博弈论微观经济学
- 格式:ppt
- 大小:254.00 KB
- 文档页数:100
第八章 博弈论前面章节对经济人最优决策的讨论,是在简单环境下进行的,没有考虑经济人之间决策相互影响的问题。
本章讨论这个问题,建立复杂环境下的决策理论。
开展这种研究的的理论叫做博弈论,也称为对策论(Game Theory)。
最近十几年来,博弈论在经济学中得到了广泛应用,在揭示经济行为相互制约性质方面取得了重大进展。
大部分经济行为都可视作博弈的特殊情况,比如把经济系统看成是一种博弈,把竞争均衡看成是该博弈的古诺-纳什均衡。
博弈论的思想精髓与方法,已成为经济分析基础的必要组成部分。
第一节 博弈事例博弈是一种日常现象,例如棋手下棋,双方都要根据对方的行动来决定自己的行动,双方的目的都是要战胜对方,互不相容,互相影响,互相制约。
一般来讲,博弈现象的特征表现为两个或两个以上具有利害冲突的当事人处于一种不相容的状态中,一方的行动取决于对方的行动,每个当事人的收益都取决于所有当事人的行动。
当所有当事人都拿定主意作出决策时,博弈的局势就暂时确定下来。
博弈论就是研究这种不相容现象的一种理论,并把当事人叫做局中人(player)。
博弈论推广了标准的一人决策理论。
在每个局中人的收益都依赖于其他局中人的选择的情况下,追求收益最大化的局中人应该如何采取行动?显然,为了确定出可行的策略,每个局中人都必须考虑其他局中人面临的问题。
下面来举例说明。
例1.便士匹配(Matching Pennies)(二人零和博弈)设博弈中有两个局中人甲和乙,每个局中人都有一块硬币,并且各自独立安排硬币是否正面朝上。
局中人的收益情况是这样的:如果两个局中人同时出示硬币正面或反面,那么甲赢得1元,乙输掉1元;如果一个局中人出示硬币正面,另一个局中人出示硬币反面,那么甲输掉1元,乙赢得1元。
对于这个博弈,每个局中人可选择的策略都有两种:正面朝上和反面朝上,即甲和乙的策略集合都是{正面,反面}。
当甲和乙都作出选择时,博弈的局势就确定了。
显然,该博弈的局势集合是{(正面,正面),(正面,反面),(反面,正面),(反面,反面)},即各种可能的局势的全体,也称为局势表,即表1。
微观经济学中的博弈论研究第一章:博弈论的基本概念博弈论是一门研究人类决策行为的学科,它通过模型和分析,探索个体、团体甚至国家之间的策略选择和博弈关系。
博弈论的核心概念包括玩家、策略、收益等,下面我们将对这些概念进行介绍。
1.1 玩家在博弈论中,玩家指参与博弈的个体或者团体,他们的目标是通过选择策略获得最大化的收益。
1.2 策略策略是玩家在博弈过程中选择的一种行动方式,不同的策略对应不同的收益,玩家需要在各种策略中作出决策来追求最优结果。
1.3 收益收益指玩家通过选择策略所能获取的相应利益,它可以是经济、心理或社会方面的收益。
第二章:博弈论的应用场景博弈论在现实生活中有着广泛的应用,其中最常见的例子是拍卖。
在拍卖中,卖家希望以尽可能高的价格卖出物品,而买家则希望以尽可能低的价格获得物品。
在这种情况下,买家与卖家之间存在博弈关系,买家需要在不知道竞争对手出价的情况下,选择出价策略以最佳地获取商品。
而卖家则需要在不知道买家心理底线的前提下,选择出售价格以最大化收益。
拍卖场景是博弈论在现实中最经典的运用案例之一。
2.2 股票市场股票市场也是博弈论运用的典型场景。
市场参与者需要考虑自己的投资策略和其他参与者的操作,以最大程度地实现收益。
