1.1同级运算
- 格式:doc
- 大小:33.50 KB
- 文档页数:2
数字与代数式的运算规则一、数字的运算规则1.1 加法运算:两个数相加,结果为它们的和。
1.2 减法运算:两个数相减,结果为它们的差。
1.3 乘法运算:两个数相乘,结果为它们的积。
1.4 除法运算:两个数相除,结果为它们的商。
1.5 乘方运算:一个数自乘若干次,结果为它的幂。
1.6 分数运算:分数的加减乘除法,同分母分数相加减,异分母分数相加减需通分,分数与整数相乘相当于分子乘以整数,分数与整数相除相当于分子除以整数。
二、代数式的运算规则2.1 代数式的加减法:同类型代数式相加减,只需将它们相应的系数相加减,变量部分保持不变。
2.2 代数式的乘除法:同类型代数式相乘除,只需将它们相应的系数相乘除,变量部分保持不变。
2.3 代数式的乘方:对代数式进行乘方运算时,先对系数进行乘方运算,再对变量进行乘方运算。
2.4 代数式的乘除以多项式:代数式乘以多项式,相当于代数式分别乘以多项式的每一项;代数式除以多项式,相当于代数式分别除以多项式的每一项。
2.5 代数式的乘除以单项式:代数式乘以单项式,相当于代数式乘以单项式的系数,变量部分保持不变;代数式除以单项式,相当于代数式除以单项式的系数,变量部分保持不变。
2.6 合并同类项:将含有相同变量的同类项合并,合并时只需将它们的系数相加减,变量部分保持不变。
2.7 代数式的化简:化简代数式,就是将其中的同类项合并,并去掉多余的括号。
2.8 代数式的求值:求代数式的值,就是将代数式中的变量替换为具体的数值,进行计算。
三、运算顺序3.1 同级运算从左到右依次进行。
3.2 乘方运算优先于乘除运算。
3.3 乘除运算优先于加减运算。
3.4 含有括号的运算,先计算括号内的运算。
3.5 函数运算,先计算函数内的运算。
四、运算定律4.1 交换律:加法交换律、乘法交换律。
4.2 结合律:加法结合律、乘法结合律。
4.3 分配律:乘法分配律。
4.4 恒等律:加法恒等律、乘法恒等律。
4.5 相反数律:一个数的相反数加上它等于零。
1.1.1算法的概念情景引入现用若干张扑克牌进行扑克牌游戏,小明背对小亮,让小亮按下列四个步骤操作:第一步,分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同.第二步,从左边一堆拿出两张,放入中间一堆.第三步,从右边一堆拿出一张,放入中间一堆.第四步,左边一堆有几张牌,就从中间一堆拿出几张牌放入左边一堆.这时,小明准确地说出了中间一堆牌现有的张数,你知道中间一堆牌有多少张吗?新知导学1.算法的概念2算法是做一件事情的方法和步骤.在生活中做一件事情的方法和步骤有多种,我们设计的算法应本着简捷方便的原则.要正确地设计一个算法就需要了解算法的特征:1.下列不能看成算法的是()A.洗衣机的使用说明书B.烹制红烧肉的菜谱C.从山东济南乘火车到北京,再从北京乘飞机到伦敦D.小明不会洗衣服2.算法的每一步都应该是正确的、能有效执行的,并且能得到明确的结果,这是指算法的()A.有穷性B.确定性C.逻辑性D.不唯一性3.下面对算法的描述正确的一项是()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同4.已知一名学生的语文成绩为89分,数学成绩为96分,外语成绩为99分,求他的总分D 和平均成绩E的一个算法为:第一步,取A=89,B=96,C=99.第二步,_________________.第三步,_________________.第四步,输出D,E.5.写出解方程ax+b=0(a、b是常数)的一个算法.互动探究解疑命题方向1⇨算法含义的正确理解典例1(1)下列关于算法的描述正确的是()A.算法与求解一个问题的方法相同B.算法只能解决一个问题,不能重复使用C.算法过程要一步一步执行,每步执行的操作必须确切D.有的算法执行完后,可能无结果(2)下列描述不能看作算法的是()A.做米饭需要刷锅,淘米,添水,加热这些步骤B.利用公式S=πr2,计算半径为4的圆的面积,就是计算π×42C.解不等式2x2+x-1>0D.求过M(1,2)与N(-3,-5)两点的直线方程可以先求MN的斜率,再利用点斜式方程求得.规律总结(1)算法实际上是一种程序性方法,它通常解决某一个或一类问题,在用算法解决问题时,显然体现了特殊与一般的数学思想.(2)算法的特点有:①有限性,②确定性,③顺序性与正确性,④不唯一性,⑤普遍性.