤,遂被取消。
电气启动的红绿灯出现在美国,这种红绿灯由红绿黄三色圆形的投光器组成,1914年始安装于纽约市5号大街的一座高塔上。
红灯亮表示“停止”,绿灯亮表示“通行”。
1918年,又出现了带控制的红绿灯和红外线红绿灯。
带控制的红绿灯,一种是把压力探测器安在地下,车辆一接近红灯便变为绿灯;另一种是用扩音器来启动红绿灯,司机遇红灯时按一下嗽叭,就使红灯变为绿灯。
红外线红绿灯当行人踏上对压力敏感的路面时,它就能察觉到有人要过马路。
红外光束能把信号灯的红灯延长一段时间,推迟汽车放行,以免发生交通事故。
信号灯的出现,使交通得以有效管制,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。
1968年,联合国《道路交通和道路标志信号协定》对各种信号灯的含义作了规定。
绿灯是通行信号,面对绿灯的车辆可以直行,左转弯和右转弯,除非另一种标志禁止某一种转向。
左右转弯车辆都必须让合法地正在路口内行驶的车辆和过人行横道的行人优先通行。
红灯是禁行信号,面对红灯的车辆必须在交叉路口的停车线后停车。
黄灯是警告信号,面对黄灯的车辆不能越过停车线,但车辆已十分接近停车线而不能安全停车时可以进入交叉路口。
2.总体设计方案2.1.设计思路2.1.1.设计目的(1)加强对单片机和汇编语言的认识,充分掌握和理解设计各部分的工作原理、设计过程、选择芯片器件、模块化编程等多项知识。
(2)用单片机模拟实现具体应用,使个人设计能够真正使用。
(3)把理论知识与实践相结合,充分发挥个人能力,并在实践中锻炼。
(4)提高利用已学知识分析和解决问题的能力。
(5)提高实践动手能力。
2.1.2.设计任务和内容2.1.2.1.设计任务单片机采用用AT89S52芯片,使用发光二极管(红,黄,绿)代表各个路口的交通灯,用8段数码管对转换时间进行倒时(东西路口15秒,南北路口25秒,黄灯时间5秒)。
2.1.2.2.设计内容(1)设计并绘制硬件电路图(2)制作PCB并焊接好元器件(3)编写程序并将调试好的程序固化到单片机中2.1.3.方案比较、设计与论证2.1.3.1.电源提供方案为使模块稳定工作,须有可靠电源,采用单片机控制模块提供电源。
此方案的优点是系统简明扼要,节约成本;缺点是输出功率不高。
2.1.3.2.复位方案复位方式有两种:按键复位与软件复位。
由考虑到程序的简洁,避免冗长,本设计采用按键复位,在芯片的复位端口外接复位电路,通过按键对单片机输入一个高电平脉冲,达到复位的目的。
2.1.3.3.输入方案方案一:采用89S52扩展I/O 口及键盘,显示等。
该方案的优点是:使用灵活可编程,并且有RAM,及计数器。
若用该方案,可提供较多I/O 口,但操作起来稍显复杂。
方案二:直接在IO口线上接上按键开关。
因为设计时精简和优化了电路,所以剩余的口资源还比较多,我们使用2个按键,分别是K1、K2。
由于该系统对于交通灯及数码管的控制,只用单片机本身的I/O 口就可实现,且本身的计数器及RAM已经够用,故选择方案二2.1.3.4.显示界面方案该系统要求完成倒计时、状态灯等功能。
基于上述原因,我们考虑了三种方案:方案一:完全采用数码管显示。
这种方案只显示有限的符号和数码字符,无法胜任题目要求。
方案二:完全采用点阵式LED 显示。
这种方案实现复杂,且须完成大量的软件工作;但功能强大,可方便的显示各种英文字符,汉字,图形等。
方案三:采用数码管与点阵LED (点阵式和8段式LED )相结合的方法因为设计既要求倒计时数字输出,又要求有状态灯输出等,为方便观看并考虑到现实情况,用数码管与LED 灯分别显示时间与提示信息。
这种方案既满足系统功能要求,又减少了系统实现的复杂度。
权衡利弊,第三种方案可互补一二方案的优缺,我们决定采用方案三以实现系统的显示功能。
设计方框图整个设计以AT89S52单片机为核心,由数码管显示,LED 数码管显示,复位电路组成。
硬件模块入图2-1。
2.1.3.5. 交通管理的方案论证东西、南北两干道交于一个十字路口,各干道有一组红、黄、绿三色的指示灯,指挥车辆和行人安全通行。
红灯亮禁止通行,绿灯亮允许通行。
