3.1 列代数式(公开课教案)
- 格式:doc
- 大小:67.00 KB
- 文档页数:6
第三章整式及其加减3.1代数式第1课时用字母表示数1.能用字母表示数量关系.体会字母表示数的意义,形成初步的符号感,提高应用数学的意识;2.理解代数式的概念,能用代数式表示简单实际问题中的数量关系.重点理解代数式的概念,能用代数式表示简单实际问题中的数量关系.难点学会求出代数式的值,并解释它的实际含义.一、导入新课课件出示教材第77页图3-1,提出问题:(1)按图3-1的方式,搭2个正方形需要________根火柴棒,搭3个正方形需要________根火柴棒.(2)搭10个这样的正方形需要多少根火柴棒?(3)搭100个这样的正方形需要多少根火柴棒?你是怎样得到的?(4)如果用x表示所搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?与同伴进行交流.学生小组交流后回答,教师讲评,并进一步讲解第(4)题的两种思考方法:第一个正方形用4根,每增加一个正方形增加3根,那么搭x个正方形就需要火柴棒[4+3(x-1)]根.上面的一排和下面的一排各用了x根火柴棒,竖直方向用了(x+1)根火柴棒,共用了[x+x+(x+1)]根火柴棒.教师:今天这节课,我们就来学习用字母表示数.二、探究新知1.用含字母的式子表示数量关系教师:通过探究,我们发现字母可以表示任何一个数.(1)在上面的活动中,我们借助字母表示正方形的个数与小棒的根数之间的关系,这样做有什么好处?(2)在以前的学习中还有哪些地方用到了字母?这些字母都表示什么?与同伴进行交流.学生汇报答案后,教师讲评:列代数式时,先找出题目中表示运算关系的词,然后理清关系,分清运算顺序,最后按代数式的书写格式规范地列出代数式.2.代数式的概念(1)今年李华m岁,去年李华________岁,5年后李华________岁.(2)a个人n天完成一项工作,那么平均每人每天的工作量为________.(3)某商店上月的收人为a元,本月收人比上月收入的2倍还多10元,本月收人是________元.(4)如果正方体的棱长是a-1,那么正方体的体积是________,表面积是________.学生独立完成后汇报答案.教师点评、分析:像这样用运算符号把数和字母连接而成的式子叫作代数式.课件出示练习:指出下列各式中哪些是代数式,哪些不是代数式.(1)x-1;(2)-2x=1;(3)π;(4)5<7;(5)m.学生思考后举手回答.教师:通过以上练习,同学们进一步了解了代数式的概念,那么它与等式、不等式的区别是什么?学生讨论交流,教师指导、评价.3.代数式的书写要求(1)数字与字母、字母与字母相乘,“×”通常用“·”表示或省略不写,并把数字写在字母的前面.带分数与字母相乘时,应把带分数化为假分数;注:数字与数字相乘,“×”不能用“·”表示,也不可省略.(2)除法运算应写成分数的形式;(3)代数式中相同字母或因式的积用乘方形式表示;(4)代数式为和或差的形式,且后面有单位时,要把代数式用括号括起来.三、课堂练习1.教材第78页“随堂练习”.2.填空.(1)一个三角形的三条边的长分别是a,b,c,则这个三角形的周长为a+b+c;(2)张强比王华大3岁,当张强a岁时,王华的年龄是(a-3)岁;(3)圆的半径是R厘米,它的面积是πR2.四、课堂小结通过本节课的学习,你有什么收获?先让学生举手分享自己的收获,教师再简单归纳:用字母表示数可以简明地表达问题中的数量关系,也可以简明地表达数和公式,这样给我们研究问题带来了很大的方便.五、课后作业教材第82页习题3.1第1,2,3题.本节课的内容是今后进一步学习代数知识的基础.用字母表示数对学生来说比较抽象,在教学过程中,用实物或生活事例讲解,让学生体会、认识到用字母表示数在实际生活和学习中的广泛应用,感受到数学就在身边,体现了数学与生活的联系.同时,重视引导学生经历用字母表示数的过程,初步感受代数的思想,在解决问题的过程中深化了对数学知识的认识.本节课讲练相结合,鼓励学生参与其中,调动他们的学习积极性.第2课时列代数式1.理解代数式的概念,能用代数式表示简单实际问题中的数量关系;2.在具体情境中,能求出代数式的值,并解释它的实际意义.重点理解代数式的概念,能用代数式表示简单实际问题中的数量关系.难点学会求出代数式的值,并解释它的实际含义.一、导入新课课件出示问题:如图为一阶梯的纵截面,一只老鼠沿阶梯的两边A -B -C 的路线逃跑,一只猫同时沿阶梯(折线)A -C -B 的路线去追,结果在距离C 点0.6 m 的D 处猫捉住老鼠,已知老鼠的速度是猫的89 ,你能求出阶梯A -C 的长度吗?教师:要想解决这个问题,让我们先来学习本节课的内容.二、探究新知1.列代数式课件出示问题:列代数式,并求值.某景点的门票价格:成人票每张10元,学生票每张5元.(1)一个旅游团有成人x 人、学生y 人,那么该旅游团应付多少门票费?(2)如果该旅游团有37名成人、15名学生,那么他们应付多少门票费?解:(1)该旅游团应付门票费(10x +5y )元.(2)把x=37,y=15代入代数式10x+5y,得10×37+5×15=445.因此,他们应付门票费445元.学生思考后汇报答案,教师追问:代数式10x+5y还可以表示什么?.教师:通过上面的练习,同学们思考一下,实际问题中该怎样列代数式呢?关键是什么?学生分小组讨论后汇报答案,教师点评并进一步指出:(1)列代数式,要以不改变原题叙述的数量关系为原则(代数式的形式不唯一);(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;(3)把用日常生活语言叙述的数量关系列成代数式,是为今后学习列方程解应用题做准备,一定要牢固掌握.课件出示问题:营养学家通常用身体质量指数(简称BMI)衡量人体胖瘦程度,这个指数等于人体体重(单位:kg)与人体身高(单位:m)平方的商.对于成年人来说,BMI在18.5与24之间,体重适中;BMI低于18.5,体重过轻;BMI高于24,体重超重.(1)设一个人的体重为w kg,身高为h m,请用含w,h的代数式表示这个人的BMI.(2)张老师的身高为1.75 m,体重为65 kg,他的体重是否适中?(3)BMI对未成年人的胖瘦程度也有一定参考意义,请计算你的BMI.2.求代数式的值填写下表,并观察5n+6和n2这两个代数式的值的变化情况.(1)随着n的值逐渐变大,5n+6和n2这两个代数式的值如何变化?(2)估计一下,哪个代数式的值先超过100?学生举手回答,教师进一步讲解:我们知道,表示数的字母具有任意性和确定性,如5n+6中n可取任何有理数,当给出未知数(字母)的值时,如n=5,则5n+6就是一个确定的值.一般地,用具体数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫作代数式的值.课件出示练习:当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.学生解答并写出解答过程,教师点评并提出问题:求代数式的值应分哪几步?学生:求代数式的值的步骤:(1)代入;(2)计算.教师点评,并指出求代数式的值时需注意:(1)格式规范;(2)适当添加括号;(3)灵活运用整体代入.三、课堂练习1.教材第79页“随堂练习”第1~3题.四、课堂小结1.怎样列代数式?2.怎样求代数式的值?3.列代数式时应该注意哪些事项?五、课后作业1.教材第82页习题3.1第2,3,4题.代数式是以后数学学习的基础.本节课通过生动的实例,导入新课.在教学过程中,讲练相结合,使学生深刻了解列代数及求代数式的值的意义.在课堂上,让学生充分观察、思考、分析和讨论,帮助学生在不断地纠错、归纳、创新中学习新知识.利用实际例子,引出代数式在实际背景下所表示的意义,激发了学生的学习兴趣,让学生感受到现实生活离不开数学,从而进一步调动了学生学习数学的积极性.在解题的过程中,注意规范学生的书写格式,对于发现的问题及时处理.第3课时整式1.理解单项式及单项式的系数、次数的概念,会确定一个单项式的系数和次数;2.掌握多项式及其项、次数的概念,会确定一个多项式的项和次数;3.理解整式的概念,会判断一个代数式是否为整式.重点掌握单项式、多项式及其相关概念和整式的概念.难点单项式的系数和次数,多项式的次数与项数.一、导入新课课件出示问题:请用含字母的式子表示:一个组合柜如图3-2所示,内部用隔板纵向分隔成5个独立的小柜子(如图3-3),柜门由5个完全相同的长方形组成.(1)若要在5个柜门的周边都贴上装饰条,则所需装饰条的总长度是多少?(2)若要给柜门外表面喷漆,则需要喷漆的面积是多少(边框缝隙忽略不计)?(3)设柜子的进深为c(如图3-2),则整个柜子的容积是多少(柜门、隔板及背板的厚度忽略不计)?