8 线性回归
- 格式:ppt
- 大小:709.00 KB
- 文档页数:52
【线性回归】线性回归模型中⼏个参数的解释【线性回归】线性回归模型中⼏个参数的解释R ⽅1. 决定系数/拟合优度类似于⼀元线性回归,构造决定系数。
称为y 关于⾃变量的样本复相关系数。
其中,,有SST=SSR+SSE总离差平⽅和记为SST ,回归平⽅和记为SSR ,残差平⽅和为SSE 。
由公式可见,SSR 是由回归⽅程确定的,即是可以⽤⾃变量x 进⾏解释的波动,⽽SSE 为x 之外的未加控制的因素引起的波动。
这样,总离差平⽅和SST 中能够由⽅程解释的部分为SSR ,不能解释的部分为SSE 。
1. 意义意味着回归⽅程中能被解释的误差占总误差的⽐例。
⼀般来说越⼤,拟合效果越好,⼀般认为超过0.8的模型拟合优度⽐较⾼。
需要注意的是当样本量⼩时,很⼤(例如0.9)也不能肯定⾃变量与因变量之间关系就是线性的。
随着⾃变量的增多,必定会越来越接近于1,但这会导致模型的稳定性变差,即模型⽤来预测训练集之外的数据时,预测波动将会⾮常⼤,这个时候就会对作调整,调整R ⽅可以消除⾃变量增加造成的假象。
F 检验0、预备知识(1)假设检验为了判断与检测X 是否具备对Y 的预测能⼒,⼀般可以通过相关系数、图形等⽅法进⾏衡量,但这只是直观的判断⽅法。
通过对回归参数做假设检验可以为我们提供更严格的数量化分析⽅法。
(2)全模型与简化模型我们称之为全模型(full Model,FM )通过对某些回归系数进⾏假设,使其取指定的值,把这些指定的值带⼊全模型中,得到的模型称为简化模型(reduced model,RM )。
常⽤的简化⽅法将在之后介绍。
1、F 检验检验是线性模型的假设检验中最常⽤的⼀种检验,通过值的⼤⼩可以判断提出的假设是否合理,即是否接受简化模型。
1. 为检验我们的假设是否合理,即评估简化模型相对全模型拟合效果是否⼀样好,需要先建⽴对两个模型拟合效果的评价⽅法。
这⾥我们通过计算模型的残差平⽅和()来衡量模型拟合数据时损失的信息量,也表⽰模型的拟合效果。
线性回归算法原理
线性回归是一种预测模型,用于建立自变量(输入)与因变量(输出)之间的线性关系。
其原理基于最小二乘法,通过拟合一条最优直线来描述数据点的分布趋势。
线性回归假设自变量与因变量之间存在线性关系,可以表示为
y = β0 + β1x + ε,其中 y 是因变量,x 是自变量,β0 和β1 是
回归系数,ε 是随机误差项。
回归系数的求解过程是通过最小化残差平方和来实现的,即找到使得∑(yi - β0 - β1xi)² 最小化的β0 和β1。
求解过程主要利用了最小二乘法,该方法通过对误差的平方和进行求导,使得导数等于零得到回归系数的估计值。
对于简单线性回归来说,只有一个自变量,回归方程可以表示为y = β0 + β1x + ε。
而对于多元线性回归,有多个自变量,回归方程可以表示为y = β0 + β1x1 + β2x2 + ... + βnxn + ε。
线性回归模型在实际应用中具有广泛的适用性,特别是在预测和预测分析领域。
它可以用来解决许多实际问题,如房价预测、销售量预测、趋势分析等。
sklearn - 线性回归(正规方程与梯度下降)一: 线性回归方程线性回归(英语:linear regression)是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。
这种函数是一个或多个称为回归系数的模型参数的线性组合。
只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。
这些模型被叫做线性模型。
最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。
不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。
像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X 和y的联合概率分布(多元分析领域)。
线性回归有很多实际用途。
分为以下两大类:如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。
当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y给定一个变量y和一些变量X1X1.,XpXp{displaystyleX_{1}}X_1.,{displaystyle X_{p}}X_pX1?X1?.,Xp?Xp?,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的,XjXj{displaystyle X_{j}}X_jXj?Xj?并识别出哪些XjXj{displaystyle X_{j}}X_jXj?Xj?的子集包含了关于y的冗余信息。