股市里的多数人争夺股票的价格,通过自己的交易赚取尽可能高的利润。
在市场上,每个人都会竭尽全力以赚取最大的利益,这就是博弈论在股票市场中的应用。
2.3 公共资源竞争公共资源竞争也是博弈论中一个重要的应用场景。
比如公园、停车场、餐厅等公共场所,人们在利用公共资源时,需要协调自己的行为,以免出现资源浪费或群体不满情况。
第三章:博弈论模型博弈论中有多种模型,常见的有博弈树、纳什均衡、局势分析等模型。
博弈树指博弈过程图,它通过树形结构表示了玩家之间的策略选择和相应的收益。
博弈树图可以清晰地展示博弈者与博弈者之间的关系,对博弈结构进行直观呈现。
3.2 纳什均衡纳什均衡是博弈论中的一个非常重要的概念,指的是在多人博弈中,每个玩家都做出了最优的决策,无法通过单方面改变策略来获得更好的收益的状态。
微观经济学中的博弈论与竞争策略在实际的市场经济中,企业之间的关系不是简单的合作,而是一场长期的博弈。
微观经济学中的博弈论就是研究这种博弈关系的理论基础。
在这篇文章中,我们将从博弈论的定义和原理出发,探究在竞争中如何运用博弈论来制定合适的竞争策略。
一、博弈论的定义和原理博弈论是研究决策者在某种环境下进行互动决策的一种数学模型和理论体系,被广泛应用于经济、商业、政治等领域。
博弈论中的“博弈”指的是决策者们在互相影响的情况下,通过某种策略争夺有限资源的一种行为。
博弈的核心就是策略,决策者们必须根据对手的行为,进行合理的反应和调整。
博弈论的思想主要包括纳什均衡、最小惊奇原则、收益最大化等原则。
其中,纳什均衡认为,当每个决策者坚持自己的最优策略时,得到的结果是博弈的一个纳什均衡点。
二、博弈论在竞争中的应用在市场经济中,企业之间的竞争是非常激烈的,而博弈论则可以为企业制定出更为科学合理的竞争策略。
下面我们将从企业的角度,探讨如何利用博弈论来制定竞争策略。
1. 多种策略的选择竞争时,企业应该根据不同的竞争环境,选择不同的策略。
比如,在完全竞争的市场中,企业应该选择价格战和成本控制战略,通过降低成本和提高效率来保持自己在市场中占有优势。
而在垄断市场中,企业应该采取加速技术创新和延长产品生命周期等策略,提高对市场的控制力。
2. 博弈中的合作与冲突在竞争中,企业之间不仅有竞争,还有合作的因素。
但是,合作与否都要考虑到博弈的因素。
如果因为合作而丧失了优势,那么不如选择竞争,反之,如果合作可以提高自身优势,则应考虑合作。
此外,在博弈中也会出现冲突,这时企业应该根据博弈论的原则,选择最优策略来面对冲突。
3. 赚取超额收益的成本在竞争中,企业为了争夺市场份额和收益,往往需要进行一系列投入。
然而,这些投入的成本不仅仅是经济成本,还包括社会成本和环境成本等。
如果这些成本大于预期的收益,那么企业在制定竞争策略时,应考虑到这些额外成本,以避免争取短期利润,牺牲长期利益。
微观经济学中的市场博弈理论随着全球化和市场化的加剧,市场竞争越来越激烈,而在市场竞争中,游戏理论占据着至关重要的位置。
微观经济学中的市场博弈理论就着重研究了市场竞争过程中的博弈行为。
一、市场博弈论的基本概念在市场竞争中,在双方行动中互相影响的情况下,双方都需要在竞争中获得一定的利润。
这种情况下,我们就可以用博弈论来描述这种互动的过程。
博弈就是一个多人互动的活动,参与者在不确定的环境中做决策。
在市场博弈中,我们假设市场中有两个经济主体——A和B,市场供求关系再市场基本建立起来之后,A和B有两种选择,即选择合作和不合作。