二、探究新知1.单项式教师:观察上面所列代数式,它们包含哪些运算?有何共同运算特征?学生小组讨论后,派代表回答,教师适当点拨.并讲解单项式的概念:即由数与字母的乘积组成的代数式称为单项式,单独一个数或一个字母也是单项式,如5ab,5abc,3v,6p.课件出示问题:下列代数式中哪些是单项式?(1)abc;(2)b2;(3)-5ab2;(4)y;(5)-xy2;(6)-5.学生完成后举手回答.教师直接引导学生进一步观察单项式的结构,总结出单项式是由数字因数和字母因数两部分组成的.以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式的系数的概念并板书:单项式中的数字因数叫作这个单项式的系数.接着让学生说出以上几个单项式的字母因数是什么,各字母的指数分别是多少,从而引入单项式的次数的概念并板书:单项式中所有字母的指数和叫作单项式的次数.课件出示练习:判断下列说法是否正确.(1)-7xy2的系数是7;(2)-x 2y 3和x 3都没有系数;(3)-ab 3c 2的次数是0+3+2;(4)-a 3的系数是-1;(5)-32x 2y 3的次数是7;(6)πr 2h 的系数是π.学生完成后汇报答案,教师点评并强调:(1)圆周率π是常数;(2)当一个单项式的系数是1或-1时,“1”通常省略不写,如x 2,-a 2b 等;(3)单项式的次数只与字母的指数有关.指数是1,省略不写,但求和时不能省略.2.多项式课件出示问题:(1)一个数比x 的2倍小3,则这个数是________;(2)x 的13 与y 的12 的差是________.教师:观察以上两小题所得出的代数式,它们与单项式有何区别与联系?学生思考后举手回答,教师补充完善.教师引导学生自己归纳出多项式的概念,并补充完善:像这样,几个单项式的和叫作多项式.在多项式中,每个单项式叫作多项式的项.其中,不含字母的项,叫作常数项.例如,多项式x 2-2x +5有三项,它们是x 2,-2x ,5,其中5是常数项.一个多项式含有几项,就叫作几项式.多项式中次数最高的项的次数,叫作这个多项式的次数.例如,多项式2x2+3x-1是一个二次三项式.单项式和多项式统称为整式.课件出示练习:判断下列说法是否正确.(1)多项式a3-a2b+ab2-b3的项为a3,a2b,ab2,b3,次数为12;(2)多项式3n4-2n2+1的次数为4,常数项为1.学生完成后汇报答案,教师点评并强调:多项式的次数不是所有项的次数之和,而是最高次项的次数.三、课堂练习1.请列出下列问题中的代数式,并指出其中:①哪些是单项式?单项式的系数和次数分别是多少?②哪些是多项式?多项式的次数是多少?(1)如图3-4,一个十字形花坛铺满了草皮,这个花坛草地面积是多少?(2)当水结冰时,其体积大约会比原来增加1/9,x m3的水结成冰后体积是多少?(3)如图3-5,一个长方体的箱子紧靠墙角,它的长、宽、高分别是a ,b ,c .这个箱子露在外面的表面积是多少?(4)某件商品的成本价为a 元,按成本价提高15%标价,后又以八折(即按标价的80%)销售,这件商品的售价为多少元?2.教材第82页“随堂练习”.3.填空.(1)若正方形的边长为a ,则正方形的面积是a 2;(2)若三角形的一边长为a ,且这边上的高为h ,则这个三角形的面积为12 ah ;(3)若正方体的棱长为x ,则正方体的表面积是6x 2;(4)若m 为有理数,则它的相反数是-m ;(5)小明每个月从零花钱中储存x 元钱用来捐款,一年下来小明捐款12x 元.【答案】1.(1)ab -4c 2,多项式,次数是2 (2)109 x ,单项式,次数是1 (3)ab +ac +bc ,多项式,次数是2 (4)0.92a ,单项式,次数是1四、课堂小结1.单项式及单项式的系数、次数分别是什么?2.多项式及其次数、项数、常数项分别是什么?3.什么是整式?五、课后作业教材第82页习题3.1第5,6,8,9题.“整式”属于“代数式”的领域,是在学习了用字母表示数,用代数式表示实际问题中的数量关系的基础上,进一步研究用含字母的式子表示实际问题的数量关系.整式是代数式中最基本的式子,是实际的需要,也是今后学习分式、一元二次方程等知识的基础,起到承前启后的作用.整式中有些概念,学生刚学时不易理解,比如单项式的系数和次数、多项式的项与次数等,教学时可通过简单生动的事例,帮助学生区分、理解和掌握这些概念.对概念和纯文字的叙述,不要仅追求精确的形式,而是更加去注重其实质的理解与领悟.。
代数式(公开课)教案一、教学目标知识与技能:1. 理解代数式的概念,掌握代数式的表示方法。
2. 掌握代数式的运算规则,能够进行简单的代数式运算。
3. 能够运用代数式解决实际问题。
过程与方法:1. 通过观察、分析、归纳等方法,引导学生理解代数式的概念和表示方法。
2. 利用group work,pr work 等合作学习方式,培养学生的团队协作能力和沟通能力。
3. 运用问题驱动的教学方法,引导学生主动探究代数式的运算规则,提高学生的自主学习能力。
情感态度价值观:1. 培养学生对数学学科的兴趣和好奇心,激发学生的学习积极性。
2. 培养学生勇于探究、严谨治学的科学态度。
3. 培养学生团队协作、沟通交流的能力,提高学生的综合素质。
二、教学内容1. 代数式的概念与表示方法数与字母的组合代数式的基本元素:数字、字母、运算符代数式的书写规则:字母的大小写、数字与字母的连接、运算符的优先级2. 代数式的运算规则加减乘除运算:同号相乘、异号相除幂的运算:乘方、幂的乘方、积的乘方合并同类项:同类项的定义、合并同类项的方法三、教学重点与难点重点:1. 代数式的概念与表示方法2. 代数式的运算规则难点:1. 代数式的运算规则2. 运用代数式解决实际问题四、教学方法1. 采用问题驱动的教学方法,引导学生主动探究代数式的概念、表示方法和运算规则。
2. 利用多媒体课件、实物模型等教学资源,直观展示代数式的运算过程,提高学生的理解能力。
3. 采用group work,pr work 等合作学习方式,培养学生的团队协作能力和沟通能力。
4. 设计具有梯度的练习题,让学生在实践中巩固所学知识,提高学生的应用能力。
五、教学过程1. 导入新课:通过生活中的实际问题,引导学生思考如何用数学语言来表示问题中的数量关系。
2. 讲解代数式的概念与表示方法:介绍代数式的定义、基本元素和书写规则。
3. 探究代数式的运算规则:引导学生通过观察、分析、归纳等方法,总结代数式的运算规则。
代数式(公开课)教案一、教学目标知识与技能:1. 理解代数式的概念,掌握代数式的表示方法和基本性质。
2. 学会使用代数式进行简单的运算和求解。
过程与方法:1. 通过实例引入代数式,培养学生的抽象思维能力。
2. 借助数形结合的思想,引导学生理解代数式的几何意义。
情感态度与价值观:1. 激发学生对代数式的兴趣,培养学生的探究精神。
2. 感受数学与实际生活的联系,提高学生运用数学解决问题的能力。
二、教学内容第一课时:代数式的概念与表示方法1. 导入:通过实际问题引入代数式,例如“已知苹果的重量为x千克,香蕉的重量为y千克,求苹果和香蕉的总重量”。
2. 讲解代数式的概念,引导学生理解代数式是表示数量关系的数学表达式。
3. 介绍代数式的表示方法,如字母表示数、数表示字母等。
第二课时:代数式的基本性质1. 导入:通过具体例子,让学生感受代数式的基本性质。
2. 讲解代数式的四则运算规则,如加减乘除等。
3. 引导学生掌握代数式的化简、因式分解等基本运算技巧。
第三课时:代数式的应用1. 导入:通过实际问题,让学生运用代数式解决问题。
2. 讲解代数式在实际生活中的应用,如购物、测量等。
3. 引导学生进行代数式的求解,培养学生的解决问题的能力。
第四课时:代数式的几何意义1. 导入:通过图形,引导学生理解代数式的几何意义。
2. 讲解代数式与图形之间的关系,如直线方程、圆的方程等。
3. 引导学生运用代数式解决几何问题,提高学生的数形结合能力。
第五课时:代数式的综合练习1. 导入:通过综合练习题,让学生巩固所学知识。
2. 讲解练习题的解题思路和方法。
3. 引导学生独立完成练习题,培养学生的解题能力。
三、教学策略1. 采用问题驱动的教学方法,引导学生通过实际问题理解和掌握代数式。
2. 利用数形结合的思想,让学生感受代数式的几何意义。
3. 设计丰富的练习题,让学生在实践中提高解题能力。
四、教学评价1. 课堂问答:通过提问,检查学生对代数式概念和表示方法的理解。
列代数式
课型:新授课
一、学习目标确定地依据
1、课程标准
2、了解代数式地概念,会列出代数式表示简单地数量关系,掌握代数式地书写要求。
3、教材分析
