分支系数的计算
- 格式:doc
- 大小:76.00 KB
- 文档页数:4
配电线路保护的整定计算问题及解决吕路(国网武汉供电公司检修分公司汉口配电运检室,湖北武汉430021)【摘要】电力系统继电保护对于输电线路保护整定计算的要求非常高,讨论也比较多,供电可靠性主要体现在配电网10kV线路上,配电网线路整定不好就极有可能会扩大事故的范围,所以,要足够的重视、关注配电网线路的保护整定工作。
基于此,本文将主要分析了10kV配电线路保护整定计算的方法、常见问题、解决方案。
【关键词】配电线路;继电保护;整定计算;常见问题;解决对策【中图分类号】TM773【文献标识码】A【文章编号】2095-2066(2017)34-0033-02引言在配电网络运行的过程中因为会受到很多因素影响,因此其运行中将难免会发生故障,如果发生电路故障或设备故障,将会在很大程度上影响系统的稳定运行,所以,当发生故障的时候,配电线路继电保护会及时切除并隔离故障,以避免进一步扩大故障的影响范围,保证配电系统可以安全稳定运行。
正因为此,对继电保护装置运行的稳定性要求越来越高,因此必须要做好配电线路继电保护整定计算工作,以确保继电保护装置的时效性和有效性。
为了保证配电线路继电保护装置的顺利运行,实现其预定的功能和安全目标,就必须要掌握配电线路继电保护电路整定计算方法,分析常见问题,并制定切实可行的措施。
1一般的继电器保护整定计算方法目前我国继电保护整定计算方法大多是对10kV配电线路进行的,这是因为在这种配电线路保护主要由过电流和电流速断以及三相一次重合闸构成的,对于需要特殊保护的一些线路,可以使用电压闭锁保护措施,这样能够大大提高线路保护的可靠性,确保线路稳定运行。
下面以电流速断为例进行说明:10kV配电线路作为直接和用户相连的线路,也是保护最后一级线路,在对其整定计算的时候需要充分考虑其敏感性,尤其是对于10kV变电所电路,需要选择可靠性较高的电流速断保护,只有这样才可以保证继电保护装置的灵敏度,所以在整定计算时,速断整定值倾向于选择较大值。
2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:式中:Iact——继电器动作电流Kc——保护的接线系数IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。
K1rel——可靠系数,一般取1.2~1.3。
I1op1——保护动作电流的一次侧数值。
nTA——保护安装处电流互感器的变比。
灵敏系数校验:式中:X1——线路的单位阻抗,一般0.4Ω/KM;Xsmax——系统最大短路阻抗。
要求最小保护范围不得低于15%~20%线路全长,才允许使用。
2、限时电流速断保护整定计算原则:不超出相邻下一元件的瞬时速断保护范围。
所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。
故:式中:KⅡrel——限时速断保护可靠系数,一般取1.1~1.2;△t——时限级差,一般取0.5S;灵敏度校验:规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。
要求作为本线路主保护的后备以及相邻线路或元件的远后备。
动作电流按躲过最大负荷电流整定。
式中:KⅢrel——可靠系数,一般取1.15~1.25;Krel——电流继电器返回系数,一般取0.85~0.95;Kss——电动机自起动系数,一般取1.5~3.0;动作时间按阶梯原则递推。
灵敏度分别按近后备和远后备进行计算。
式中:Ikmin——保护区末端短路时,流经保护的最小短路电流。
即:最小运行方式下,两相相间短路电流。
要求:作近后备使用时,Ksen≥1.3~1.5作远后备使用时,Ksen≥1.2注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;4、三段式电流保护整定计算实例如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。
已知:1)线路AB长20km,线路BC长30km,线路电抗每公里0.4欧姆;2)变电所B、C中变压器连接组别为Y,d11,且在变压器上装设差动保护;3)线路AB的最大传输功率为9.5MW,功率因数0.9,自起动系数取1.3;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗7.9欧,系统最小电抗4.5欧。
有关参数的计算1、距离保护中助增分支系数的计算:测量阻抗:KN MN NKMN M m Z I I Z I Z I Z I I U Z 1.2.1.2.1.1+=+==⋅⋅KN b MN Z K Z +=分支系数:.1.2I I K b ==.1.3.1I I I +=.1.3.1I I +=211s MNs x Z x ++,与故障点的位置无关。