解答有关算法的概念判断题应根据算法的这五大特点.跟踪练习1下列说法中,能称为算法的是()A.巧妇难为无米之炊B.炒菜需要洗菜、切菜、刷锅、炒菜这些步骤C.数学题真有趣D.物理与数学是密不可分的命题方向2⇨数值性问题的算法典例2写出求1+2+3+4+5+6的值的一个算法.规律总结设计此类问题的算法通常有两种.一种称为累加或乘法,将步骤一直写下去,便得到任意有限个数相加或相乘的算法.另一种具有代表性,是对这一类问题的机械的、统一的求解方法.跟踪练习2写出满足1+2+3+…+n>20的最小自然数n的值的算法.解:第一步,计算1+2=3,显然3>20不成立,执行第二步;第二步,将第一步计算的结果3与3相加,得到6,显然6>20不成立,执行第三步;第三步,将第二步计算的结果6与4相加,得到10,显然10>20不成立,执行第四步;第四步,将第三步计算的结果10与5相加,得到15,显然15>20不成立,执行第五步;第五步,将第四步计算的结果15与6相加,得到21,显然21>20成立,所以输出6.命题方向3⇨非数值性问题的算法典例3有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题.规律总结对于非数值问题,应当首先建立过程模型,根据过程设计步骤,完成算法,在设计算法时应简洁、清晰,要善于分析任何可能出现的情况以体现思维的严谨性.跟踪练习3写出交换两个容量相同的杯子的液体(A杯中装有水、B杯中装有酒)的两个算法.易混易错警示算法中错用省略号而致误典例4设计一个算法,求a1,a2,a3,a4,a5五个不同实数中最小的数.[错解]第一步,比较a1,a2的大小.若a1<a2,则令m=a1;否则,令m=a2.第二步,比较m,a3的大小.若a3<m,则令m=a3;否则,m的值不变.……第四步,比较m,a5的大小.若a5<m,则令m=a5;否则,m的值不变.第五步,输出m的值.以上错解中都有哪些错误?出错的原因是什么?你如何订正?你如何防范?[辨析]省略号表达的步骤不明确,不符合算法的确定性.学科核心素养分类讨论思想典例5写出解方程ax2+bx+c=0(a、b、c为实数)的一个算法.课堂达标验收1.下列叙述不能称为算法的是( )A .从北京到上海先乘汽车到飞机场,再乘飞机到上海B .解方程4x +1=0的过程是先移项再把x 的系数化成1C .利用公式V =13Sh 计算底面半径为2,高为3的圆锥的体积,V =13×π×22×h D .解方程x 2-2x +1=02.早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几个步骤.从下列选项中选出最好的一种算法( )A .第一步洗脸刷牙、第二步刷水壶、第三步烧水、第四步泡面、第五步吃饭、第六步听广播B .第一步刷水壶、第二步烧水同时洗脸刷牙、第三步泡面、第四步吃饭、第五步听广播C .第一步刷水壶、第二步烧水同时洗脸刷牙、第三步泡面、第四步吃饭同时听广播D .第一步吃饭同时听广播、第二步泡面、第三步烧水同时洗脸刷牙、第四步刷水壶3.现用若干张扑克牌进行扑克牌游戏,小明背对小亮,让小亮按下列四个步骤操作: 第一步,分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同.第二步,从左边一堆拿出两张,放入中间一堆.第三步,从右边一堆拿出一张,放入中间一堆.第四步,左边一堆有几张牌,就从中间一堆拿出几张牌放入左边一堆.这时,小明准确地说出了中间一堆牌现有的张数,你认为中间一堆牌的张数是( )A .4B .5C .6D .8 4.一个算法如下:第一步,S 取值0,i 取值1.第二步,若i 是不大于10,则执行下一步;否则执行第六步.第三步,计算S +i 且将结果代替S .第四步,用i +2结果代替i .第五步,转去执行第二步.第六步,输出S .则运行以上步骤输出的结果为_______.5.写出解方程组⎩⎪⎨⎪⎧3x -2y =-2①7x -y =18②的一个算法.参考答案新知导学1.算术运算一定规则明确有限计算机程序计算机程序明确的步骤算法“语言”预习自测1.【答案】D【解析】由算法的概念可知,选项D并没有涉及程序和步骤,也不能够体现在有限步之间完成,故选D .2.【答案】 B【解析】 算法的过程和每一步的结果都是确定的,即确定性.3.【答案】 C【解析】 根据算法的特征,同一问题可以有不同的算法,但结果是一样的.4.