第二章 电阻电路分析-1
- 格式:ppt
- 大小:1.21 MB
- 文档页数:61
第二章电路的等效变换§2-1 等效二端网络的定义电阻串并联电路一、等效二端网络的定义1.二端网络的定义在电路分析中,可以把互连的一组元件看作为一个整体,如图(a)所示(R3、R4、R5这一部分电路)。
当这个整体只有两个端钮与外部电路相连接,则不管它的内部结构如何,我们统称它为二端网络或单口网络,可以用图(b)中的N来表示。
特点:二端网络中,从一个端钮流进的电流必定等于另一端钮流出的电流,该电流I称为端口电流,U为端口电压。
2.等效二端网络N1的(VAR)与另一个二端网络N2的(VAR)完全相同,则称N1、N2完全等效。
这里的等效是指对任意的外电路等效,对内部不等效。
目的:引入等效概念,可大大简化二端网络,以利分析。
二、电阻的串联电路(流过同一电流)及分压公式在电路中,把几个电阻元件依次一个一个首尾连接起来,中间没有分支,在电源的作用下流过各电阻的是同一电流。
这种连接方式叫做电阻的串联。
图示电路表示几个电阻串联后由一个直流电源供电的电路。
U代表总电压,I为电流。
N 1和N 2两个二端网络,运用等效概念,1N 可等效为N 2(一个电阻R ab )由KVL U =U U 12++……+U n由VAR U =R I R I 1122++……+R I n n =(R R 12++……+R I n ) 对N 2:VAR I R U ab = 这里称R ab 为等效电阻。
∴串联(n 个电阻)等效电阻R R ab k k n==∑1,等效电阻如图b 等效电阻必大于任一串联电阻,即:k ab R R > 而第k 个电阻上的电压为:下面再看 P =UI =R I R I 1222++……+R I R I n ab 22=此式表示n 个串联电阻吸收的总功率等于它们的等效电阻所吸收的功率。
电阻串联时,各电阻上的电压为: ,此式称分压公式。
例:P. 23 例2-1三、电阻的并联(加的是同一电压)(及分流公式)图示为n 个电阻并联。
第二章 电阻电路的分析主要内容:定理法:叠加定理、替代定理、戴维南定理(诺顿定理); 等效变换法:独立电源的等效变换、电阻的Y -Δ转换、移源法; 系统化法:节点电压法、回路电流法。
§2-1 线性电路的性质·叠加定理(superposition theorem)一、 线性电路的概念由线性元件及独立电源组成的电路。
电源的作用是激励,其它元件则是对电源的响应。
二、 线性电路的性质 1、齐次性: 若有图示的线性电路,在单电源激励下,以2R 的电流2i 为输出响应,则容易得到:s u R R R R R R R i 13322132++=由于321,,R R R 为常数,故有:s ku i =2显然,2i 与su 成比例。
在数学中,被称为“齐次性”,而在电路理论中则称为“比例性”。
2、相加性在图示的两激励电路中,若仍以2R 的电流2i 作为输出响应,则有:u+ |2us u+ ||2us s i R R R u R R i 2112121+++=显然,2i 由两项组成,第一项为电压源单独作用时,在电阻上引起的响应,每二项为电流源单独作用时,在电阻上引起的响应,每一项只与某个激励源成比例。
也即,由两个激励所产生的响应,表示为每一个激励单独作用时产生的响应之和。
这在数学中称为“相加性”,在电路理论中则称为“叠加性”。
三、 叠加定理在任何线性电阻电路中,每一元件的电流或电压都是电路中各个独立电源单独作用时在该元件产生的电流或电压的叠加。
叠加性是线性电路的一个根本属性。
注:叠加定理适用于线性电路。
在叠加的各分电路中,不作用的电压源置零(即,电压源用短路代替),不作用的电流源置零(即,电流源用开路代替),电阻不更动,受控源保留在各分电路中。
和分电路中的电压、电流的参考方向可以取为原电路中的相同方向,求和时,应注意各分量前的“+”、“-”号。
原电路的功率不等于按各分电路计算所得的功率叠加,这是因为功率是电压和电流的乘积。