本节课是初中数学华师大版七年级上册第3章列代数式地第二课时,是学生学习有理数地运算和用字母表示数地基础上,学习列代数式表示简单数量关系,实现了由数到式地过渡与升华,是学习整式加减地基础。
4、中招考点
本节内容在中考中地考查,相对于后面章节内容较少,一般以填空题形式出现。
5、学情分析
学生能根据运算关系列出代数式,但对代数式地书写要求掌握不是很好。
二、学习目标
1、能用正确地代数式把问题中有关地数量表示出来。
三、评价任务
(1)向同桌说出代数式地意义及书写要求。
(2)能根据运算顺序正确地书写代数式。
四、教学过程。
第三章代数式3.1列代数式表示数量关系3.1列代数式表示数量关系(3)——列代数式表示反比例关系(教案新教材)【教学目标】1.理解反比例关系,能够用代数式表示反比例关系;2.经历抽象反比例关系和用代数式表示反比例关系的过程,能进行反比例关系的实际问题中数量关系与代数式之间的转换,建立反比例关系模型观念.【教学重点】理解反比例关系,能够用代数式表示反比例关系.【教学难点】理解反比例关系.【教学过程】一、情境导入我们一同来回忆本章引言中的问题(1).机器人s能识别的范围是5m²,也就是说,机器人能识别的范围与所用时间的比值总是一定的(等于5).因此机器人能识别的范围与所用时间是成正比例的量,它们成正比例关系.一般地,对于工程问题,当工作效率保持不变,工作量与工作时间是成正比例的量,它们成正比例关系,下面我们来讨论,如果工作量保持不变,工作时间与工作效率之间的关系.先看一个实际问题问题1.北京是全球首个既举办过夏季奥运会又举办过冬季奥运会的城市在冬季奥运会前,某赛场计划造雪2600003m.解答下列问题(1)根据每天造雪量,计算所需的造雪天数,填写下表每天造雪量/3m5000 5200 6500 ……造雪天数(2)每天造雪量和造雪天数这两个量是怎样变化的?它们之间有什么关系?学生活动:探讨问题包含几个量,它们之间有什么关系.问题包含三个量:造雪总量、每天造雪量和造雪天数,根据它们之间的关系造雪总量造雪天数每天造雪量计算每天造雪量为50003m、52003m、65003m时,造雪天数,通过计算表中依次填52,50,40.教师活动:参与学生讨论,引导学生观察每天造雪量和造雪天数这两个量的变化规律.可以发现,造雪天数随着每天造雪量的变大而变小,而且造雪天数与每天造雪量的乘积一定,总是260000.例如,5000×52=5200×50=6500×40=260000.像这样,两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系. 本节课学习3.1列代数式表示数量关系(3)——列代数式表示反比例关系(板书课题)二、合作探究活动一:认识反比例关系问题2.什么样的两个量之间的关系叫反比例关系?如何用字母表示问题1中的两个之间的关系?学生活动:观察、猜想,用自己的语言表达?如何用字母表示问题1中两个相关联的量之间的关系?教师活动:参与学生讨论,并适时点拨引导.问题1中每天造雪量和造雪天数两个量分别用字母x、y表示,它们关系表示为:260000 yx =.问题3. 如何将两个成反比例关系的量用字母表示?学生活动:学生从问题2得到启发,进行推广,考虑如何将两个成反比例关系的量用字母表示,并用自己语言表达.教师活动:引导学生类比问题2,评价学生的讨论,并规范表达.如果用字母x和y表示两个相关联的量,用k表示它们的积(k是一个确定的值,且k≠0),反比例关系可以用xy k=或kyx=来表示,其中k叫作比例系数.活动二:列代数式表示反比例关系例1如图3.1-1,四个圆柱形容器内部的底面积分别为10cm²,20cm²,30cm²,60cm².分别往这四个容器中注人3003cm的水. (1)四个容器中水的高度分别是多少厘米?(2)分别用x(单位:cm²)和y(单位:cm)表示容器内部的底面积与水的高度,用式子表示y图3.1-1与x的关系,y 与x成什么比例关系?教师活动:和学生共同分析:题中涉及圆柱的体积、底面积及高三个量,它们之间具有关系:圆柱体积的体积=底面积×高,=圆柱的体积高底面积.学生活动:学生尝试解答. 教师活动:示范写出解题过程.问题4.思考:生活中,成反比例关系的例子是很常见的,例如,在购买某种物品时,总价一定,购物的数量与商品的单价成反比例关系,你还能举出一些例子吗?学生活动:列举生活中成反比例关系的例子.教师活动:对学生列举的例子加以点评,并注意和正比例关系进行类比. 再来看一个实例:例2由科学知识知道,在力F 的作用下,物体会在力F 的方向上发生位移s ,力所做的功W Fs =.当F =1时,s =7.5,试用列式表示F 与s 之间的关系.学生活动:小组讨论,先要求出功7.517.5W Fs ==⨯=,7.5Fs =,7.5F s=. 教师活动:教师对学生的活动过程加以评价,规范写出解答: ∵7.517.5W Fs ==⨯=, ∴7.5Fs =, ∴7.5F s=, ∴F 、s 之间的关系为7.5F s=; 类比正比例关系的式子.三、强化巩固 1.练习1、2、3.抽学生板演,其余学生独立完成,教师评价订正.2.拓展训练:某打印店要完成一批电脑打字任务,如果每天完成100页,需8天完成任务. (1)则每天完成的页数y 与所需天数x 之间的关系列式表示出来? (2)要求4天完成,每天应完成几页?师生共同活动:(1)运用每天完成的页数⨯所需天数=总页数进行求解; (2)将4y =代入(1)所得关系式进行求解. 【答案】(1)解:由题意得,1008xy =⨯,所以,得800yx =,每天完成的页数y与所需天数x之间关系式是800yx =;(2)由(1)题所得,800yx =,由题意得8004x=,解得200x=,∴每天应完成200页.四、总结拓展学生小组合作对知识总结:1.什么样的两个量是反比例关系;2.怎样列代数式表示两个量之间的反比例关系.学生小组合作对思想方法总结:经历抽象反比例关系和用代数式表示反比例关系的过程,能进行反比例关系的实际问题中数量关系与代数式之间的转换,建立反比例关系模型观念.五、作业布置必做作业:课本习题3.1第4、5、9题选做作业:习题3.1第11题,阅读与思考附:板书设计课题:3.1列代数式表示数量关系(3)——列代数式表示反比例关系活动一:认识反比例关系活动二:列代数式表示反比例关系例1.例2.例3.学生练习板演(拓展训练)。
第1课时代数式课时目标1.通过经历分析实际问题中的数量关系的过程,理解用字母表示数的意义,感受其中“抽象”的数学思想.2.通过经历用含有字母的式子表示实际问题中数量关系的过程,体会从具体到抽象的认识过程,进一步发展学生的符号意识.3.通过经历具体问题情境的解决过程,提高学生分析问题、解决问题的能力,从而培养学生的应用意识.学习重点理解用字母表示数的意义,正确分析实际问题中的数量关系,并能用含有字母的式子表示数量关系.学习难点正确分析实际问题中的数量关系,能用式子表示数量关系.课时活动设计情境引入智能机器人的广泛应用是智慧农业的发展趋势之一,教师提问学生在现实生活中接触过哪些农业活动,并且多媒体展示智慧农业的现实图片.设计意图:通过展示智慧农业的现实图片,吸引学生的注意力,激发学生的求知欲,为后面学习代数式的知识打下基础.探究新知问题1:智能机器人的广泛应用是智慧农业的发展趋势之一.某品牌苹果采摘机器人平均每秒可以完成5 m2范围内苹果的识别,并自动对成熟的苹果进行采摘,它的一个机械手平均8 s可以采摘一个苹果,根据这些数据回答下列问题:(1)该机器人10 s能识别多大范围内的苹果?60 s呢?t s呢?(2)该机器人识别n m2范围内的苹果需要多少秒?(3)若该机器人搭载了10个机械手,它与采摘工人同时工作1 h,假设工人平均m s可以采摘一个苹果,则机器人可比工人多采摘多少个苹果?解:(1)10×5=50(m2);60×5=300(m2);5t m2.(2)n5s.(3)60×608×10-60×60m=4 500-3600m(个).问题2:用字母或含有字母的式子表示下列问题中的数量或数量关系:(1)一条河的水流速度是2.5 km/h,船在静水中的速度是v km/h,用式子表示船在这条河中顺水行驶的速度;(2)一个正方形的边长是a,用式子表示这个正方形的周长l和面积S.解:(1)(v+2.5) km/h.(2)l=4a;S=a2.学生先自主探究,再与小组同学交流.思考:(1)问题1和问题2中所涉及的数量关系;(2)交流如何准确地用式子表示出问题中的数量关系.在学生进行自主活动时,教师深入学生和小组中间,适时地对学生进行教学指导.(1)该问题1中包含三个量:工作量、工作效率和工作时间,它们之间的关系为工作量=工作效率×工作时间;问题2中涉及的数量关系为(1)顺水行驶时,船的速度=船在静水中的速度+水流速度;(2)正方形的周长l=边长×4,面积S=边长×边长.