第七章博弈的三个模型2
- 格式:ppt
- 大小:644.51 KB
- 文档页数:28
博弈模型汇总如下:
1.合作博弈与非合作博弈:这是根据参与者之间是否可以达成具
有约束力的协议来划分的。
合作博弈强调团队合作和协作,目标是达成共赢;而非合作博弈则强调个人利益最大化,不考虑其他参与者的利益。
2.静态博弈与动态博弈:这是根据参与者做出决策的时间顺序来
划分的。
静态博弈是指所有参与者同时做出决策,或者决策顺序没有影响;动态博弈是指参与者的决策有先后顺序,后行动者可以观察到先行动者的决策。
3.完全信息博弈与不完全信息博弈:这是根据参与者对其他参与
者的偏好、策略和支付函数了解的程度来划分的。
完全信息博弈是指所有参与者都拥有完全的信息,能够准确判断其他参与者的策略和支付函数;不完全信息博弈则是指参与者只拥有部分信息,无法准确判断其他参与者的策略和支付函数。
4.零和博弈与非零和博弈:这是根据所有参与者的总收益是否为
零来划分的。
零和博弈是指所有参与者的总收益为零,一方的收益等于另一方的损失;非零和博弈则是指所有参与者的总收益不为零,各方的收益和损失不一定相关。
5.竞争博弈与合作博弈:这是根据参与者之间是否存在竞争或合
作关系来划分的。
竞争博弈是指参与者之间存在竞争关系,目标是追求个人利益最大化;合作博弈则是指参与者之间存在合作关系,目标是追求共同利益最大化。
6.微分博弈与离散博弈:这是根据决策变量的连续性来划分的。
微分博弈是指决策变量是连续变化的,需要考虑时间、速度等因素;离散博弈则是指决策变量只有有限个可能的取值,通常只考虑状态的变化而不考虑时间、速度等因素。
博弈模型及竞争策略简介博弈模型是用来分析决策者之间相互作用关系的数学工具。
在经济学中,博弈模型被广泛应用于研究市场竞争和企业策略等问题。
本文将介绍博弈模型的基本概念和基本原理,并介绍一些常见的博弈模型和竞争策略。
博弈模型的基本概念和基本原理:博弈模型是一种描述决策者行为和相互作用的数学工具。
博弈模型主要包括决策者、行动、支付函数和解的概念。
决策者是指参与博弈的个体或组织,他们根据自身利益和目标做出决策。
行动是指决策者可以选择的各种行为方式。
支付函数是用来衡量每个决策者在不同行动组合下的效用或收益。
解是指在博弈中各个参与者都做出最佳决策的状态。
博弈模型的基本原理包括理性选择、均衡和解的概念。
理性选择是指决策者根据自己的目标和利益做出决策,不会做出明显损害自己利益的决策。
均衡是指在博弈中各个决策者做出的决策组合是相互一致的,没有一个决策者可以通过改变自己的决策而提高自己的效用。
解是指在博弈中各个参与者都做出最佳决策的状态,也就是说没有一个决策者可以通过改变自己的决策而提高自己的效用。
博弈模型有多种解的概念,例如纳什均衡、帕累托最优、卓亚定理等。
常见的博弈模型和竞争策略:最常见的博弈模型是纳什均衡模型。
纳什均衡是指在博弈中各个决策者做出的决策组合是相互一致的,没有一个决策者可以通过改变自己的决策而提高自己的效用。
在纳什均衡下,每个决策者都采取了最优的个体策略,而无法通过改变策略来获得更高的效用。
博弈模型还包括零和博弈模型和非零和博弈模型。
零和博弈模型是指在博弈中各个决策者的利益是完全相反的,一个决策者的收益就是另一个决策者的损失。
非零和博弈模型是指在博弈中各个决策者的利益不完全相反,存在一定的合作和竞争关系。
在实际应用中,博弈模型常常用于研究市场竞争和企业策略问题。
市场竞争模型是一种描述市场中企业之间相互作用关系的博弈模型,它可以用于研究市场价格形成、市场份额分配等问题。
企业策略模型是一种描述企业之间相互作用关系的博弈模型,它可以用于研究企业的定价、产品开发、市场推广等问题。
博弈模型汇总博弈模型是博弈论的重要工具,用于描述博弈参与者之间的策略和利益关系。
在博弈论中,通过建立合适的博弈模型,可以帮助我们分析和理解各种不同类型的博弈情境,并预测博弈参与者的行为和可能的结果。
下面将对几种常见的博弈模型进行汇总和介绍。
1. 零和博弈模型:零和博弈模型是博弈论中最简单和最基本的模型之一。
在零和博弈中,博弈参与者的利益完全相反,一方的利益的增加必然导致另一方的利益的减少。
这种博弈模型常常用于描述双方的冲突和竞争情境。
常见的零和博弈模型有二人零和博弈和多人零和博弈。
2. 非合作博弈模型:非合作博弈模型是博弈论中较为常见的模型之一。