此时双方行动会互相影响,双方都需要在竞争中获得一定的利润。
不同的选择有不同的后果,我们称之为收益或成本。
博弈论的基本概念是奖励和惩罚,在市场博弈中的奖励就是收益,惩罚就是成本。
二、纳什均衡理论纳什均衡理论是市场博弈论的核心理论,它是博弈论的一个概念,是指在博弈中对于每个参与者做出的决策,如果其他参与者也对自己作出了相同的决策,则此时参与者达到了一种最优决策结果。
纳什均衡为参与者在相互博弈的过程中达到了共同利益点,使得双方在不可预知的信息环境下做出比较合理的决策,从而达到最终的效果,从而实现自身利益的最大化。
三、市场博弈理论在现代市场竞争中的应用市场博弈理论在现代市场竞争中的应用场景非常广泛。
例如,当两家零售商在同一地区内开设新的分店时,它们将互相影响彼此的销售额。
为了更好地利用市场机会,两家零售商都会考虑在哪个位置开设它们的新分店,这时就可以运用博弈论来分析零售商之间的成本和收益,并预测每一方选择哪个位置的概率。
再例如,公司之间在制定价格策略时也可以参考市场博弈理论。
在市场中,不同的公司制定不同的价格策略会互相影响彼此的销售额,同时也会影响到其他公司的销售额。
因此,公司制定价格策略时需要运用博弈论来分析其他公司的行为,预测其他公司的反应并制定相应的价格策略。
总而言之,市场博弈理论可以帮助我们更好地预测市场行为,分析竞争者的策略,并制定相应的策略。
微观经济学中的博弈论应用引言博弈论作为微观经济学中的一个重要分支,旨在研究个体在互动中的策略选择和为达到目的而产生的冲突。
该学说提供了一种全新的思路和模型来研究市场中的对手关系和策略选择。
在现代经济活动中,博弈论在竞争激烈、信息不对称、风险和不确定性高等诸多领域得到了广泛应用。
本文将就微观经济学中的博弈论应用进行探讨。
第一章:市场竞争市场竞争是博弈论的主要应用领域之一。
在竞争激烈的市场中,企业为了在市场上获得最大的利润,需要制定最优的市场竞争策略。
博弈论提供了一种可行的模型来研究企业之间的竞争行为,并分析不同决策对利润的影响。
例如,Cournot博弈模型是研究市场竞争的一个经典模型,它假设市场中有两家企业生产同一种产品。
根据Cournot博弈模型,两家企业都会选择产量,以便在市场上获得最大收益。
如果企业A和企业B的产量分别为qA和qB,那么市场上的总产量就是qA+qB,价格也会根据市场的供求关系而变化。
企业的目标是最大化利润,因此他们需要制定最优的产量水平。
通过使用这个模型,企业可以了解他们的竞争对手的决策,以从而制定出最佳的市场策略。
第二章:拍卖拍卖领域是博弈论的另一个主要应用。
拍卖是指将一个物品卖给最高出价者的一种销售方式。
在拍卖中,卖家和买家之间存在着复杂的策略和谈判过程,这正是博弈论的应用场景。
最常见的拍卖类型是英格利斯拍卖,在英格利斯拍卖中,卖家设定一个最低出价并且每个出价必须高于上一次出价。
当最高出价被确定后,卖家将物品出售给最高出价者。
对于买家来讲,则需要制定一个最优的出价策略,以确保自己不会支付太高的价格。
博弈论提供了一种模型来研究竞拍过程,以及卖家和买家之间的策略选择。
通过使用博弈论模型,可以确定最优出价并分析卖家和买家之间的利益冲突。
第三章:合作与竞争除了市场竞争和拍卖之外,博弈论还可以应用于合作与竞争关系中的决策制定。
例如,在合作博弈中,两个或多个人必须合作来达到一个目标。