(2)对于问题1中,5×10,5×60表示机器人在两个具体时间内完成的工作量,5t 表示机器人在任意时间t内完成的工作量,在含有字母的式子中如果出现乘号,通常将数放在字母前,乘号写作“·”或省略不写.例如,5×t可以写成5·t或5t;相同字母相乘,可以写成幂的形式.例如,a·a写成a2.学生分组活动,选派代表最终作答.教师引导学生归纳:用字母表示数,字母和数一样可以参与运算,可以用式子把数量关系简明地表示出来.归纳:上述两个问题中列出的式子5t,n5,4 500-3600m,v+2.5,4a,a2,它们都是用运算符号把数或表示数的字母连接起来的式子,我们称这样的式子为代数式.单独的一个数或字母也是代数式,例如,5,t都是代数式.注意:这里的运算包括加、减、乘、除、乘方、开方.开方将在以后学习.设计意图:创设学生较为熟悉的问题情境,引导学生用含有字母的式子表示实际问题中的数量关系,理解字母可以像数一样参与运算,为代数式概念的形成作铺垫;同时在用数学符号表示数量关系的过程中,感受其中“抽象”的数学思想.典例精讲例1(1)苹果的原价是p元/kg,现在按九折优惠出售,用代数式表示苹果的售价;(2)一个长方形的长是0.9 m,宽是p m,用代数式表示这个长方形的面积;(3)某产品前年的产量是n件,去年的产量比前年产量的2倍少10件,用代数式表示去年的产量;(4)一个长方体水池底面的长和宽都是a m,高是h m,池内水的体积占水池容积的三分之一,用代数式表示池内水的体积.解:(1)苹果的售价是0.9p元/kg.(2)这个长方形的面积是0.9p m2.(3)去年的产量是(2n-10)件.(4)由长方体的体积=长×宽×高,得这个长方形水池的容积是a·a·h m3,即a2ha2h m3.m3,故池内水的体积为13教师根据学生回答情况进行评价,可以适时追问下面的问题:(1)苹果现价比原价降低了多少元?你能再赋予0.9p一个含义吗?(2)前年与去年产量的和是多少?去年的产量比前年多多少?这里的数n一定是正数吗?解:(1)降低了0.1p元,0.9p还可以表示为某种糖果的售价是p元1 kg,买了0.9 kg花费的钱数.(2)和是(3n-10)件,比前年多(n-10)件,这里的n一定是正整数.例2说出下列代数式的意义:(1)2a+3;(2)2(a+3);(3)c;(4)x2+2x+8.ab解:(1)2a+3的意义是a的2倍与3的和.(2)2(a+3)的意义是a与3的和的2倍.(3)c的意义是c除以a,b的积的商.ab(4)x2+2x+8的意义是x的平方,x的2倍,与8的和.在学生对问题回答完毕之后,教师适时提问:你能举例说明前两个代数式所表示的实际问题中的数量关系吗?解:答案不唯一,如小明买了a支铅笔,小华买的铅笔数比小明的2倍还多3支,则2a+3就可以表示小华买的铅笔数;一个长方形的长是a,宽是3,则2(a+3)就可以表示这个长方形的周长.设计意图:通过设计这一系列的问题情境,让学生进一步熟悉用含有字母的式子表示实际问题中的数量关系,体会字母的意义;进一步理解字母可以像数一样参与运算,感受其中“抽象”的数学思想;经历由实际问题抽象出数学问题的过程,培养学生利用数学知识解决实际问题的能力.巩固训练1.下列说法不正确的是(C)A.a乘2与b的和的积表示为a(2+b)B.比m的倒数小5的数表示为1-5mC.x与y的差的平方表示为x2-y2D.除以a+4的商是a的数是a(a+4)2.用代数式表示:(1)一打铅笔有12支,n打铅笔有12n支;(2)长方体的长、宽、高分别为a,b,c,则该长方体的体积为abc;(3)a个五边形,b个六边形,共有(5a+6b)条边;(4)小明100 m赛跑时用了t s,那么小明跑完100 m的平均速度是100m/s.t3.仿照例子,写出下列代数式的含义:例如:x+y表示x与y的和.(1)2(x+y)表示x与y的和的2倍,2x+y表示x的2倍与y的和;(2)x2+y2表示x与y的平方和,(x+y)2表示x与y的和的平方;(3)mn2表示m与n的平方的积,(mn)2表示m与n的积的平方.设计意图:通过设置与教学相一致的题目,不仅可以巩固学生上课所学知识,而且还可以拓展学生的学习视野,让学生更深刻地体会到用字母表示数的简洁性和一般性.课堂小结1.这节课学到了哪些知识?2.举一个生活情境的例子,说明5x的含义.3.请你为代数式6x+3y赋予一个实际意义.设计意图:用字母表示数后,一个代数式不仅可以表示不同实际问题中的数量或数量关系,还可以把数式运算的一致性,式的运算是建立在数的运算基础之上的数学本质很好地表现出来.让学生能够更好地反思自己的所学,深化自己的认知,能够理论联系实际地将知识应用于实际问题的解决中.课堂8分钟.1.教材第71页练习第1,2题,第75页习题3.1第1,2,7题.2.作业.第1课时代数式1.代数式:用运算符号把数或表示数的字母连接起来的式子,叫作代数式,单独的一个数或字母也是代数式.2.例题讲评.3.用字母表示数:从具体到抽象,从特殊到一般.教学反思第2课时列代数式课时目标1.通过经历分析实际问题中的数量关系的过程,理解列代数式解决实际问题的意义,在感受其中“抽象”数学思想的同时,培养学生的应用意识.2.通过经历列代数式表示实际问题中的数量关系的过程,体会文字语言和符号语言表示数量关系的异同,在代数式规范书写的指导下,进一步理解代数式的简洁性、一般性.3.通过经历把与数量有关的语句用代数式表示出来的过程,提高学生分析问题、解决问题的能力,进一步培养学生的符号意识.学习重点把实际问题中的数量关系列成代数式.学习难点理解描述数量关系的语句,从中找出数量关系里的运算顺序,并能准确地列出代数式.课时活动设计情境引入某市为了创建全国“文明城市”,市政府置办了两种规格的公益宣传广告牌.(1)据了解,小广告牌是边长为a m的正方形,则它的面积为a2m2.(2)大广告牌是面积为5 m2的长方形,一块大广告牌比一块小广告牌面积大(5-a2)m2.(3)大广告牌的长为b m,则宽为5m.b(4)若计划制作大广告牌20个,小广告牌10个,已知大广告牌x元/个,小广告牌y元/个,则一共需要多少钱?解:(4)由题意可知,制作20个大广告牌的费用是20x元,制作10个小广告牌的费用是10y元,因此一共需要(20x+10y)元.设计意图:通过从实际情境中抽象出数学问题,让学生感受到生活中的数学无处不在,吸引学生的注意力,激发学生的学习兴趣,使学生树立应用数学解决实际问题的意识,为列代数式解决实际问题作好铺垫;在列代数式的同时,初步感受可以用代数式把数量或数量关系简明地表达出来,更具有一般性.探究新知问题:如何用代数式表示a,b两数的和与差的积?学生先进行自主探究,再在小组内进行经验交流.教师在学生活动中可以适时地进行指导.解:a,b两数的和为a+b;a,b两数的差为a-b;它们的积为(a+b)(a-b).教师归纳:这种把问题中的数量关系用含有数、字母和运算符号的式子表示出来的过程,就叫作列代数式.关键环节:1.抓住关键词;2.理清运算顺序.特别指出:a,b两数的差,a与b的差,都指“a-b”.设计意图:设置这道思考题,目的在于让学生结合描述数量关系的语句,从中找到列代数式的关键词,准确地列出代数式,是列代数式的一次很好体验.通过这道题的解决,让学生体会列代数式的方法,感受从文字语言中抽象出符号语言的过程.典例精讲例1用代数式表示:(1)购买2个单价为a元的面包和3瓶单价为b元的饮料所需的钱数;(2)把a元钱存入银行,存期3年,年利率为2.75%,到期时的利息是多少元?(3)某商品的进价为x元,先按进价的1.1倍标价,后又降价80元出售,现在的售价是多少元?分析:(1)总钱数=2个面包的总价+3瓶饮料的总价;(2)利息=本金×年利率×存期;(3)现在的售价=原来的标价-降价数.解:(1)购买2个单价为a元的面包和3瓶单价为b元的饮料所需的钱数为(2a+3b)元.(2)根据题意,得a×2.75%×3=8.25%a,因此到期时的利息为8.25%a元.(3)现在的售价为(1.1x-80)元.学生先独立列式,然后再小组交流,在小组交流完毕后由学生代表板演展示,教师在课堂上进行巡视指导.最后教师根据学生回答情况进行适时点评,同时引导学生通过列代数式,逐步地规范列代数式的书写要求.归纳:①数与字母相乘或字母与字母相乘,可省略乘号;①数与字母相乘,数通常写在字母的前面;①数与数相乘,必须写乘号,不能省略;①式子中出现除法运算时,一般按分数形式来写;①在实际问题中,如果代数式是和或差的形式,要把整个式子括起来,再写单位;①带分数与字母相乘时,带分数要化成假分数.例2甲、乙两地之间公路全长240 km,汽车从甲地开往乙地,行驶速度为v km/h.(1)汽车从甲地到乙地需要行驶多少小时?(2)如果汽车的行驶速度增加3 km/h,那么汽车从甲地到乙地需要行驶多少小时?