博弈论之豪泰林模型
- 格式:ppt
- 大小:245.50 KB
- 文档页数:7
37第2章 完全信息静态博弈 以表示为所有非负实数S i =[0,∞),其中企业i 的一个典型战略s i 是所选择的价格p i ≥0。
我们仍假定每个企业的支付函数等于其利润额,当企业i 选择价格p i ,其竞争对手选择价格p j 时,企业i 的利润为:πi (p i , p j )=q i (p i , p j )(p i – c )=(a –p i +bp j )(p i – c )综合以上分析,该博弈的战略式表述为:博弈的参与人集合Γ={1,2},i =1表示企业1,i =2表示企业2;每个参与人的战略空间S i ={p i :p i ≥0},i ∈Γ;每个参与人的支付函数πi (p i , p j )=q i (p i , p j )(p i – c )=(a –p i +bp j )(p i – c ),i = 1,2。
G ={p 1≥0, p 2≥0; π1(p 1,p 2), π2 (p 1,p 2)}这里,p i 和πi 分别是第i 个企业的价格和利润。
下面利用反应函数法求解其纳什均衡。
假设价格组合(p 1*, p 2*)是纳什均衡,那么,对每个企业i ,p i *应是如下最优化问题的解:i 0max p ≥πi (p i , p j *)=(a –p i +bp j *)(p i – c )对企业i 求此最优化问题,得p i *=(a +bp j *+c )/2由上可知,如果价格组合(p 1*, p 2*)为纳什均衡,企业选择的价格应满足p 1*=(a +bp 2*+c )/2和p 2*=(a +bp 1*+c )/2解这一对方程式,得:p 1*=p 2*=(a +c )/(2–b ), b <2即该博弈模型的纳什均衡是(p 1*, p 2*)=((a +c )/(2–b ),(a +c )/(2–b ))。
当两厂商的产品完全无差异时,该模型中的需求函数要修改,此时必须考虑消费者对价格的敏感性。
豪泰林模型下的价格竞争与产品选择产品差异化是寡头垄断企业策略性竞争的中心概念,基于空间差异化竞争的视角,探讨了在线性城市模式下的寡头垄断间的价格竞争以及两阶段博弈的产品选择问题。
标签:豪泰林模型;空间差异性;线性城市1引言产品的差异化,是指一产业内相互竞争企业生产的同类商品由于在商品物理性能、销售服务、信息提供、消费者偏好等方面存在差异,从而导致产品间不完全替代的状况。
2豪泰林模型的价格竞争在豪泰林模型中,长度为1的“线性城市”坐落在一条线的横坐标中,而消费者以密度为1均匀地分布于这一区间。
有两家企业或企业,他们销售同样的物质商品。
2.1基本假设让我们假定,企业1坐落于a≥0点上,企业坐落于1-b点上,这里b>0。
不失一般性,假定1-a-b≥0(企业1在企业2的“左边”;a=b=0与最大无差异化相对应;a+b=1与最小无差异化相对应,即完全可以替代)。
每个企业的单位商品成本为c。
消费者为每个单位长度支付运输费用t,消费者具有单位需求,即每个消费者购买1个或0个商品单位。
2.2模型的建立与求解我们把企业的地址作为给定的,考察价格的纳什均衡。
令p i为商品i的价格,D i(p1,p2)为需求函数,i=1,2。
假定两企业同时选择价格p1,p2,另位位于企业1右边s的消费者对两个企业是无差异的,如图所示:那么,s满足:p1+ts2=p2+t(1-a-b-s)2解的s=1-a-b2+p2-p12t(1-a-b)则需求函数分别为:D1(p1,p2)=x=a+1-a-b2+p2-p12t(1-a-b)(1)D2(p1,p2)=1-x=b+1-a-b2+p1-p22t(1-a-b)(2)需求函数的第一项是企业自己的“地盘”(a是住在企业1左边的消费者,b 是住在企业2右边的消费者),第二项是位于两企业之间的消费者中靠近自己的一半,第三项代表需求对价格差异的敏感度。
