第二章 电阻电路的分析
- 格式:ppt
- 大小:6.51 MB
- 文档页数:194
电工学-电工技术(艾永乐)课后答案第二章第二章 电阻电路的分析本章的主要任务是学习电阻电路的分析计算方法,并运用这些方法分析计算各种电阻电路中的电流、电压和功率。
本章基本要求1. 正确理解等效电路的概念,并利用等效变换化简电路。
2. 掌握电阻串、并联等效变换、电源的等效变换。
3. 电阻电路的分压公式和分流公式的应用。
4. 运用支路电流法和结点电压法分析计算电路。
5. 运用叠加定理分析计算电路。
6. 熟练应用戴维宁定理分析计算电路。
7. 应用戴维宁定理求解电路中负载电阻获得的最大功率。
8. 学会含有受控源电路的分析计算。
9. 了解非线性电阻电路的分析方法。
本章习题解析2-1 求习题2-1所示电路的等效电阻,并求电流I 5。
3Ω2Ω2Ω4Ω4Ω6Ω1ΩI 5 a+-3V b 3Ω2Ω2ΩΩ6Ω1ΩI 5a+-3V解:电路可等效为题解2-1图由题解2-1图,应用串并联等效变换得5.1)6//)12(2//2//(3ab =++=R Ω由分流公式3136********=⋅+++⋅+=ab R I A 2-2 题2-2图所示的为变阻器调节分压电路。
50=L R Ω,电源电压220=U V ,中间环节是变阻器。
变阻器的规格是100Ω 3A 。
今把它平题解2-1题2-1图分为4段,在图上用a 、b 、c 、d 、e 等点标出。
试求滑动触点分别在a 、b 、c 、d 四点是,负载和变阻器所通过的电流及负载电压,并就流过变阻器的电流与其额定电流比较来说明使用时的安全问题。
+-Ud ab c e L+-U L I L解:1)a 点: 0L =U 0L =I 2.2100220ea ea ===R U I A 2) c 点:75eq =R Ω 93.275220eq ec ===R U I A 47.121ec L ==I I A 5.73L =U V3) d 点:55eq =R Ω 455220eq ed ===R U I A 4.2L =I A 6.1da =I A 120L =U V4) e 点: 2.2100220ea ea ===R U I A 4.450220L ==I A 220L =U V 2-3 试求习题2-3ab 之间的输入电阻。
第二章电阻电路的基本分析方法一、填空题学号:姓名:1、对外只有两个端纽的网络称为,其内部电路若不包含电源的称为网络。
2、若两个单口网络N1和N2具有完全相同的,则称N1和N2相互等效。
单口网络的等效是对外特性而言,并不等效。
3、串联电阻电路可起作用,并联电阻电路可起作用。
4、电阻串联电路的特点是各电阻流过的相同,电阻并联电路的特点是各电阻两端的相同。
5、串联电阻电路中,电阻值越大,电阻两端的端电压就;并联电阻电路中,电阻值越大,流过电阻的分电流就。
6、若某网络有b 条支路,n 个节点,则可以列个KCL 独立方程、个KVL 独立方程。
7、电压源u s与电阻R 的串联组合可等效变换成电流源i s与电阻R 的并联组合。
其中,变换后的电流源i s其方向为从u s的极指向极。
8、网孔分析法的待求变量是,节点分析法的待求变量是。
9、网孔方程本质上是网孔的方程,节点方程本质上是节点的方程。
10、用网孔分析法或节点分析法分析含有受控源的电路,在列写方程时,可先把受控源当做看待来列方程,最后再增加用网孔电流或节点电压表示的辅助方程即可。
二、选择题1、电路如图所示,电流i 等于()。
A 、1AB 、2AC 、3AD 、4A2、电路如图所示,电压u 等于()。
A、-2VB、2VC、-4V D 、4V3、电路如图所示,电流I 等于()。
A、1AB、2AC、3A D 、4A4、电路如图所示,电流i 等于()。
A、1AB、2AC、3A D 、4A5、电路如图所示,a、b 端的等效电阻R ab等于()。
A、4ΩB、6ΩC、8Ω D 、9Ω6、电路如图所示,a、b 端的等效电阻R ab等于()。
A、1ΩB、2ΩC、3Ω D 、4Ω7、电路如图所示,a、b 端的等效电阻R ab等于()。
A、3ΩB、4ΩC、5Ω D 、6Ω8、电路如图所示,a、b 端的等效电阻R ab等于()。
A、6ΩB、7ΩC、8Ω D 、9Ω9、电路如图所示,当开关S 打开和闭合时其单口网络的等效电阻R ab分别为()。
第二章线性电阻电路分析2—1 图示电路,求i、u ab和R。
解:(a)经等效变换后,可得到右示(a’)电路。
(b)经等效变换后,可得到右示(b’)电路。
2—2 图示电路,求i。
解:电路(a)经等效变换后,可得到(b)图电路。
2-3 图示电路,求i、u s。
解:原电路经等效变换后,可得到下图电路。
2-4 图示电路,求输入电阻R O。