使用sklearn线性回归模型(jupyter)这里我们以波士顿的房价数据来进行使用分析(一): 导入sklearnimport numpy as np# 线性回归,拟合方程,求解系数, 一次幂# 线性方程:直来直去,不拐弯from sklearn.linear_model import LinearRegression# 导入数据集from sklearn import datasets# 导入数据分离的方法(获取数据后,一部分数据用来让回归模型学习,另一部分用来预测)from sklearn.model_selection import train_test_split(二): 获取波士顿房价数据# 获取的数据是numpy,ndarray类型data = datasets.load_boston()# 该数据内有完整的影响房价的因素和完整的房价信息,本次实验就是将数据分为两部分, 一部分用来训练模型,另一部分用来预测,最后将预测出来的数据和已有的完整信息进行对比,判断该模型是否适用于这组房价数据data # 查看data的数据结构data.feature_names # 查看影响房价的属性名# x是属性,特征,未知数X = data['data']X.shape # 运行结果是(506, 13), 506表示样本是506个, 每个样本采集了13个属性特征;13个属性,需要构建构建了13元一次方程# y是房价的估值y = data['target']# X, y = datasets.load_boston(True) 获取到X, y的值和以上的一样(三): 使用模型进行预测X_train, X_test, y_train, y_test = train_test_split(X, y) # 将数据进行分离(默认是3:1); train_test_split(X, y)函数会随机打乱顺序display(X_train.shape, X_test.shape) # (379, 13) ; (127, 13) # 声明算法linear = LinearRegression()# 训练模型linear.fit(X_train, y_train) # X_train, y_train是之前分离出来用来训练模型的数据y_ = linear.predict(X_test).round(1) # X_test是影响房价的因素,该预测模型能根据影响房价的因素预测剩余部分的房价# 预估数据和实际数据比较print(y_)print(y_test)经过估计数据和实际数据对比,说明算法模型适用于数据(四): 自建方程预测数据与使用线性模型得到的数据对比假设波士顿的房价数据符合线性回归的特性,则我们可以通过构建线性方程来预测波士顿剩余部分的房价信息根据一次线性回归方程: f(X)=Xw+bf(X) = Xw+bf(X)=Xw+b 可推导得出: f(X)=w1x1+W2x2+.+w13x13+b f(X) = w_1x_1+W_2x_2+.+w_{13}x_{13} +bf(X)=w1?x1?+W2?x2?+.+w13?x13?+b (有13个影响房价的因素)代码如下:# 通过训练模型,可从模型中得出系数ww_ = linear.coef_# 通过训练模型,可从模型中得出截距bb_ = linear.intercept_# 自建方程def fun(w_, b_, X):return np.dot(X, w_)+b_# 调用方程得到预估的房价信息fun(w_, b_, X_test).round(1) # round(1)保留一位小数array([31.3, 13.4, 28.6, 20.5, 20.4, 19.4, 32.2, 24. , 25.8, 29.5,24.5,25.2, 31.9, 8.2, 20.9, 29.3, 22.3, 35.2, 16.4, 18.5, 30.8, 41.1,16.2, 13.7, 17.7, 23.8, 7.8, 12. , 20.5, 15.3, 29.3, 26.8, 31.8,26. , 30.4, 39.2, 25.3, 40.7, 11.6, 27.3, 16.7, 18.8, 19.5, 19.9,20.7, 22.8, 17.4, 21.6, 23.3, 30. , 25.2, 23.7, 34.2, 18.2, 33.5,16. , 28.3, 14.1, 24.2, 16.2, 16.7, 23.5, 16. , 21.4, 21.8, 28.2,25.7, 31.2, 18.8, 26.4, 28.3, 21.9, 27.5, 27.1, 27.1, 15. , 26. ,26.3, 13.2, 13.3, 26.1, 20.5, 16.8, 24.3, 36.6, 21.4, 8.3, 27.8,3.6, 19.2, 27.5, 33.6, 28.4, 34.3, 28.2, 13.3, 18. , 23.5, 30.4,32.9, 23.7, 30.5, 19.8, 19.5, 18.7, 30.9, 36.3, 8. , 18.2, 13.9,15. , 26.4, 24. , 30.2, 20. , 5.6, 21.4, 22.9, 17.6, 32.8, 22.1,32.6, 20.9, 19.3, 23.1, 21. , 21.5])# 使用sklesrn中的线性模型得到的预估房价信息linear.predict(X_test).round(1)array([31.3, 13.4, 28.6, 20.5, 20.4, 19.4, 32.2, 24. , 25.8, 29.5,24.5,25.2, 31.9, 8.2, 20.9, 29.3, 22.3, 35.2, 16.4, 18.5, 30.8, 41.1,16.2, 13.7, 17.7, 23.8, 7.8, 12. , 20.5, 15.3, 29.3, 