利润函数分别为:π1(p1,p2)=(p1-c)D1(p1,p2)=(p1-c)a+1-a-b2+p2-p12t(1-a-b)(3)π2(p1,p2)=(p2-c)D2(p1,p2)(4)=(p2-c)b+1-a-b2+p1-p22t(1-a-b)企业i选择自己的价格p i,给定p j,两个一阶条件分别是:π1p1=a+1-a-b2+p2-p12t(1-a-b)-p1-c2t(1-a-b);π2p2=b+1-a-b2+p1-p22t(1-a-b)-p2-c2t(1-a-b);二阶条件是满足的,解上述两个一阶条件,最优解即纳什均衡为(注意对称性):p*1(a,b)=c+t(1-a-b)1+a-b3p*2(a,b)=c+t(1-a-b)1+b-a32.3特殊情况的讨论(1)当a=b=0时,企业1位于0,企业1位于1,也就是两个企业位于城市的两个极端,p*1=p*2=c+t每个企业的均衡利润为:π1=π2=t2我们所说的差异化产品,甚至可以在物质上是一样的。
纵向差异与豪太林模型的横向差异“最小化原则”张二华浙江万里学院商学院许朝兵浙江大学经济学院李植斌浙江理工大学经贸与管理学院研究领域:产业组织理论V ertical Differentiation and the Principle of Minimum Horizontal Differentiation in Hotelling’s ModelZhang Erhua (Zhejiang Wanli University,Linbo,Zhejiang,315100)Xu Chaobing (Zhejiang University, Hangzhou, Zhejiang,310027) Li Zhibin (Zhejiang University of Sciences, Hangzhou, Zhejiang,310033)A bstract:Supposed there is a certain of vertical differentiation between theduopoly in Hotelling’s model, we have reached a SPNE in location-price game. As the existence of the vertical differentiation have increased the market power of the firms, and then weakened the firm’s motivation of differentiation in the horizontal differentiation product space, we concluded that, in equilibrium, the duopoly’s strategy in the horizontal differentiation space is consistent with the principle of minimum differentiation, which is apparently distinguished from the conclusion ofall of the presented articles.Key words:horizontal differentiation, vertical differentiation, Hotelling’s model, SPNEJEL: L11 L13 D43纵向差异与豪太林模型的横向差异“最小化原则”摘要:本文将产品纵向差异引入豪太林模型,并在假设企业产品存在一定纵向差异条件下,得到位置——价格博弈的唯一子博弈精炼纳什均衡。
寡头的概念,和几种竞争合作模式的概念寡头概念:介于垄断竞争与完全垄断之间的一种比较现实的混合市场中,仅为少数几个企业控制整个市场的生产和销售的市场结构,这几个企业被称为寡头。
各寡头之间有着高程度的依存性。
而这种依存性使他们之间更容易形成某种形式的勾结。
但各寡头之间的利益哟偶是矛盾的,这就决定了勾结不能代替或取消竞争,寡头之间的竞争往往会更加激烈。
竞争合作模式1)Cournot 模型Cournot 模型是由法国经济学家 Antoine Augustin Cournot 于 1838 年提出的,是最早运用博弈论对双寡头垄断市场进行分析的一个经济学模型。
该模型的假设条件是:市场上有且只有两个企业,他们生产和销售相同的产品及服务,不存在生产成本,面对同一个市场其需求函数是线性的,双方对彼此间的需求非常清楚,即每一方都能根据对方的产量决策来确定自己的最优选择,从而获得自身的最大利润,但是它们之间并没有任何勾结行为。
Cournot 模型属于静态博弈,即博弈方的决策同时进行。