汽车加快速度后可以早到多少小时?分析:本题包含路程、速度和时间三个量,它们之间具有关系:时间=路程速度.另外,早到的时间=原来需要行驶的时间-加快速度后需要行驶的时间.解:(1)汽车从甲地到乙地需要行驶240vh.(2)如果汽车的行驶速度增加3 km/h,那么汽车从甲地到乙地需要行驶240v+3h.汽车加快速度后可以早到(240v -240v+3)h.学生先独立列式,然后再组内交流,学生代表板演展示,教师巡视指导.例3(1)观察下列各式:x,2x2,3x3,4x4,…,按此规律,第n个式子是nx n; (2)测得一种树苗的高度与树苗生长的年数的有关数据如下表(树苗原高100cm):前四年的变化与年数有什么关系?假设以后各年树苗高度的变化与年数保持上述关系,用式子表示生长了n年的树苗的高度;(3)礼堂第1排有20个座位,后面每排都比前一排多一个座位.用式子表示第n 排的座位数.学生先独立思考,然后小组合作讨论,学生小组代表尝试解答.解:(2)当年数是1时,树苗高度(单位:cm)是100+5×1;当年数是2时,树苗高度(单位:cm)是100+5×2;当年数是3时,树苗高度(单位:cm)是100+5×3;当年数是4时,树苗高度(单位:cm)是100+5×4;……所以数量关系是树苗高度=100+5×年数;当年数是n时,树苗高度(单位:cm)是100+5×n=100+5n.(3)排数1,则座位数=20;排数2,则座位数=20+1;排数3,则座位数=20+2;……排数n,则座位数=20+(n-1).在此教学环节中,教师应关注:(1)学生能否通过观察和分析,从中发现规律;(2)学生得出规律的不同方法;(3)学生能否将发现的规律用含有字母n的式子表示出来.教师归纳:用式子表示实际问题中的数量关系和变化规律,可以从特殊值入手,借助自然数列分析,由特殊到一般,由个体到整体地观察、分析问题,发现规律,并用含有字母的式子表示一般的结论,这体现了由特殊(具体)到一般(抽象)的认识规律.设计意图:通过设计这一系列的问题情境,让学生进一步体验用代数式表示实际问题中的数量关系的过程,加深对符号语言的感悟,增强符号语言和文字语言的相互转化意识.巩固训练1.下列说法中,错误的是(C)A.代数式x2+y2的意义是x,y的平方和B.代数式5(x+y)的意义是5与x+y的积C.x的5倍与y的和的一半,用代数式表示为5x+1y2x-yD.x的一半与y的差,用代数式表示为122.某社区计划用a天完成建筑面积为1 000平方米的居民住房节能改造任务,表示的实际意义为实际每若实际比计划提前b天完成改造任务,则代数式1000a-b天完成的改造任务.3.设字母x表示甲数,字母y表示乙数,用代数式表示:(1)甲数的3倍与乙数的2倍的和;(2)甲数与乙数的5倍的差的一半.(x-5y).解:(1)3x+2y.(2)124.如图,两摞规格相同的数学课本整齐地叠放在课桌上.(1)每本书的高度为0.5cm,课桌的高度为85cm;(2)当课本的数量为x本时,请写出叠放在桌面上的一摞与(1)中相同的数学课本高出地面的高度(用含x的代数式表示).解:(2)因为x本书的高度为0.5x cm,课桌的高度为85 cm,所以高出地面的高度为(85+0.5x) cm.设计意图:通过巩固训练,巩固课堂所学知识,让学生感受用代数式表示实际问题中的数量关系的过程,体会符号语言的简洁性和一般性;通过解决实际问题,锻炼学生的逻辑思维能力,提高学生分析问题、解决问题的能力.课堂小结1.这节课学到了哪些知识?2.列代数式应注意哪些要求?3.在列代数式解决实际问题的过程中,你学到了哪些数学方法?获得了哪些活动经验?设计意图:通过课堂小结,使学生梳理本节课的所学内容,在知识层面、思维层面、方法层面等进行积累、沉淀和提高.课堂8分钟.1.教材第73页练习第1,2,3题,第75页习题3.1第3,6,8题.2.作业.第2课时列代数式1.列代数式:把问题中的数量关系用含有数、字母和运算符号的式子表示出来的过程,就叫作列代数式.2.列代数式的书写要求.3.列代数式表示数量关系:从具体到抽象、从特殊到一般.教学反思第3课时用代数式表示成反比例关系的量课时目标1.通过经历分析实际问题中具有反比例关系的过程,理解反比例关系的概念,感受反比例关系存在的现实意义.2.通过分析和列式表示实际问题中反比例关系的过程,体会用字母、符号语言表示反比例关系的简洁性、一般性,进而培养学生的抽象思维.3.通过经历解决具有反比例关系的实际问题的过程,提高学生分析问题、解决问题的能力,进一步培养学生的应用意识.学习重点理解反比例关系的概念,并能够判断具体事例中的数量关系是否是反比例关系.学习难点准确地分析实际问题中的数量关系,并能够用含有字母、符号的式子表达出来,进行数学研究.课时活动设计回顾导入问题:(1)回顾第1课时的问题1:某品牌苹果采摘机器人平均每秒可以完成5 m2范围内的苹果的识别,并自动对成熟的苹果进行采摘,那么该机器人t s能识别多大范围内的苹果?(2)一条地下管线由某工程队单独铺设,每天可以铺设100 m的长度,那么该工程队铺设x天可以完成的工作量是多少?学生先独立列式,然后小组内交流探讨,最后由学生代表板演展示,教师巡视指导.解:(1)该机器人t s能识别5t m2范围内的苹果;(2)该工程队铺设x天可以完成的工作量是100x m.教师根据学生的回答情况进行评价,并适时地进行提问:(1)该机器人能识别的范围与所用时间的比值是多少?它随时间的变化而变化吗?(2)该工程队可以完成的工作量与铺设天数的比值是多少?这个值变化吗?(3)在上述两个问题情境中,你能获得什么样的认识?教师引导学生归纳:机器人能识别的范围与所用时间是成正比例的量,它们成正比例关系;同样的,对于工程问题,当工作效率保持不变,工作量与工作时间是成正比例的量,它们成正比例关系.设计意图:通过在课堂上对问题1的深入研究,说明现实生活中存在正比例关系的两个量是普遍的,提高学生的数学认知能力,为下面学生学习具有反比例关系的两个量作铺垫.探究新知问题:北京是全球首个既举办过夏季奥运会又举办过冬季奥运会的城市.在冬季奥运会前,某赛场计划造雪260 000 m 3.解答下列问题:(1)根据每天造雪量,计算所需的造雪天数,填写下表.(2)每天造雪量和造雪天数这两个量是怎样变化的?它们之间有什么关系?让学生先独立思考、解答,然后在小组内交流讨论,学生尝试进行解答,教师进行巡视指导.教师引导学生思考:(1)此问题包含几个量?这些量之间的数量关系是什么?(2)通过计算、观察、分析,造雪天数随着每天造雪量的变化进行着怎样的变化?学生探究活动:发现此问题包含三个量:造雪总量、每天造雪量和造雪天数,它们之间的关系为造雪天数=造雪总量每天造雪量,于是当每天造雪量为5 000 m 3时,造雪天数为2600005000=52,当每天造雪量为5 200 m 3时,造雪天数为2600005200=50;当每天造雪量为6 500 m 3时,造雪天数为2600006500=40.因此,表中依次填52,50,40.另外发现:造雪天数随着每天造雪量的变大而变小,而且造雪天数与每天造雪量的乘积一定,总是260 000.例如,5 000×52=5 200×50=6 500×40=260 000.教师归纳:1.像这样,两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.2.用符号语言描述:若x 和y 表示两个相关联的量,用k 表示它们的积(k 是一个确定的值,且k ≠0),反比例关系可以用xy =k 或y =k x 来表示,其中k 叫作比例系数.设计意图:通过计算、观察、分析、提炼,引导学生发现两个具有反比例关系的量的变化情况,让学生在感受具体数据的变化趋势中,体会用字母、符号等表示数量关系的简洁、一般,提高学生的逻辑思维能力,发展学生的符号意识.典例精讲例 如图,四个圆柱形容器内部的底面积分别为10 cm 2,20 cm 2,30 cm 2,60 cm 2.分别往这四个容器中注入300 cm 3的水.(1)四个容器中水的高度分别是多少厘米?(2)分别用x (单位:cm 2)和y (单位:cm)表示容器内部的底面积与水的高度,用式子表示y 与x 的关系,y 与x 成什么比例关系?分析:题中涉及圆柱的体积、底面积和高三个量,它们之间具有关系:圆柱的体积=底面积×高,高=圆柱的体积底面积. 解:(1)四个容器中水的高度分别为30010=30(cm),30020=15(cm),30030=10(cm),30060=5(cm). (2)xy =300或y =300x ,y 与x 成反比例关系.设计意图:设置此题,意在加深学生对反比例关系的概念的理解,让学生灵活运用代数式表示数量关系.巩固训练1.