最大分支系数:m i n.2.1m a x ,1s MNmaz s b x Z x K ++=最小分支系数:mans MNs b x Z x K .2min .1min ,1++=注意:零序分支系数与距离分支系数不同。
2、发电机、变压器、线路的参数的计算取基准容量和基准电压:SB=100MVA , U B =115kV基准电流: I B =BB U S 3=100MVA/(3×115kV)=0.502kA基准阻抗:Z B = U B 2/SB=1152/100=132.25Ω 2.1发电机阻抗(归算到基准容量下的表幺值)公式:NB d G S S X X ''=例如:设发电机参数为:50MVA ,cos φ=0.8, X d ''= 0.1347,则X G =X d ''SB /S N8.0/501001347.0⨯=0.1347×100/(50/0.8)=0.2155各发电机等值阻抗计算结果见表2.1表2.1 发电机正序、负序阻抗(标幺值)2.2变压器阻抗(归算到基准容量下的表幺值)公式:X T1 =U K % S B /S N , X 0.T =0.8X 1.T设变压器参数:U K = 10.5,容量63MVA ,则正负序阻抗为:NBK T T S S U X X %21===0.105×100/63=0.1667 =0.T X 0.8=1T X 0.8×0.1667=0.1334 各变压器阻抗见表2.2.三绕组变压器:设三绕组变压器的参数为:20MVA,U 1-2%=18.0, U 1-3%=10.5, U 2-3%=6.5()()()()()11-23-12-311U %=U %+U %U %=18.0+10.5 6.5=1122-⨯- ()()()()()21-22-33-111U %=U %+U %U %=18.0+6.510.5=722-⨯- ()()()()()33-12-31-211U %=U %+U %U %=10.5+6.518.0=0.522-⨯--11B T1-*B TN %S 11100××0.55100S 10020K U X ===Ⅰ 12B T1-*B TN %S 7100××0.35100S 10020K U X ===Ⅱ 13BT1-*B TN%S ×0100S K U X ==Ⅲ00T1-*B T1-*N111000.80.8=0.440010020B TN S X X S =⋅=⨯⨯ⅠⅠ 00T1-*B T1-*N71000.80.8=0.280010020B TN S X X S =⋅=⨯⨯ⅡⅡ0T1-*B 0X =Ⅲ2.3线路正、负序计算公式:1.L X =2.L X =1x L (B B U S 2) 零序计算公式: 0.L X =0x L (BB US 2)例如:设有线路SQ :L SQ =22km ,x 1=0.4Ω/kmSQ SQ SQ L x X X 12.1.==(B B U S 2) = 0.4×22×(100/1152)=0.0665SQ SQ L x X 00.=(B B U S 2)1996.0115100222.12=÷⨯⨯=列表得表2.3 输电线路主要参数。
发电机出口发生三相短路电流的计算1.三相短路的介绍三相系统中发生的短路4种基本类型:三相短路,两相短路,单相对地短路和两相对地短路。
其中,除三相短路时,三相回路依旧对称,因而又称对称短路外,其余三类均属不对称短路。
在上述各种短路中,三相短路属于对称短路,其他短路属于不对称短路。
因此,三相短路可用于对称三相电路分析,不对称短路采用对称分量法分析,即把一组不对称的三相量分解成三组对称的正序、负序和零序分量来分析研究。
在电力系统中,发生单相短路的可能性最大,发生三相短路的可能性最小,但通常三相短路的短路电流最大,危害也最大,所以,短路电流计算的重点是三相短路电流的计算。
2.设备参数及电抗计算各电压等级的基准值220kV 系统参数表发电机参数及电抗3.三相相间短路电流计算1、两台发电机同时投运且系统按最大方式运行(1)短路总电流中间等效阻抗为:系统总阻抗:短路点处的总电流:(2)1号发电机提供20kV侧短路电流:(3)2号发电机及系统提供20kV侧短路电流:发电机分支系数:发电机转移电抗:2号发电机提供20kV侧短路电流:2、两台发电机同时投运且系统按最小方式运行(1)短路总电流中间等效阻抗为:系统总阻抗:短路点处的总电流:(2)1号发电机提供20kV侧短路电流:(3)2号发电机及系统提供20kV侧短路电流发电机分支系数:发电机转移电抗:2号发电机提供20kV侧短路电流:4.短路计算目的(1)选择有足够电动力稳定和热稳定性的电气设备。
(2)合理的配置继电保护及自动装置,并正确整定其参数。
(3)选择最佳的主接线方案。
(4)进行电力系统暂态稳定的计算。
(5)确定电力线路对邻近通信线路的干扰等。