在非合作博弈中,博弈参与者之间的行动和决策是相互独立的,每个博弈参与者都追求自身的最大利益。
在非合作博弈模型中,博弈参与者可以选择不同的策略,根据对手的行动做出最优的响应。
常见的非合作博弈模型有纳什均衡模型和博弈树模型。
3. 合作博弈模型:合作博弈模型是博弈论中另一个重要的模型。
在合作博弈中,博弈参与者之间可以进行协作和合作,共同追求最大化整体利益。
合作博弈模型通常用于描述多个博弈参与者之间的联盟和合作情境。
常见的合作博弈模型有核心模型和合作博弈解。
4. 演化博弈模型:演化博弈模型是博弈论中较为新颖和有趣的模型之一。
在演化博弈中,博弈参与者的行动和策略可以随时间变化和演化。
演化博弈模型通常用于描述博弈参与者之间的适应性和进化过程。
常见的演化博弈模型有进化博弈动力学模型和演化博弈解。
博弈模型的应用广泛,不仅在经济学中有重要的地位,也在其他学科领域得到广泛运用。
博弈模型可以帮助我们分析和解决各种决策和策略问题,对于理解社会、经济和生物系统中的行为和演化具有重要意义。
总结起来,博弈模型是博弈论的核心工具之一,用于描述和分析博弈参与者之间的策略和利益关系。
常见的博弈模型包括零和博弈模型、非合作博弈模型、合作博弈模型和演化博弈模型。
这些模型在各个领域中都有广泛的应用,对于理解和解决各种决策和策略问题具有重要意义。
博弈模型构建一、博弈模型的种类博弈模型可以根据不同的分类标准进行划分。
根据参与人的数量,博弈可以分为单人博弈、双人博弈和多人博弈。
根据参与人之间是否有合作的可能性,博弈可以分为合作博弈和非合作博弈。
根据信息是否完全,博弈可以分为完全信息博弈和不完全信息博弈。
此外,根据决策结构的不同,博弈还可以分为静态博弈和动态博弈。
二、博弈模型的要素一个完整的博弈模型通常包括以下要素:参与人、行动、信息、策略、支付函数和均衡。
参与人是指参与博弈的个人或组织;行动是指参与人在博弈中可以采取的行动或决策;信息是指参与人在博弈中所掌握的知识和数据;策略是指参与人在给定信息和对手策略的条件下所选择的行动方案;支付函数是指参与人在博弈中所获得的收益或效用;均衡是指博弈达到的一种状态,其中每个参与人的策略都是最优的。
三、博弈模型的建立过程建立博弈模型的过程可以分为以下几个步骤:1.确定参与人:确定博弈中的参与人,包括个人、组织、国家等。
2.确定行动空间:确定每个参与人在博弈中可以选择的行动或决策。
3.确定信息集:确定每个参与人在博弈中所掌握的知识和数据,即每个参与人的信息集。
4.确定策略空间:在给定信息和对手策略的条件下,确定每个参与人可以选择的行动方案,即每个参与人的策略空间。
5.确定支付函数:根据各方的利益关系及均衡结果,为每个参与人设定一个效用水平,并使各方的支付函数相互制约、相互影响。
6.寻找均衡:通过逻辑推理和分析,找出均衡状态,即每个参与人的最优策略组合。
7.评估和比较:对不同均衡状态下各方的收益进行评估和比较,以选择最有利的策略组合。
8.调整和优化:根据实际情况和需要,不断调整和优化模型参数和假设条件,以提高模型的预测准确性和应用价值。
四、案例研究:公共资源博弈模型公共资源博弈是一种典型的资源分配博弈,其中资源是公共的,所有参与者都可以使用这些资源来最大化自己的利益。
然而,如果每个参与者都只考虑自己的利益,就可能会导致资源的过度使用和破坏。
第七章 不完全信息动态博弈本章将在动态博弈中引入信息不对称因素,其博弈的内容被称为不完全信息动态博弈(uncomplete information dynamic game )。
不完全信息动态博弈就其基本要素来看是前面引入的不完全信息概念与博弈的动态性质的一种综合。
譬如,我们在处理不完全信息要素时是通过将某些局中人“类型”的不确定性作为信息不完全性的一种表征,这种方法将继续在本章中得以采用,即博弈中局中人面临的信息不完全性(无论它是指何种信息)将完全由某些局中人的“类型”的不确定性加以刻画。
同时,作为动态博弈,正如我们在第五章中所指出的那样,“序贯理性”的思想将一直得到贯彻。
我们将第五章中引入的“子博弈精炼均衡”的思想作类似的推广于不完全信息动态博弈。
这种延续在逻辑上是必需的,因为一旦我们在不完全信息动态博弈中将信息不完全程度削减到零,则不完全信息动态博弈就自然应退化成一种完全信息动态博弈,其相应的精炼均衡概念就应回到子博弈精炼均衡。
从这种意义上来看,不完全信息动态博弈的精炼均衡概念是子博弈精炼均衡概念的一种推广,正如不完全信息动态博弈应被视作完全信息动态博弈的一种推广一样。