【答案】 D =A +B +C 计算平均成绩E =D 3【解析】 由题意,求总分的方法就是把三科分数求和,而求平均值就是把总分除以科目数3,因此第二步可为D =A +B +C ,第三步为E =D 3. 5.解:算法步骤如下:第一步,判断a 是否为0,若a =0,执行第二步;若a ≠0,执行第三步.第二步,判断b 是否为0,若b =0,则输出“x ∈R ”;否则输出“无解”.第三步,将ax +b =0变形为ax =-b ,得x =-b a ,输出x =-b a. 互动探究解疑命题方向1 ⇨算法含义的正确理解典例1 【答案】 (1)C (2)C【解析】 (1)算法与求解一个问题的方法既有区别又有联系,故A 项不对;算法能重复使用,故B 项不对;每个算法执行后必须有结果,故D 项不对;由算法的有序性和确定性可知C 项正确.(2)A 、B 、D 都描述了解决问题的过程,可以看作算法,而C 只描述了一个事实,没说明怎么解决问题,不是算法.跟踪练习1 【答案】 B【解析】 算法是做一件事的步骤或程序,不是解决问题的办法,因而只有选项B 正确. 命题方向2 ⇨数值性问题的算法典例2 写出求1+2+3+4+5+6的值的一个算法.解:算法1:第一步,计算1+2得到3;第二步,将第一步中的运算结果3与3相加得到6;第三步,将第二步中的运算结果6与4相加得到10;第四步,将第三步中的运算结果10与5相加得到15;第五步,将第四步中的运算结果15与6相加得到21;第六步,输出运算结果.算法2:第一步,取n =6;第二步,计算n n +12; 第三步,输出运算结果.算法3:第一步,将原式变形为(1+6)+(2+5)+(3+4)=3×7;第二步,计算3×7;第三步,输出运算结果.跟踪练习2 解:第一步,计算1+2=3,显然3>20不成立,执行第二步;第二步,将第一步计算的结果3与3相加,得到6,显然6>20不成立,执行第三步; 第三步,将第二步计算的结果6与4相加,得到10,显然10>20不成立,执行第四步; 第四步,将第三步计算的结果10与5相加,得到15,显然15>20不成立,执行第五步; 第五步,将第四步计算的结果15与6相加,得到21,显然21>20成立,所以输出6. 命题方向3 ⇨非数值性问题的算法典例3 解:算法步骤如下:第一步,取一只空的墨水瓶,设其为白色.第二步,将黑墨水瓶中的蓝墨水装入白瓶中.第三步,将蓝墨水瓶中的黑墨水装入黑瓶中.第四步,将白瓶中的蓝墨水装入蓝瓶中.第五步,交换结束.跟踪练习3 解:算法1:第一步,找一个容量不小于A 的空杯子C .第二步,将A 中的水倒入C 中.第三步,将B 中的酒倒入A 中.第四步,将C 中的水倒入B 中,结束.算法2:第一步,再找两个容量不小于A 的空杯子C 和D .第二步,将A 中的水倒入C 中,将B 中的酒倒入D 中.第三步,将C 中的水倒入B 中,将D 中的酒倒入A 中,结束.易混易错警示 算法中错用省略号而致误典例4 [正解] 第一步,比较a 1,a 2的大小.若a 1<a 2,则令m =a 1;否则,令m =a 2. 第二步,比较m ,a 3的大小.若a 3<m ,则令m =a 3;否则,m 的值不变.第三步,比较m ,a 4的大小.若a 4<m ,则令m =a 4;否则,m 的值不变.第四步,比较m ,a 5的大小.若a 5<m ,则令m =a 5;否则,m 的值不变.第五步,输出m 的值.学科核心素养 分类讨论思想典例5 写出解方程ax 2+bx +c =0(a 、b 、c 为实数)的一个算法.解:第一步,当a =0,b =0,c =0时,原方程的解为全体实数.第二步,当a =0,b =0,c ≠0时,原方程没有实数解.第三步,当a =0,b ≠0时,原方程的解为x =-c b. 第四步,当a ≠0,b 2-4ac >0时,原方程有两个不相等实数解x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a. 第五步,当a ≠0,b 2-4ac =0时,原方程有两个相等实数解x 1=x 2=-b 2a. 第六步,当a ≠0,b 2-4ac <0时,原方程没有实数解.课堂达标验收1.【答案】 D【解析】 A 、B 两选项给出了解决问题的方法和步骤,是算法.C 项,利用公式计算也属于算法.D 项,只提出问题没有给出解决的方法,不是算法.2.【答案】 C【解析】 选项A 所用时间为36 min ,选项B 所用时间为31 min ,选项C 所用时间为23 min ,选项D 不符合日常生活规律,故选C .3.