解:原电路经△—Υ等效变换可得到所示对应电路,其中:(a)(b)R(电路中的电阻单位均为欧姆)。
2-5试求图示各电路的等效电阻abΩ=+++⨯+=14108)53(8)53(abR 3A 136V 50V +-+-+-U o 8Ω10Ω2Ω40Ωi m1i m2i m3 (a) (b) (c) 解:(a )(b )等效电路如图:(c )等效电路如图:2-6用网孔电流法求图示电路的各支路电流。
2-7 用网孔电流法求解下图所示电路中的电压Uo 。
解: 对网孔1:i m1=3A1ΩΩ-223u u n n -521u u n n -9331+-u u n n 对网孔2:-8i m1+(2+8+40)i m2+40i m3=136对网孔3:+10i m1+40i m2+(40+10)i m3=50 由上三式联立解得i m1=3A i m2=8A i m3=-6A 所以 Uo=40(i m2+ i m3)=40(8-6)=80V2-8 用节点电压法求解下图所示电路中的电压u ab解: (与15A 串联的1Ω电阻去掉),以C 为参考节点对节点a :(1+1+1)u a -u b =10 (1) 对节点b :-u a +(1+1)u b =15 (2) 由(1)(2)联立解得u a =7V u b =11V 所以 u ab =u a -u b =7-11=-4V2-9 用节点电压法求解下图所示电路中电流的Is 和Io 。
1Ω1Ω 解:以④为参考节点对节点①:un 1=48V 对节点②:021)216151(51321=-+++-u u u n n n对节点③:0)2112121(21121321=+++--u u u n n n由上三式联立解得 u n 1=48Vu n 2=18V u n 3=12V 节点①由kcl : Is= + =9A Io= =-3A2-10求解图2-11所示电路中各电源提供的功率+-27V 6A 5Ω4Ω1Ωi m1i m2i m3+-27V 6A 5Ω4Ω1Ω①解法一:节点电压法以③为参考节点 对节点①:27201)201411(21=-++u u n n对节点②:6)51201(20121-=++-u u n n 上两式联立解得u n 1=20Vu n 2=-20V I=1271-u n =-7A所以电压源对应P 1=UI=27*(-7)=-189 发出189W 功率 电流源对应P 2=UI=u n 2*6=-20*6=-120W 发出120W 功率 解法二:用网孔法 网孔1:(1+4)i m1+4i m2=-27 网孔2:4 i m1+(4+20+5)i m2-5 i m3=0 网孔3:i m3=6A 上三式联立解得 i m1=-7A i m2=2A 所以电压源对P 1=27 i m1=27*(-7)=-189W电流源对应P 2=UI (i m2-i m3)*5*6=-120W 2-11 图示电路,求u 3。
第二章 电阻电路的分析主要内容:定理法:叠加定理、替代定理、戴维南定理(诺顿定理); 等效变换法:独立电源的等效变换、电阻的Y -Δ转换、移源法; 系统化法:节点电压法、回路电流法。
§2-1 线性电路的性质·叠加定理(superposition theorem)一、 线性电路的概念由线性元件及独立电源组成的电路。
电源的作用是激励,其它元件则是对电源的响应。
二、 线性电路的性质 1、齐次性: 若有图示的线性电路,在单电源激励下,以2R 的电流2i 为输出响应,则容易得到:s u R R R R R R R i 13322132++=由于321,,R R R 为常数,故有:s ku i =2显然,2i 与su 成比例。
在数学中,被称为“齐次性”,而在电路理论中则称为“比例性”。
2、相加性在图示的两激励电路中,若仍以2R 的电流2i 作为输出响应,则有:u+ |2us u+ ||2us s i R R R u R R i 2112121+++=显然,2i 由两项组成,第一项为电压源单独作用时,在电阻上引起的响应,每二项为电流源单独作用时,在电阻上引起的响应,每一项只与某个激励源成比例。
也即,由两个激励所产生的响应,表示为每一个激励单独作用时产生的响应之和。
这在数学中称为“相加性”,在电路理论中则称为“叠加性”。
三、 叠加定理在任何线性电阻电路中,每一元件的电流或电压都是电路中各个独立电源单独作用时在该元件产生的电流或电压的叠加。
叠加性是线性电路的一个根本属性。
注:叠加定理适用于线性电路。
在叠加的各分电路中,不作用的电压源置零(即,电压源用短路代替),不作用的电流源置零(即,电流源用开路代替),电阻不更动,受控源保留在各分电路中。
和分电路中的电压、电流的参考方向可以取为原电路中的相同方向,求和时,应注意各分量前的“+”、“-”号。
原电路的功率不等于按各分电路计算所得的功率叠加,这是因为功率是电压和电流的乘积。