第二章-电阻电路分析-1
- 格式:ppt
- 大小:1.24 MB
- 文档页数:62
第二章电路的等效变换§2-1 等效二端网络的定义电阻串并联电路一、等效二端网络的定义1.二端网络的定义在电路分析中,可以把互连的一组元件看作为一个整体,如图(a)所示(R3、R4、R5这一部分电路)。
当这个整体只有两个端钮与外部电路相连接,则不管它的内部结构如何,我们统称它为二端网络或单口网络,可以用图(b)中的N来表示。
特点:二端网络中,从一个端钮流进的电流必定等于另一端钮流出的电流,该电流I称为端口电流,U为端口电压。
2.等效二端网络N1的(VAR)与另一个二端网络N2的(VAR)完全相同,则称N1、N2完全等效。
这里的等效是指对任意的外电路等效,对内部不等效。
目的:引入等效概念,可大大简化二端网络,以利分析。
二、电阻的串联电路(流过同一电流)及分压公式在电路中,把几个电阻元件依次一个一个首尾连接起来,中间没有分支,在电源的作用下流过各电阻的是同一电流。
这种连接方式叫做电阻的串联。
图示电路表示几个电阻串联后由一个直流电源供电的电路。
U代表总电压,I为电流。
N 1和N 2两个二端网络,运用等效概念,1N 可等效为N 2(一个电阻R ab )由KVL U =U U 12++……+U n由VAR U =R I R I 1122++……+R I n n =(R R 12++……+R I n ) 对N 2:VAR I R U ab = 这里称R ab 为等效电阻。
∴串联(n 个电阻)等效电阻R R ab k k n==∑1,等效电阻如图b 等效电阻必大于任一串联电阻,即:k ab R R > 而第k 个电阻上的电压为:下面再看 P =UI =R I R I 1222++……+R I R I n ab 22=此式表示n 个串联电阻吸收的总功率等于它们的等效电阻所吸收的功率。
电阻串联时,各电阻上的电压为: ,此式称分压公式。
例:P. 23 例2-1三、电阻的并联(加的是同一电压)(及分流公式)图示为n 个电阻并联。
第二章线性电阻电路分析2—1 图示电路,求i、u ab和R。
解:(a)经等效变换后,可得到右示(a’)电路。
(b)经等效变换后,可得到右示(b’)电路。
2—2 图示电路,求i。
解:电路(a)经等效变换后,可得到(b)图电路。
2-3 图示电路,求i、u s。
解:原电路经等效变换后,可得到下图电路。
2-4 图示电路,求输入电阻R O。
解:原电路经△—Υ等效变换可得到所示对应电路,其中:(a)(b)R(电路中的电阻单位均为欧姆)。
2-5试求图示各电路的等效电阻abΩ=+++⨯+=14108)53(8)53(abR 3A 136V 50V +-+-+-U o 8Ω10Ω2Ω40Ωi m1i m2i m3 (a) (b) (c) 解:(a )(b )等效电路如图:(c )等效电路如图:2-6用网孔电流法求图示电路的各支路电流。
2-7 用网孔电流法求解下图所示电路中的电压Uo 。
解: 对网孔1:i m1=3A1ΩΩ-223u u n n -521u u n n -9331+-u u n n 对网孔2:-8i m1+(2+8+40)i m2+40i m3=136对网孔3:+10i m1+40i m2+(40+10)i m3=50 由上三式联立解得i m1=3A i m2=8A i m3=-6A 所以 Uo=40(i m2+ i m3)=40(8-6)=80V2-8 用节点电压法求解下图所示电路中的电压u ab解: (与15A 串联的1Ω电阻去掉),以C 为参考节点对节点a :(1+1+1)u a -u b =10 (1) 对节点b :-u a +(1+1)u b =15 (2) 由(1)(2)联立解得u a =7V u b =11V 所以 u ab =u a -u b =7-11=-4V2-9 用节点电压法求解下图所示电路中电流的Is 和Io 。
1Ω1Ω 解:以④为参考节点对节点①:un 1=48V 对节点②:021)216151(51321=-+++-u u u n n n对节点③:0)2112121(21121321=+++--u u u n n n由上三式联立解得 u n 1=48Vu n 2=18V u n 3=12V 节点①由kcl : Is= + =9A Io= =-3A2-10求解图2-11所示电路中各电源提供的功率+-27V 6A 5Ω4Ω1Ωi m1i m2i m3+-27V 6A 5Ω4Ω1Ω①解法一:节点电压法以③为参考节点 对节点①:27201)201411(21=-++u u n n对节点②:6)51201(20121-=++-u u n n 上两式联立解得u n 1=20Vu n 2=-20V I=1271-u n =-7A所以电压源对应P 1=UI=27*(-7)=-189 发出189W 功率 电流源对应P 2=UI=u n 2*6=-20*6=-120W 发出120W 功率 解法二:用网孔法 网孔1:(1+4)i m1+4i m2=-27 网孔2:4 i m1+(4+20+5)i m2-5 i m3=0 网孔3:i m3=6A 上三式联立解得 i m1=-7A i m2=2A 所以电压源对P 1=27 i m1=27*(-7)=-189W电流源对应P 2=UI (i m2-i m3)*5*6=-120W 2-11 图示电路,求u 3。