【答案】 B【解析】 按各放3张,可以算出答案是5,各放x 张答案也是一样.原因如下:设每堆有x 张,经过四个步骤后,中间一堆有(x +3)-(x -2)=5(张).4.【答案】 25【解析】 第1次运算结果S =1,第二次运算结果为S =1+3=4,第三次运算结果为S =1+3+5=9,第四次运算结果为S =1+3+5+7=16,第五次运算结果为S =1+3+5+7+9=25,此时运算结束,输出S =25.5.解:算法1:第一步,由②得y =7x -18.第二步,将第一步结果代入①得3x -2(7x -18)=-2. 第三步,解第二步得到的方程,得x =3811. 第四步,将第三步的结果代入第一步,得y =6811. 第五步,⎩⎨⎧ x =3811y =6811.就是方程组的解.算法2:第一步,方程②两边都乘2得14x -2y =36.③ 第二步,用方程③-①得关于x 的方程11x =38.第三步,解第二步得到的方程得x =3811. 第四步,将x =3811代入方程②,求得y =6811. 第五步,⎩⎨⎧ x =3811y =6811.就是方程组的解.。
数字的运算规则数字的运算规则是数学中非常重要的基本知识,它涉及到我们日常生活和学习中各种计算问题的解决方法。
无论是加减乘除,还是更复杂的数学运算,都需要遵守一定的规则和原则。
下面将详细介绍数字的运算规则。
一、加法运算规则加法是最基本的数学运算之一。
在进行加法运算时,需要遵循以下规则:1. 加法的交换律:对于任意两个数a和b,a + b = b + a。
即加法运算中,加数的顺序可以交换,结果不变。
2. 加法的结合律:对于任意三个数a、b和c,(a + b) + c = a + (b +c)。
即加法运算中,多个数相加,可以任意加括号,结果不变。
3. 加法的零元素:对于任意数a,a + 0 = a。
即任何数与0相加,结果仍为该数本身。
二、减法运算规则减法是数学中与加法相对的运算。
在进行减法运算时,需要注意以下规则:1. 减法的定义:减法可以看作是加法的逆运算。
减法的结果是两个数相减的差。
2. 减法与加法的对应关系:a - b = a + (-b),即减法可以通过加上对应的负数来完成。
三、乘法运算规则乘法是数学中另一个常见的运算。
在进行乘法运算时,需要遵循以下规则:1. 乘法的交换律:对于任意两个数a和b,a × b = b × a。
即乘法运算中,因数的顺序可以交换,结果不变。
2. 乘法的结合律:对于任意三个数a、b和c,(a × b) × c = a × (b ×c)。
即乘法运算中,多个数相乘,可以任意加括号,结果不变。
3. 乘法的分配律:对于任意三个数a、b和c,a × (b + c) = a × b + a × c,(a + b) × c = a × c + b × c。
四、除法运算规则除法是数学中与乘法相对的运算。
在进行除法运算时,需要注意以下规则:1. 除法的定义:除法是乘法的逆运算。
有理数的运算复习课(含答案)(一)、课前提问:1.四则(加减乘除)混合运算的顺序:先算_______,再算_______,如有括号,就先算__________.同级运算按照从_____往_____的顺序依次计算。
2.有理数的运算定律:______________________________________________. 加法交换律:a+b=b+a. 加法结合律:(a+b)+c=a+(b+c).乘法交换律:ab=ba. 乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac.3.请观察下面的算式里有哪几种运算?3+50÷22×(-10)-1.这个算式里,含有有理数的加、减、乘、除、乘方等多种运算,这种运算称为有理数的混合运算.(二)、基础知识总结一、有理数的加法1.有理数的加法法则(1)同号两数相加,取相同的符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两数相加得0.(3)一个数与0相加,仍得这个数.2.有理数的加法运算律(1)交换律两数相加,交换加数的位置,和不变.a+b=b+a(2)结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.(a+b)+c=a+(b+c)【基础知识讲解】1.有理数的加法法则,是进行有理数加法运算的依据,运算步骤如下:(1)先确定和的符号;(2)再确定和的绝对值.2.