某社区计划用a天完成建筑面积为1 000平方米的居民住房节能改造任务,则每天完成的改造任务p=1000,则每天完成的改造任务p与天数a之间成反a比例关系(填“反比例关系”或“正比例关系”).2.判断下面各题中的两种量是否成反比例关系,并说明理由.(1)煤的数量一定,使用天数与每天的平均用煤量;(2)全班的人数一定,按各组人数相等的要求分组,组数与每组的人数;(3)圆柱体积一定,圆柱的底面积与高;(4)在一块菜地上种的黄瓜与西红柿的面积;(5)书的总册数一定,按各包册数相等的规定包装书,包数与每包的册数.解:(1)成反比例关系,因为每天的平均用煤量×使用天数=煤的数量(一定).(2)成反比例关系,因为每组的人数×组数=全班的人数(一定).(3)成反比例关系,因为圆柱的底面积×高=圆柱体积(一定).(4)不成反比例关系,因为黄瓜的面积+西红柿的面积=一块菜地的面积(一定),但不是积一定.(5)成反比例关系,因为每包的册数×包数=书的总册数(一定).3.矩形的面积为36 cm2,长为x cm,宽为y cm.(1)写出y与x这两个量之间的关系式,并指出这两个量满足什么关系;(2)当长是8 cm时,宽是多少?(3)当宽为4 cm时,长是多少?解:(1)xy=36,x与y成反比例关系.(2)当长x=8 cm时,宽y=4.5 cm.(3)当宽y=4 cm时,长x=9 cm.设计意图:设置这些题目,让学生通过自主探究,科学分析出每种问题情境中的数量关系,促进学生对反比例关系的概念和两个量是否符合反比例关系的理解和掌握,培养学生的逻辑思维能力,发展学生的符号意识.课堂小结1.这节课学到了哪些知识?2.你能举出一些成反比例关系的例子吗?设计意图:通过课堂小结,使学生梳理本节内容,充分发挥学生的主体意识,培养学生理论联系实际的能力.课堂8分钟.1.教材第75页练习第1,2,3题,第75页习题3.1第4,5,9题.2.作业.第3课时用代数式表示成反比例关系的量1.反比例关系:两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.2.用符号语言描述:xy=k或y=k(k是定值,且k≠0).x教学反思。
3.1列代数式一、课题§3.1列代数式(1)二、教学目标1、使学生认识用字母表示数的意义,并能说出一个代数式所表示的数量关系;2、初步培养学生观察、分析及抽象思维的能力;3、通过本节课的教学,教育学生为建设有中国特色社会主义而刻苦学习三、教学重点和难点重点:用字母表示数的意义难点:正确地说出代数式所表示的数量关系四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)引言数学是一门应用非常广泛的学科,是学习和研究现代科学技术必不可少的基础知识和基本工具学好数学对于把我国建设成为有中国特色的社会主义强国具有十分重要的作用中学的数学课,是从学习代数开始的除了学习代数以外,同学们还将陆续地学习平面几何、立体几何、解析几何等内容学习代数与学习其它学科一样,首先要有明确的学习目的和正确的学习态度没有坚持不懈努力,没有顽强的克服困难的精神,是不可能学好代数的在开始学习代数的时候,大家要注意代数与小学数学的联系和区别,自觉地与算术对比:哪些和小学数学相同或类似,哪些有严格的区别,逐步明确代数的特点代数的一个重要特点是用字母表示数,下面我们就从用字母表示数开始初中代数的学习(一)从学生原有的认知结构提出问题1、在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)(1)加法交换律 a+b=b+a;(2)乘法交换律 a·b=b·a;(3)加法结合律 (a+b)+c=a+ (b+c);(4)乘法结合律 (ab)c=a(bc);(5)乘法分配律 a(b+c)=ab+ac指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数2、(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要025小时,试问步行、骑车、乘汽车的速度分别是多少?3、若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?4、(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公s 式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,t 以及a2等等都叫代数式那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容(三)讲授新课1、代数式单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式学习代数,首先要学习用代数式表示数量关系,明确代数上的意义2、举例说明例1 填空:(1)每包书有12册,n包书有__________册;(2)温度由t℃下降到2℃后是_________℃;(3)棱长是a厘米的正方体的体积是_____立方厘米;(4)产量由m千克增长10%,就达到_______千克(此例题用投影给出,学生口答完成)解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m例2 、说出下列代数式的意义:(1) 2a+3 (2)2(a+3); (3)ab c (4)a-d c (5)a 2+b 2 (6)(a+b) 2 解:(1)2a+3的意义是2a 与3的和;(2)2(a+3)的意义是2与(a+3)的积;(3)ab c 的意义是c 除以ab 的商; (4)a-d c 的意义是a 减去dc 的差; (5)a 2+b 2的意义是a ,b 的平方的和;(6)(a+b)2的意义是a 与b 的和的平方说明:(1)本题应由教师示范来完成;(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a 的2倍加上3”或“a 的2倍与3的和”等等例3 、用代数式表示:(1)m 与n 的和除以10的商;(2)m 与5n 的差的平方;(3)x 的2倍与y 的和;(4)ν的立方与t 的3倍的积分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面解:(1)10n m ; (2)(m-5n)2 (3)2x+y ; (4)3t ν3 (四)课堂练习1、填空:(投影)(1)n 箱苹果重p 千克,每箱重_____千克;(2)甲身高a 厘米,乙比甲矮b 厘米,那么乙的身高为_____厘米;(3)底为a ,高为h 的三角形面积是______;(4)全校学生人数是x ,其中女生占48%,则女生人数是____,男生人数是____2、说出下列代数式的意义:(投影)(1)2a-3c ; (2)ba 53; (3)ab+1; (4)a 2-b 2 3、用代数式表示:(投影)(1)x 与y 的和; (2)x 的平方与y 的立方的差;(3)a 的60%与b 的2倍的和; (4)a 除以2的商与b 除3的商的和(五)、师生共同小结首先,提出如下问题:1、本节课学习了哪些内容?2用字母表示数的意义是什么?3、什么叫代数式? 教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号七、练习设计1、一个三角形的三条边的长分别的a ,b ,c ,求这个三角形的周长2、张强比王华大3岁,当张强a 岁时,王华的年龄是多少?3、飞机的速度是汽车的40倍,自行车的速度是汽车的31,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?4、a 千克大米的售价是6元,1千克大米售多少元?5、圆的半径是R 厘米,它的面积是多少?6、用代数式表示:(1)长为a ,宽为b 米的长方形的周长;(2)宽为b 米,长是宽的2倍的长方形的周长;(3)长是a 米,宽是长的31的长方形的周长; (4)宽为b 米,长比宽多2米的长方形的周长八、板书设计§3.1列代数式(1)(一)知识回顾 (三)例题解析 (五)课堂小结例1、例2(二)观察发现 (四)课堂练习 练习设计九、教学后记1、本课所遇的问题,多数应由学生首先口答来完成,但在“说出代数式的意义”这一问题上,应向学生强调:一定要严格按照教师示范的要求去做,如“a-b c ”的意义是“a 减去b c 的差”,而不能说成是“a 与bc 的差” 2、由于这是中学数学的第一课,故设计了一个引言,目的是对学生进行学习目的、学习态度和学习方法的教育在实际教学时,可依据学生的实际情况灵活掌握,原则是多鼓励,严要求一、课题 §3.1列代数式(2)二、教学目标1、使学生能把简单的与数量有关的词语用代数式表示出来;2、初步培养学生观察、分析和抽象思维的能力三、教学重点和难点 重点:把实际问题中的数量关系列成代数式 难点:正确理解题意,从中找出数量关系里的运算顺序并能准确地写成代数式四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、从学生原有的认知结构提出问题1、用代数式表示乙数:(投影)(1)乙数比x 大5;(x+5)(2)乙数比x 的2倍小3;(2x-3)(3)乙数比x 的倒数小7;(x1-7) (4)乙数比x 大16%((1+16%)x)(应用引导的方法启发学生解答本题)2、在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式本节课我们就来一起学习这个问题(二)讲授新课例1 用代数式表示乙数:(1)乙数比甲数大5; (2)乙数比甲数的2倍小3;(3)乙数比甲数的倒数小7; (4)乙数比甲数大16%分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数解:设甲数为x ,则乙数的代数式为(1)x+5 (2)2x-3; (3)x 1-7; (4)(1+16%)x(本题应由学生口答,教师板书完成)最后,教师需指出:第4小题的答案也可写成x+16%x例2 用代数式表示:(1)甲乙两数和的2倍;(2)甲数的31与乙数的21的差; (3)甲乙两数的平方和;(4)甲乙两数的和与甲乙两数的差的积;(5)乙甲两数之和与乙甲两数的差的积分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式解:设甲数为a ,乙数为b ,则(1)2(a+b); (2)31 a-21b ; (3)a 2+b 2; (4)(a+b)(a-b); (5)(a+b )(b-a)或(b+a)(b-a)(本题应由学生口答,教师板书完成)此时,教师指出:a 与b 的和,以及b 与a 的和都是指(a+b),这是因为加法有交换律但a 与b 的差指的是(a-b),而b 与a 的差指的是(b-a)两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序例3 用代数式表示:(1)被3整除得n 的数;(2)被5除商m 余2的数分析本题时,可提出以下问题:(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n 的数如何表示?(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m 余2的数呢? 解:(1)3n ; (2)5m+2(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)例4 设字母a 表示一个数,用代数式表示:(1)这个数与5的和的3倍;(2)这个数与1的差的41; (3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的31的和 分析:启发学生,做分析练习如第1小题可分解为“a 与5的和”与“和的3倍”,先将“a 与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”解:(1)3(a+5); (2)41(a-1); (3)21(5a+7); (4)a 2+31a(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)例5 设教室里座位的行数是m ,用代数式表示:(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?(2)教室里座位的行数是每行座位数的32,教室里总共有多少个座位? 分析本题时,可提出如下问题:(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?(2)教室里有m 行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)解:(1)m(m+6)个; (2)(23m)m 个 (三)课堂练习1设甲数为x ,乙数为y ,用代数式表示:(投影) (1)甲数的2倍,与乙数的31的和; (2)甲数的41与乙数的3倍的差; (3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商2用代数式表示:(1)比a 与b 的和小3的数; (2)比a 与b 的差的一半大1的数;(3)比a 除以b 的商的3倍大8的数; (4)比a 除b 的商的3倍大8的数3用代数式表示:(1)与a-1的和是25的数; (2)与2b+1的积是9的数;(3)与2x 2的差是x 的数; (4)除以(y+3)的商是y 的数〔(1)25-(a-1); (2)129 b ; (3)2x 2+2; (4)y(y+3)〕(四)师生共同小结首先,请学生回答:1怎样列代数式?2列代数式的关键是什么?其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备要求学生一定要牢固掌握七、练习设计1、用代数式表示:(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?2、已知一个长方形的周长是24厘米,一边是a厘米,求:(1)这个长方形另一边的长;(2)这个长方形的面积八、板书设计§3.1列代数式(2)(一)知识回顾(三)例题解析(五)课堂小结例1、例2(二)观察发现(四)课堂练习练习设计九、教学后记由于列代数式的内容既是本章的重点,又是本书的重点,同时也是学生学习过程中的一个难点,故在设计其教学过程时,注意所选例题及练习题由易到难,循序渐进,使学生逐步地掌握好这一内容,为今后的学习打下一个良好的基础同时,也使学生的抽象思维能力得到初的培养。
3.1 列代数式知识1 用字母表示数用字母表示数就是把表示数量关系的文字语言转化成包含字母的数学语言。
(1)用字母表示数,可以简明地表示数学运算律。
如:a+b=b+a(加法交换律),(ab)c=a (bc)(乘法结合律),a(b+c)=ab+ac(分配律),这里的a、b、c可以表示任意有理数。
(2)用字母表示数,可以简明地表述公式。
如在行程问题中,常见的公式;路程=速度×时间,若用s表示路程,v表示速度,t表示时同,则此公式可以简明地表示为s=vt。
此外还可用学母表示正方形、长方形、梯形和圆的面积和周长公式等。
(3)用字母表示数,可以简明地表示问题中的数量关系。
如偶数表示为2n(n为整教),被9除余2的正整教表示为9n+2(n为自然数)。
(4)用字母表示数,可以简明地表示运算法则。
如果用a、b表示两个有理教,那么有理数的减法法则可以表示为a-b=a+(-b)。
例1填空:(1)某种花生的单价为12元/千克,则n千克花生需要元;(2)小明上学步行速度为4千米/时,若小明家到学校的路程为s千米,则他上学需要走小时。
例2铅笔每支x元,钢笔每支y元,王明买了a支铅笔和若干支钢笔,共用去了23元,则钢笔买了支。
例3(1)乙数比甲数的倒数小7。
(2)乙数比甲数大16%。
12知识2 代数式1、定义:由数和字母用运算符号连接所成的式子,称为代数式,比如a+c 、2abc 、gh 、xy 、2r π等式子都是代数式.►(1)单独一个数或一个字母也是代数式.(2)等式(如m+5=2)和不等式(如y x ->6)都不是代数式。
例4 有下列式子:0,x 1,y -,a >4,013=-x ,3y x -,22y x +其中属于代数式的有 个。
2、代数式的书写要求(1)代数式中出现的乘号,通常写作“•”或省略不写。
如a ⨯8写成8•a 或8a 。
(2)数字与字母相乘时,数字通常写在字母前面。
如6⨯a 写成6a.(3)除法运算写成分数形式。