第二章 电阻电路的分析主要内容:定理法:叠加定理、替代定理、戴维南定理(诺顿定理); 等效变换法:独立电源的等效变换、电阻的Y -Δ转换、移源法; 系统化法:节点电压法、回路电流法。
§2-1 线性电路的性质·叠加定理(superposition theorem)一、 线性电路的概念由线性元件及独立电源组成的电路。
电源的作用是激励,其它元件则是对电源的响应。
二、 线性电路的性质 1、齐次性: 若有图示的线性电路,在单电源激励下,以2R 的电流2i 为输出响应,则容易得到:s u R R R R R R R i 13322132++=由于321,,R R R 为常数,故有:s ku i =2显然,2i 与su 成比例。
在数学中,被称为“齐次性”,而在电路理论中则称为“比例性”。
2、相加性在图示的两激励电路中,若仍以2R 的电流2i 作为输出响应,则有:u+ |2us u+ ||2us s i R R R u R R i 2112121+++=显然,2i 由两项组成,第一项为电压源单独作用时,在电阻上引起的响应,每二项为电流源单独作用时,在电阻上引起的响应,每一项只与某个激励源成比例。
也即,由两个激励所产生的响应,表示为每一个激励单独作用时产生的响应之和。
这在数学中称为“相加性”,在电路理论中则称为“叠加性”。
三、 叠加定理在任何线性电阻电路中,每一元件的电流或电压都是电路中各个独立电源单独作用时在该元件产生的电流或电压的叠加。
叠加性是线性电路的一个根本属性。
注:叠加定理适用于线性电路。
在叠加的各分电路中,不作用的电压源置零(即,电压源用短路代替),不作用的电流源置零(即,电流源用开路代替),电阻不更动,受控源保留在各分电路中。
和分电路中的电压、电流的参考方向可以取为原电路中的相同方向,求和时,应注意各分量前的“+”、“-”号。
原电路的功率不等于按各分电路计算所得的功率叠加,这是因为功率是电压和电流的乘积。
02分电阻电路的分析方法-(1)电阻电路的分析方法一、是非题1.图示三个网络a、b端的等效电阻相等。
2.当星形联接的三个电阻等效变换为三角形联接时,其三个引出端的电流和两两引出端的电压是不改变的。
3.对外电路来说,与理想电压源并联的任何二端元件都可代之以开路。
4.如二端网络的伏安特性为U=-20-5I,则图示支路与之等效。
5.两个电压值都为U S的直流电压源,同极性端并联时,可等效为一个电压源,其电压值仍为U S。
6.左下图示电路中,如100V电压源供出100W功率,则元件A吸收功率20W。
7.对右上图示电路,如果改变电阻R1,使电流I1变小,则I2必增大。
二、单项选择题2.在左下图示电路中,当开关S由闭合变为断开时,灯泡将(A)变亮(B)变暗(C)熄灭3.右上图示电路中电流I为(A)趋于无限(B)12A(C)6A(D)9A4.当标明“100Ω,4W”和“100Ω,25W”的两个电阻串联时,允许所加的最大电压是(A)40V (B)70V (C)140V5.电路如左下图所示,已知电压源电压U S=230V,内阻R S=1Ω。
为使输出电压为220V、功率为100W的灯泡正常发光,则应并联(A)22盏灯 (B)11盏灯 (C)33盏灯6.对右上图示电路,节点1的节点方程为(A)6U1-U2=6 (B)6U1=6 (C)5U1=6 (D)6U1-2U2=27.左下图示二端网络的电压、电流关系为(A)u=10-5i(B)u=10+5i(C)u=5i-10(D)u=-5i-108.右上图示电路中的电流I为(A)0.25A (B)0.5A (C) A (D)0.75A9.左下图示电路的输入电阻R ab(A)大于10Ω(B)等于10Ω(C)小于10Ω的正电阻(D)为一负电阻10.右上图示二端网络的输入电阻为(A)3Ω (B)6Ω (C)5Ω (D)-3Ω11.图示为电路的一部分,已知U ab=30V,则受控源发出的功率为(A)40W(B)60W(C)-40W(D)-60W12.若图1所示二端网络N的伏安关系如图2所示,则N可等效为13.图示电路中,增大G1将导制()。