运算规律是:同号的两个数(或多个数)相加,符号不变,只把它们的绝对值相加即可.如(+3)+(+4)=+(3+4)=+7.(-3)+(-4)+(-13)=-(3+4+13)=-20.异号两数相加,首先要确定和的符号.取两数中绝对值较大的加数的符号,作为和的符号,用较大的绝对值减去较小的绝对值的差,作为和的绝对值.如(+3)+(-4)=-(4-3)=-1.3.运用有理数加法的运算律,可以任意交换加数的位置.把交换律和结合律灵活运用,就可以把其中的几个数结合起来先运算,使整个计算过程简便而又不易出错.二、有理数的减法有理数的减法运算根据计算法则转化为加法运算,再按加法的计算法则进行计算.将减法转化为加法时要同时改变两个符号:一是运算符号由“-”变为“+”;另一个是减数的性质符号.三、有理数的加减混合运算方法一:从左往右依次进行计算方法二:a.整理符号,减法换成加法b.分组计算,运用运算律简化1.在代数里,一切加法与减法运算,都可以统一成加法运算。
四十道人教版五年级上册简便运算1.脱式计算,能简算的要简算。
(1)5.2×4.6+5.2×5.4(2)4.6×99(3)4.4+5.6÷8(4)6.4÷0.8÷1.252.计算,能简算的要简算。
3.14×102 3.72×1.1+3.72×8.94.3×68+43×3.26.75÷[0.9÷(0.3×0.4)]36.45÷(0.82+3.4×0.2)3.计算下面各题,能简算的要简算。
[8.6﹣(2.8﹣1.6)]÷3.7 2.5×0.8×4×1.25 6.08×3.6+6.08×6.44.脱式计算,能简算的要简算。
19.2÷12.5÷87.5×9.9+0.75(3-0.25)×425×3.48×0.45.计算下面各题,能简算要简算。
(1)24×10.2÷12(2)20.5÷2.5÷4(3)0.125×500×0.2×8 (4)6.83×7.5+6.83×2.5(5)(4.7+1.8)÷2.6×0.5(6)101×4.78-4.786.用简便方法计算。
12.5×7.4×8 3.6×48+3.6×5228×0.25 5.6×99+5.67.计算下面各题,能简算的要简算。
12.5×32×0.25100÷2.5÷0.413.14×0.96-3.14×0.96 (3.6+3.6+3.6+3.6)×2.59.25÷0.25-3716.7+2.52÷0.78.能简算的要简算。
班级:姓名:表现:
课题:同级运算(P4、5页例1、例2)
学习目标:
1.掌握含有同级运算的运算顺序;学会用两三步计算的方法解决一些实际问题。
(重点)
2.经历探索解决实际问题的过程,感受解决问题的一些策略和方法;(难点)课前诊断
口算
24+12= 136÷4= 158-26= 42×3=
30×30÷3 80÷16×2 8×5×10= 120÷4×5
导学思考
认真阅读P2-4的内容,并回答下列问题。
1.根据课本P2-3主题图的信息,你能提出什么数学问题?请写下来:
2.(1)求“现在有多少人在滑冰”,该怎样列式?请列式并计算
方法一:分步算式方法二:综合算式
在综合算式中,应该先算()法,再算()法。
(2)观察例1的算式和100+30-16 、120-80+72……这些算式有什么共同的特点?它们的运算顺序是怎样的?
特点:;按的顺序计算。
3.(1)课本第4页例2题的题目的中,“照这样计算”表示
(2)求“6天预计接待多少人”,该怎样列式?(请列综合算式)
法一:法二:
(3)你列的综合算式应该先算( ),再算()。
(4)说一说下面的综合算式有什么共同特征?它们的运算顺序是怎样的的。
12×5÷4 24÷6×14 48÷12×9
4.小结:如果一道算式中没有括号,只有加、减法或只有乘、除法,都要()计算。
新知检测:
课本第5页的“做一做”第1题
课本第5页的“做一做”第1题
精炼反馈
(一)基本练习
1.完成P8的第1小题
2.填空
(1)在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从()往()按顺序计算.
(2)在计算82+47-11时,应先算()法,再算()法。
(3)在计算48÷3×13时,应先算()法,再算()法。
(二)提高练习
1.课本P8第2题
2.课本P8第3题
(二)拓展深化
在□里填上适合的数,使等式成立。
43-13+□=87□×7÷3=21
□+38-7=6948÷□×12=72
教(学)后记:。