黄灯亮提示人们注意红、绿灯的状态即将切换,且黄灯燃亮时间为东西、南北两干道的公共停车时间。
指示灯燃亮的方案如表2。
AT89S52单片机数码管显示 LED 数码管显示晶振电路复位电路2说明:(1)当东西方向为红灯,此道车辆禁止通行,东西道行人可通过;南北道为绿灯,此道车辆通过,行人禁止通行。
时间为25秒。
(2)黄灯5秒,警示车辆和行人红、绿灯的状态即将切换。
(3)当东西方向为绿灯,此道车辆通行;南北方向为红灯,南北道车辆禁止通过,行人通行。
时间为25秒。
(4)这样如上表的时间和红、绿、黄出现的顺序依次出现这样行人和车辆就能安全畅通的通行。
2.1.4.芯片简介1.AT89S52单片机简介其引DIP封装的脚图如下:主要性能与MCS-51单片机产品兼容、8K字节在系统可编程Flash存储器、 1000次擦写周期、全静态操作:0Hz~33Hz 、三级加密程序存储器、 32个可编程I/O口线、三个16位定时器/计数器八个中断源、全双工UART串行通道、低功耗空闲和掉电模式、掉电后中断可唤醒、看门狗定时器、双数据指针、掉电标识符。
功能特性描述At89s52 是一种低功耗、高性能CMOS8位微控制器,具有 8K 在系统可编程Flash 存储器。
使用Atmel 公司高密度非易失性存储器技术制造,与工业80C51 产品指令和引脚完全兼容。
片上Flash允许程序存储器在系统可编程,亦适于常规编程器。
在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。
AT89S52具有以下标准功能: 8k字节Flash,256字节RAM, 32 位I/O 口线,看门狗定时器,2 个数据指针,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。
另外,AT89S52 可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。
空闲模式下,CPU 停止工作,允许RAM、定时器/计数器、串口、中断继续工作。
掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。
8 位微控制器 8K 字节在系统可编程 Flash AT89S52P0 口:P0口是一个8位漏极开路的双向I/O口。
作为输出口,每位能驱动8个TTL逻辑电平。
对P0端口写“1”时,引脚用作高阻抗输入。
当访问外部程序和数据存储器时,P0口也被作为低8位地址/数据复用。
在这种模式下,P0具有内部上拉电阻。
在flash编程时,P0口也用来接收指令字节;在程序校验时,输出指令字节。
程序校验时,需要外部上拉电阻。
P1 口:P1 口是一个具有内部上拉电阻的8 位双向I/O 口,p1 输出缓冲器能驱动4 个TTL 逻辑电平。
对P1 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。
作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。
此外,P1.0和P1.2分别作定时器/计数器2的外部计数输入(P1.0/T2)和时器/计数器2的触发输入(P1.1/T2EX),具体如下表所示。
在flash编程和校验时,P1口接收低8位地址字节。
引脚号第二功能P1.0 T2(定时器/计数器T2的外部计数输入),时钟输出P1.1 T2EX(定时器/计数器T2的捕捉/重载触发信号和方向控制)P1.5 MOSI(在系统编程用)P1.6 MISO(在系统编程用)P1.7 SCK(在系统编程用)P2 口:P2 口是一个具有内部上拉电阻的8 位双向I/O 口,P2 输出缓冲器能驱动4 个TTL 逻辑电平。
对P2 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。
作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。
在访问外部程序存储器或用16位地址读取外部数据存储器(例如执行MOVX @DPTR)时,P2 口送出高八位地址。