7.1 精炼贝叶斯均衡在本小节中,我们来构造不完全信息动态博弈的均衡概念,特别是贯彻了“序贯理性”原则的精炼均衡概念。
首先,博弈的纳什均衡是一种“僵持”状态的战略组合,当所有的局中人都选择该战略组合中给出的相应战略时,任何一个局中人都不会有单方面偏离这一选择的动机。
作为动态博弈,一个战略是局中人在其可能进行行动选择的所有信息集上将作何选择的一整套规定或计划,而作为不完全信息博弈,这种规定或计划还是“类型依存”的,即不同类型的局中人将选择不同的战略规定。
因此,一个不完全信息动态博弈的纳什均衡将是指这样的一种类型依存性的战略组合(或战略组合的族),当给定其他局中人的战略时(其他局中人的战略是类型依存的,所以,说给定其他局中人的战略即指给定其他局中人的战略与类型的依存关系),任一局中人在其任何类型下由该组合给出的类型依存战略给出的战略是其最优的。
博弈论三大典型模型1.囚徒困境“囚徒困境”说的是两个囚犯的故事。
这两个囚徒一起做坏事,结果被警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。
在这种情形下,两个囚犯都可以做出自己的选择:或者供出他的同伙,或者保持沉默。
这两个囚犯都知道,如果他俩都能保持沉默的话,就都会被释放,因为只要他们拒不承认,警方无法给他们定罪。
但警方也明白这一点,所以他们就给了这两个囚犯一点儿刺激:如果他们中的一个人背叛,即告发他的同伙,那么他就可以被无罪释放,同时还可以得到一笔奖金。
而他的同伙就会被按照最重的罪来判决,并且为了加重惩罚,还要对他施以罚款,作为对告发者的奖赏。
当然,如果这两个囚犯互相背叛的话,两个人都会被按照最重的罪来判决,谁也不会得到奖赏。
那么,这两个囚犯该怎么办呢?是选择互相合作还是互相背叛?从表面上看,他们应该互相合作,保持沉默,因为这样他们俩都能得到最好的结果:自由。
但他们不得不仔细考虑对方可能采取什么选择。
A犯不是个傻子,他马上意识到,他根本无法相信他的同伙不会向警方提供对他不利的证据,然后带着一笔丰厚的奖赏出狱而去,让他独自坐牢。
这种想法的诱惑力实在太大了。
但他也意识到,他的同伙也不是傻子,也会这样来设想他。
所以A犯的结论是,唯一理性的选择就是背叛同伙,把一切都告诉警方,因为如果他的同伙笨得只会保持沉默,那么他就会是那个带奖出狱的幸运者了。
而如果他的同伙也根据这个逻辑向警方交代了,那么,A犯反正也得服刑,起码他不必在这之上再被罚款。
所以其结果就是,这两个囚犯按照不顾一切的逻辑得到了最糟糕的报应:坐牢。
企业在信息化过程中需要与咨询企业、软件供应商打交道的。
在与这些企业打交道的过程中,我们不可避免地也会遇到类似的两难境地,这个时候需要相互之间有足够的了解与信任,没有起码的信任做基础,切不可贸然合作。
在对对方有了足够的信任之后,诚意也是必不可少的,如果没有诚意或者太过贪婪,就可能闹到双方都没有好处的糟糕情况,造成企业之间的双输。
博弈模型要素
博弈模型是用于描述在策略互动中理性参与者如何决策的数学框架。
其构成要素主要包括以下几个方面:
参与者(Players):博弈中的决策主体,他们可以是个人、组织或国家等。
每个参与者都有自己的利益和目标,并会根据自己的利益和目标进行决策。
策略(Strategies):参与者可选择的行动方案,策略的选择直接影响到参与者的收益。
每个参与者都有自己的策略集,即可以选择的所有策略的集合。
信息(Information):参与者在进行决策时所依赖的知识,包括关于其他参与者身份、策略和历史数据等方面的知识。
信息的完整性、准确性和及时性对博弈的结果具有重要影响。
收益(Payoffs):参与者从博弈中获得的利益或损失。
收益通常取决于参与者的策略选择以及对手的策略。
在非零和博弈中,各方的收益之和可能大于或小于零,体现了各方利益的相互影响。
结果(Outcome):博弈结束时各方的状态和利益分配情况。
每个结果都对应于一定的策略组合,是所有参与者策略选择的综合体现。
均衡(Equilibrium):当所有参与者都选择最优策略,并且该策略组合不再发生变化时,就达到了博弈的均衡状态。
均衡是博弈分析的重要概念,它描述了在给定他方策略的情况下,每个参与者的最优选择。
理解这些要素是建立和分析博弈模型的基础,有助于深入理解不同策略和信息条件下参与者的行为模式和博弈结果。