结论;通过上述的介绍,我们知道短路是电力系统的严重故障,短路发生的地点、短路持续的时间、短路的类型直接决定短路的危害程度,这种危害可能是局部的也可能是全局的。
一般而言,短路的危害是非常广泛的,因而我们要十分重视短路对我们生活的影响。
2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:式中:Iact——继电器动作电流Kc——保护的接线系数IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。
K1rel——可靠系数,一般取1.2~1.3。
I1op1——保护动作电流的一次侧数值。
nTA——保护安装处电流互感器的变比。
灵敏系数校验:式中:X1——线路的单位阻抗,一般0.4Ω/KM;Xsmax——系统最大短路阻抗。
要求最小保护范围不得低于15%~20%线路全长,才允许使用。
2、限时电流速断保护整定计算原则:不超出相邻下一元件的瞬时速断保护范围。
所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。
故:式中:KⅡrel——限时速断保护可靠系数,一般取1.1~1.2;△t——时限级差,一般取0.5S;灵敏度校验:规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。
要求作为本线路主保护的后备以及相邻线路或元件的远后备。
动作电流按躲过最大负荷电流整定。
式中:KⅢrel——可靠系数,一般取1.15~1.25;Krel——电流继电器返回系数,一般取0.85~0.95;Kss——电动机自起动系数,一般取1.5~3.0;动作时间按阶梯原则递推。
灵敏度分别按近后备和远后备进行计算。
式中:Ikmin——保护区末端短路时,流经保护的最小短路电流。
即:最小运行方式下,两相相间短路电流。
要求:作近后备使用时,Ksen≥1.3~1.5作远后备使用时,Ksen≥1.2注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;4、三段式电流保护整定计算实例如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。
已知:1)线路AB长20km,线路BC长30km,线路电抗每公里0.4欧姆;2)变电所B、C中变压器连接组别为Y,d11,且在变压器上装设差动保护;3)线路AB的最大传输功率为9.5MW,功率因数0.9,自起动系数取1.3;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗7.9欧,系统最小电抗4.5欧。
第37卷2009年12月云 南 电 力 技 术YUNNAN ELECTR I C POWER Vo l 137N o 16Dec 12009收稿日期:2009-11-13用短路电流表计算分支系数的方法杨易政1赵 华2(11云南电网公司红河供电局,云南 蒙自 661100;21云南电网公司玉溪供电局,云南 玉溪 653100)摘要:介绍通过使用小短路电流表和电抗法计算分支系数,优化保护整定计算的方法。
关键词:整定计算 短路电流表 分支系数中图分类号:TM74 文献标识码:B 文章编号:1006-7345(2009)06-0069-021 前言1)基本概念:分支系数包含相电流保护的分支系数、距离保护的助增系数、零序电流保护的分支系数、低电压保护的分支系数。
在地区电网继电保护计算中,多数是用的是前三个。
2)选取依据:依据相关规程,线路保护的配合计算中,分支系数的选取,要结合实际可能的系统运行方式,相电流保护分支系数取最大值,距离保护助增系数取最小值,零序电流保护分支系数取最大值;灵敏度校核计算中,相电流保护分支系数取最小值,距离保护助增系数取最大值,零序电流保护分支系数取最小值。
3)分支系数计算选用的短路类型:选取相电流保护分支系数与距离保护助增系数,只需计算三相短路;选取零序电流保护分支系数,只需计算单相接地短路或两相接地短路。
有大量小水电并网的地区电网,运行方式复杂,使用电流计算分支系数,需进行大量运行方式计算,才可能得到需要的最大或最小分支系数。
通过对电流计算公式的推导,得到电抗计算公式,从而简化分支系数的计算;使用5最大短路电流和最小短路电流表6的数据,可以更进一步减少进行分支系数计算的计算量。
2 分支系数的定义及分析相电流保护分支系数K fz 定义为:相邻线路短路时,流过本线路的短路电流占流过相邻线路短路电流的份数。
见图1。
C 点母线短路,1DL 与2DL 的电流分支系数,相关公式如下:图1 电流分支系数电抗图K fz =I 1I 2(1)通过公式推导,可以得到一个结论:K fz 与相邻线路的正序电抗值无关,只与归算到母线的正序电抗值有关。