2)Stackelberg 模型Stackelberg 模型由德国经济学家 H. Von Stackelberg 在 1934 年提出。
该模型的决策变量也是产量,但市场上竞争者之间的地位并不平等,处于主导地位的一方先进行决策,另一方则根据主导方决定自己的产量,即处于从属地位,二者的相互之间的决策选择最终形成动态博弈,其他假设与Cournot 模型相同。
3)模型修正一是成本修正,由于移动运营商前期投入和运维成本较高,因此其生产成本是不能忽略的,而且总成本中主要是固定成本,可变成本占较少的份额,且每增加一个用户时,运营商的边际成本很低。
二是企业数量修正,由两个增加到三个,我们选择用户数量来表示移动通信运营商的产量。
1 Bertand 价格博弈Bertand 寡头模型假设各企业生产的产品是同质的,产品之间有很强的替代性,他们之间通过选择价格进行竞争,即价格不同时,价格高的不会完全销不出去。
豪泰林(Hotelling )价格竞争模型在古诺模型中,产品是同质的.在这个假设下,如果企业的竞争战略是价格而不是产量,伯特兰德证明,即使只有两个企业,在均衡情况下,价格等于边际成本,企业的利润为零,与完全竞争市场均衡一样.这便是所谓的伯特兰德悖论.解开这个悖论的办法之一是引入产品的差异性.如果不同企业生产的产品是有差异的,替代弹性就不会是无限的,此时消费者对不同企业的产品有着不同的偏好,价格不是他们感兴趣的唯一变量.在存在产品差异的情况下,均衡价格不会等于边际成本,垄断性提高.产品差异有多种形式.我们现在考虑一种特殊的差异,即空间上的差异,这就是经典的豪泰林模型.在豪泰林模型中,产品在物质性能上是相同的,但在空间位置上有差异.因为不同位置上的消费者支付不同的运输成本,他们关心的是价格与运输成本之和,而不单是价格.假定有一个长度为1的线性城市,消费者均匀地分布在[0,1]区间里,分布密度为1.假定有两个商店,分别位于城市的两端,商店1在x=0,商店2在x=1,出售物质性能相同的产品.每个商品提供单位产品的成本为c ,消费者购买商品的旅行成本与离商店成比例,单位距离的成本为t .这样,住在x 的消费者如果在商店1采购,要花费tx 的旅行成本;如果在商店2采购,要花费t(1-x).假定消费者具有单位需求,即或者消费1个单位或者消费0个单位.消费者从消费中得到的消费剩余为s .完全信息静态博弈参与人:2,1,=i i ;战略空间:(21,p p )支付函数:21,ππ记博弈问题为:{}),(),,(;0,021221121p p p p p p G ππ≥≥=我们现在考虑两商店之间价格竞争的纳什均衡.假定两个商店同时选择自己销售的销售价格.为了简单起见,我们假定s 相对于购买总成本(价格加旅行费用)而言足够大从而所有消费者购买一个单位的产品.令p i 为商店i 的价格,D i (p 1,p 2)为需求函数,i=1,2.设价格同时选择,纳什均衡是一种组合),(*2*1p p ,使得对于每个参与人i ,{}),()(max arg **i i i i p i p p D c p p i --∈.其中),()(*i i i i p p D c p --为商店i 的利润函数。
基于豪泰林模型的港⼝竞合博弈分析_董岗基于豪泰林模型的港⼝竞合博弈分析董 岗(上海海事⼤学经济管理学院,上海200135)摘 要:将港⼝外部性和兼容性引⼊发货⼈效⽤函数,通过拓展线性的豪泰林模型研究新建港⼝位置选择、港⼝使费竞合博弈,研究表明:若实施⾮合作博弈,则新建港⼝选址将趋于集中,甚⾄出现“越界”恶性竞争,港⼝最优使费与服务质量成正⽐⽽与到⽬的港距离成反⽐;若实施合作博弈,则新建港⼝选址将趋于分散,采⽤差异化策略,港⼝间最优使费差异与其服务质量差异、⽹络外部性强度成正⽐,⽽与到⽬的港距离之差、兼容程度成反⽐。