科目:七年级数学 课题:3.1列代数式 主备人: 使用人:教学目标:(1)进一步理解用字母表示数的意义,会用含有字母的式子表示实际问题中的数量关系.(2)经历用含字母的式子表示实际问题数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.二、教学重点和难点用含有字母的式子表示数量关系三、教学过程(一)预习课本,课前小测1.(2分) 在小学,我们学过用______表示数,知道可以用____ _____________表示数和数量关系,这样的式子称为代数式.2. (2分)在下列表述中,不能表示代数式“4a”意义的是〔 〕.(A)4的a 倍 (B)a 的4倍 (C)4个a 相加 (D)4个a 相乘3. (2分)某种苹果的售价是每千克x 元,用面值是100元的人民币购买了5千克,应找____元.注意:(1)(2)(二)讲授新课典型例题剖析例1 比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有 人(用含m 的式子表示).解析:例2若x=-1,则代数式x 3-x 2+4的值为解析:(三)基础练习4. (2分)下列式子中不是代数式的是 〔 〕.(A)a+b -c (B)0.2b (C)a=0 (D)a 2b 25. (2分)代数式a+b 2的意义是 〔 〕.(A)a 、b 两数和的平方 (B)a 、b 两数的平方和(C)a 与b 的平方的和 (D)a 与b 的平方 6. (2分)据统计,2013年我市农村居民人均纯收入比上一年增长14.2%.我市农村居民人均纯收入为a 元,则2013〔 〕. (A)14.2a 元 (B)1.42a 元 (C)1.142a 元 (D)0.142a7. (4分)用代数式表示:(1)x 的倒数与y 的差; (2)比a 除以b 的商的2倍小4的数.8. (6分)当x=-3,y=2时,求下列代数式的值:(1)(x -y)2+xy ;(2)(x+y)2014+x 2+y 3.(四)巩固练习9. (3分)下面选项中符合代数式书写要求的是 〔 〕.()()()221()3234a b A ay B cb a C D a b c ∙⨯÷10. (3分)a 与b 的差的3倍与c 的平方的和,用代数式表示 〔 〕.(A)(a -3b)+c 2 (B)3(a -b)+c 2 (C)(3a -b)+c 2 (D)[3(a -b)+c]211. (3分)有a 名男生和b 名女生在社区做义工,他们为建花坛搬砖.男生每人搬了40块,女生每人搬了30块,这a 名男生和b 名女生一共搬了 ________块砖(用含a 、b 的代数式表示).12. (4分)说出下列代数式的意义:(1) 2a+b 2 ;(2)(m+n)2-mm.13. (4分)如图1,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r 米,广场长为a 米,宽为b 米.请列代数式表示广场空地的面积. 图114. (5分) (1)根据图示尺寸计算阴影部分的面积S (用含a 、b 的代数式表示,并化简); (1)在(1)中,若a=1,b=23,求S 的值.(五)拓展练习15. (4分)为了建设社会主义新农村,华新村修筑了一条长akm 公路,实际工作效率比原计划每天多修b 千米,设原计划每天应修路xkm ,那么实际用的天数比原计划可少用 天.16. (6分)用黑白两种颜色的正六边形地面砖按如图2所示的规律,拼成若干个图案:。
第三章代数式3.1列代数式表示数量关系3.1列代数式表示数量关系(2)——列代数式(教案,新教材)【教学目标】1.进一步理解字母表示数量关系的意义,能够列代数式表示数量关系; 2. 进一步体会列代数式的抽象概括的思维方法,和从特殊到一般,再由一般到特殊的过程. 3. 能进行实际问题中数量关系与代数式之间的转换,建立模型观念.【教学重点】分析数量关系,列代数式.【教学难点】分离基本量,列代数式.【教学过程】一、情境导入在解决一些数学问题与实际问题时,往往需要先把问题中的数量关系用含有数、字母和运算符号的式子表示出来,也就是要列代数式. 本节课学习3.1列代数式表示数量关系(2)——列代数式 (板书课题)二、合作探究活动一:探究用代数式表示数量关系问题1.请思考如何用代数式表示a 、b 两数的和与差的积?学生活动:交流探讨先用字母表示两数的和a b +(), 两数的差a b -(),再考虑它们的积(a+b)(a b)-.教师活动:参与学生活动,并进行评价,规范写出结果.说明如无特别说明,a ,b 两数的差都指a b -.活动二:列代数式表示数量关系例1 用代数式表示:(1)购买2个单价为a 元的面包和3瓶单价为6元的饮料所需的钱数?(2)把a 元钱存入银行,存期3年,年利率为2.75%,到期时的利息是多少元?(3)某商品的进价为x 元,先按进价的1.1倍标价,后又降价80元出售,现在的售价是多少元?学生活动:小组合作,探寻数量关系,用字母表示.(1)总钱数=2个面包的总价十3瓶饮料的总价;(2)利息=本金×年利率×存期;(3)现在的售价=原来的标价一降价数.教师活动:参与学生活动,并进行评价,规范写出结果,(1)购买2个单价为a 元的面包和3瓶单价为6元的饮料所需的钱数为(2a+36)元;(2)根据题意,得a×2.75%×3=8.25%a ,因此到期时的利息为8.25%a 元;(3)现在的售价为(1.1x 一80)元.强调列代数式的结果要规范书写.例2 甲、乙两地之间公路全长240km ,汽车从甲地开往乙地,行驶速度为v km/h.(1)汽车从甲地到乙地需要行驶多少小时?(2)如果汽车的行驶速度增加3km/h ,那么汽车从甲地到乙地需要行驶多少小时?汽车加快速度后可以早到多少小时?学生活动:小组合作,根据路程、速度和时间数量关系和已知的数量关系,用字母表示. 时间=路程÷速度,另外,早到的时间=原来需要行驶的时间一加快速度后需要行驶的时间. 教师活动:参与学生活动,并进行评价,规范写出结果.(1)汽车从甲地到乙地需要行驶240v h (2)如果汽车的行驶速度增加3km/h ,那么汽车从甲地到乙地需要行驶2403v +h . 汽车加快速度后可以早到2402403vv ⎛⎫ ⎪+⎝⎭-h 例3 用代数式表示图中阴影部分的面积:(1) (2)师生活动:首先复习小学学习的长方形、圆的面积公式,具体分析图形中阴影部分是怎样得到的.(1)图中阴影部分是正方形中挖去一个圆后剩下的部分,且正方形的边长是a ,圆的直径也是a ,圆的半径是a 2;(2)图中阴影部分是长方形中挖去4个小正方形后剩下的部分,且长方形的长为a ,宽为b ,小正方形的边长为x .教师示范写出结论:(1) 22·2a S a π⎛⎫ ⎪⎝⎭=-;(2) 24.S ab x =- 三、强化巩固1.练习1、2、3.抽学生板演,其余学生独立完成,教师评价订正.2.拓展训练:为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段以达到节水的目的.如下所示是该市自来水收费价格见价目表.价目表每月用水量单价 不超出36m 的部分 2元3/m超出36m 但不超出310m 的部分 4元3/m超出310m 的部分8元3/m 注:水费按月结算.(1)填空:若该户居民2月份用水34m ,则应收水费 元;(2)若该户居民3月份用水3m a (其中610a <<),则应收水费多少元?(用a 的整式表示并化简)(3)若该户居民4,5月份共用水315m (5月份用水量超过了4月份),设4月份用水3m x ,求该户居民4,5月份共交水费多少元?师生共同进行分析:(1)根据表格中的收费标准,求出水费即可;(2)根据a 的范围,求出水费即可;(3)根据5月份用水量超过了4月份,得到4月份用水量少于37.5m ,当4月份的用水量少于35m 时,5月份用水量超过310m ;4月份用水量不低于35m ,但不超过36m 时,5月份用水量不少于39m ,但不超过310m ;4月份用水量超过36m ,但少于37.5m 时,5月份用水量超过37.5m 但少于39m 三种情况分别求出水费即可.学生写出结论,教师点评.参考答案:(1)根据题意得:248⨯=(元);(2)根据题意得:()4662412a a -+⨯=-(元);(3)由5月份用水量超过了4月份,得到4月份用水量少于37.5m ,当4月份用水量少于35m 时,5月份用水量超过310m ,则4,5月份共交水费为()2815104462668x x x +--+⨯+⨯=-+(元);当4月份用水量不低于35m ,但不超过36m 时,5月份用水量不少于39m ,但不超过310m ,则4,5月份交的水费为()2415662248x x x +--+⨯=-+(元);当4月份用水量超过36m ,但少于37.5m 时,5月份用水量超过27.5m 但少于39m , 则4,5月份交的水费为()()466241566236x x -+⨯+--+⨯=(元).综上所述,4,5月份交的水费为()668x -+元或()248x -+元或36元.四、总结拓展学生小组合作对知识总结:怎样分离数量关系列代数式.学生小组合作对思想方法总结:经历探索列代数式的过程,能进行实际问题中数量关系与代数式之间的转换,建立模型观念.五、作业布置必做作业:课本练习第4题,习题3.1第3、6、7题选做作业:习题3.1第8、10题 附:板书设计课题:3.1列代数式表示数量关系(1)——代数式的意义活动一:探究用代数式表示数量关系活动二:列代数式表示数量关系例1. 例2. 例3. 学生练习板演(拓展训练)。