分支系数的计算x s1max(Ω)x s1min(Ω)x s2max(Ω)x s2min(Ω)线路MN(km)线路NP(km)E1=E2(kV)25 20 30 25 30 60 115/√31、助增分支系数的计算:=KNMNNKMNMm ZIIZIZIZIIUZ1.2.1.2.1.1+=+==⋅⋅KNbMN ZKZ+=分支系数:.1.2IIK b==.1.3.1III+=.1.3.1II+=211sMNsxZx++,与故障点的位置无关。
min.2.1max,1sMNmazsbxZxK++=代入参数:=2512251++=2.48mansMNsbxZxK.2min.1min,1++== 1+(20+12)/30=2.072、外汲分支系数的计算:1)设故障点在相邻线路I 段的保护范围末端(0.85全长)(整定配合用)24I 15.185.0I =421I I I +=)1.152(I I 15.185.0I 222=+= 12I I =b K = 21.15与运行方式无关,只与故障点的位置有关 最大值:Kb=1.15/2,两条线运行最小值:Kb=1,一条线路检修,只有一条线路运行2)在下线末端处(校验用)12I I =b K 1/2 最小值,平行线运行 1 最大值,单回线运行3、既有助增又有外汲时分支系数的计算1)在下线I 段末段0.85处4231I I I I +=+1213I I s MN s x Z x +=, 285.04I 15.1I = 1211I I s MN s x Z x ++= 285.02I 15.1I + 215.1)1(I I K 2112b ⋅++==s MN s x Z x 215.1)1(I I K max 2min 112bmin ⋅++==s MN s x Z x 代入参数:215.1)3012201(I I K 12bmin ⋅++===1.192)校验点在下线末端(校验用))1(I 21)I (I 21I 211312s MN s x Z x ++=+=)1(2121s MNs b x Z x K ++=)1(21min2max 1max s MNs b x Z x K ++=代入参数:)2512251(21max ++=b K = 1.24。
分支系数的计算
x s1max (Ω) x s1min (Ω) x s2max (Ω) x s2min (Ω) 线路MN (km ) 线路NP (km ) E1=E2 (kV ) 25 20
30
25
30
60
115/√3
1、助增分支系数的计算:
=KN MN NK
MN M m Z I I Z I Z I Z I I U Z 1
.
2.
1
.
2.
1.1
+
=+=
=
⋅
⋅
KN b MN Z K Z +=
分支系数:.
1
.
2I I K b =
=
.
1
.
3
.
1I I I +=.
1.
3
.
1I I +
=2
11s MN
s x Z x ++
,与故障点的位置无关。
min
.2.1max ,1s MN
maz
s b x Z
x
K ++= 代入参数: =
2512251++=2.48
man s MN
s b x Z x K .2min .1min ,1++
= = 1+(20+12)/30=2.07
2、外汲分支系数的计算:
1)设故障点在相邻线路I 段的保护范围末端(0.85全长)(整定配合用)
24I 15
.185
.0I =
421I I I +=
)1.152
(I I 15.185.0I 222=+
= 12I I =b K =
2
1.15
与运行方式无关,只与故障点的位置有关 最大值:Kb=1.15/2,两条线运行
最小值:Kb=1,一条线路检修,只有一条线路运行
2)在下线末端处(校验用)
1
2
I I =
b K 1/2 最小值,平行线运行 1 最大值,单回线运行
3、既有助增又有外汲时分支系数的计算
1)在下线I 段末段0.85处
4231I I I I +=+
1213I I s MN s x Z x +=
, 285
.04I 15
.1I = 1211I I s MN s x Z x ++
= 285
.02I 15.1I + 2
15
.1)1(I I K 2112b ⋅
++==
s MN s x Z x 2
15
.1)1(I I K max 2min 112bmin ⋅
++==
s MN s x Z x 代入参数:2
15
.1)3012201(I I K 12bmin ⋅
++===1.19
2)校验点在下线末端(校验用)
)1(I 21)I (I 21I 2
11312s MN s x Z x ++=+=
)1(212
1s MN
s b x Z x K ++=
)1(21min
2max 1max s MN
s b x Z x K ++=
代入参数:)25
12
251(21max ++=
b K = 1.24。