关键词:豪泰林模型;位置选择;港⼝使费;效⽤函数;博弈策略中图分类号:F 253.4 ⽂献标识码:A ⽂章编号:1008-5696(2010)02-0122-03Analyzing Ports Co -competition Game Based on Hotelling ModelDONG Gang(Shang hai M aritime Univ ersity ,Economic M a nag ement Institute ,Shanghai 200433,China )A bstract :Thro ug h intro ducing netw ork externality and com patibility to utility function of the shipper ,then e stablishing linear ex tensive H o telling m odel researches locatio n selecting of a new po rt ,co -competition game o f po rt disbursement .The finding is that excessive competition w ill be appeared w hen non -coopera -tive g ame is implemented ,po rt 's best disbursement is in propor tion to service quality ,but is in inversely to the distance fro m the po rt to destination ;Furthermo re ,com paring por t 's difference in location and dis -bursement under co operative game .Key words :H otelling mo del ;location selecting ;po rt disbursement ;utility function ;game stategy 收稿⽇期:2009-07-01基⾦项⽬:上海市科技发展基⾦软科学研究计划项⽬************)作者简介:董 岗(1979-),男,博⼠研究⽣,研究⽅向:物流与供应链管理.“⼗⼀五”前三年江苏沿江港⼝新增万吨级以上泊位88个,其中新增5万t 级以上泊位43个;万吨级以上泊位总数达到275个,其中5万t 级以上泊位68个,新增数量和总量均为全国第⼀。
豪泰林(Hotelling )价格竞争模型在古诺模型中,产品是同质的.在这个假设下,如果企业的竞争战略是价格而不是产量,伯特兰德证明,即使只有两个企业,在均衡情况下,价格等于边际成本,企业的利润为零,与完全竞争市场均衡一样.这便是所谓的伯特兰德悖论.解开这个悖论的办法之一是引入产品的差异性.如果不同企业生产的产品是有差异的,替代弹性就不会是无限的,此时消费者对不同企业的产品有着不同的偏好,价格不是他们感兴趣的唯一变量.在存在产品差异的情况下,均衡价格不会等于边际成本,垄断性提高.产品差异有多种形式.我们现在考虑一种特殊的差异,即空间上的差异,这就是经典的豪泰林模型.在豪泰林模型中,产品在物质性能上是相同的,但在空间位置上有差异.因为不同位置上的消费者支付不同的运输成本,他们关心的是价格与运输成本之和,而不单是价格.假定有一个长度为1的线性城市,消费者均匀地分布在[0,1]区间里,分布密度为1.假定有两个商店,分别位于城市的两端,商店1在x=0,商店2在x=1,出售物质性能相同的产品.每个商品提供单位产品的成本为c ,消费者购买商品的旅行成本与离商店成比例,单位距离的成本为t .这样,住在x 的消费者如果在商店1采购,要花费tx 的旅行成本;如果在商店2采购,要花费t(1-x).假定消费者具有单位需求,即或者消费1个单位或者消费0个单位.消费者从消费中得到的消费剩余为s .完全信息静态博弈参与人:2,1,=i i ;战略空间:(21,p p )支付函数:21,ππ记博弈问题为:{}),(),,(;0,021221121p p p p p p G ππ≥≥=我们现在考虑两商店之间价格竞争的纳什均衡.假定两个商店同时选择自己销售的销售价格.为了简单起见,我们假定s 相对于购买总成本(价格加旅行费用)而言足够大从而所有消费者购买一个单位的产品.令p i 为商店i 的价格,D i (p 1,p 2)为需求函数,i=1,2.设价格同时选择,纳什均衡是一种组合),(*2*1p p ,使得对于每个参与人i ,{}),()(max arg **i i i i p i p p D c p p i --∈.其中),()(*i i i i p p D c p --为商店i 的利润函数。