26.8, 31.8,26. , 30.4, 39.2, 25.3, 40.7, 11.6, 27.3, 16.7, 18.8, 19.5, 19.9,20.7, 22.8, 17.4, 21.6, 23.3, 30. , 25.2, 23.7, 34.2, 18.2, 33.5,16. , 28.3, 14.1, 24.2, 16.2, 16.7, 23.5, 16. , 21.4, 21.8, 28.2,25.7, 31.2, 18.8, 26.4, 28.3, 21.9, 27.5, 27.1, 27.1, 15. , 26. ,26.3, 13.2, 13.3, 26.1, 20.5, 16.8, 24.3, 36.6, 21.4, 8.3, 27.8,3.6, 19.2, 27.5, 33.6, 28.4, 34.3, 28.2, 13.3, 18. , 23.5, 30.4,32.9, 23.7, 30.5, 19.8, 19.5, 18.7, 30.9, 36.3, 8. , 18.2, 13.9,15. , 26.4, 24. , 30.2, 20. , 5.6, 21.4, 22.9, 17.6, 32.8, 22.1,32.6, 20.9, 19.3, 23.1, 21. , 21.5])通过自建模型获取预估数据与使用模型获取预估数据进行比较,两组数据完全一致;(五): 使用线性回归,求解斜率和截距根据最小二乘法: min?w∣∣Xw?y∣∣22min_{w}||Xw-y||_2^2wmin?∣∣Xw?y∣∣22? 推到得出公式: w=(XTX)?1XTyw = (X^TX)^{-1}X^Tyw=(XTX)?1XTy 以上公式只能求出w,我们可以先求出w再计算出b;但此处我们有更简单的方法:根据线性回归方程f(x)=w1x1+w2x2+b f(x) = w_1x_1+w_2x_2+bf(x)=w1?x1?+w2?x2?+b 我们可以将方程中的b看成是w3x30w_3x_3^0w3?x30?,所以可得: f(x)=w1x11+w2x21+w3x30f(x) = w_1x_1^1+w_2x_2^1+w_3x_3^0f(x)=w1?x11?+w2?x21?+w3?x30?代码如下:import numpy as npfrom sklearn.linear_model import LinearRegressionfrom sklearn import datasetsX, y = datasets.load_boston(True)linear = LinearRegression()linear.fit(X,y)w_ = linear.coef_b_ = linear.intercept_# 向X中插入一列全是1的数据(任何数的0次方都是1)X = np.concatenate([X, np.ones(shape = (506, 1))], axis=1) # 根据最小二乘法的推导公式:w和b的值为(最后一个值是b)w = ((np.linalg.inv(X.T.dot(X))).dot(X.T)).dot(y)# 以上w的写法过于装逼,所以分解为:# A = X.T.dot(X) 求X和转置后的X的内积(公式中的XTX)# B = np.linalg.inv(A) 求A的逆矩阵(公式中的-1次方)# C = B.dot(X.T) 求以上矩阵和X的转置矩阵的内积(公式中的XT) # w = C.dot(y) 与y求内积,得出w和b运行结果:array([-1.08011358e-01, 4.64204584e-02, 2.05586264e-02, 2.68673382e+00,-1.77666112e+01, 3.80986521e+00, 6.92224640e-04, -1.47556685e+00,3.06049479e-01, -1.23345939e-02, -9.52747232e-01,9.31168327e-03,-5.24758378e-01, 3.64594884e+01])print(b_)运行结果:36.45948838509001扩展一: 最小二乘法和向量范数min?w∣∣Xw?y∣∣22min_{w}||Xw-y||_2^2wmi n?∣∣Xw?y∣∣22?右上角的2是平方右下角的2是向量2范数竖线内的表达式是向量根据最小二乘法的公式, 推导得出w=(XTX)?1XTyw = (X^TX)^{-1}X^Tyw=(XTX)?1XTy向量的1-范数(表示各个元素的绝对值的和)∣∣X∣∣1=∑i=1n∣xi∣||X||_1 = sumlimits_{i=1}^n |x_i|∣∣X∣∣1?=i=1∑n?∣xi?∣向量的2-范数(表示每个元素的平方和再开平方)∣∣X∣∣2=∑i=1nxi2||X||_2 = sqrt{suml imits_{i=1}^n x_i^2}∣∣X∣∣2?=i=1∑n?xi2?向量的无穷范数(所有向量元素绝对值中的最大值)∣∣X∣∣∞=max?1≥i≤n∣Xi∣||X||_{infty} = maxlimits_{1 geq i leq n}|X_i|∣∣X∣∣∞?=1≥i≤nmax?∣Xi?∣扩展二: 导数, 偏导数对函数f(x)=x2+3x+8f(x) = x^2+3x+8f(x)=x2+3x+8 求导得: f(x)′=2x+3f(x)' = 2x+3f(x)′=2x+3求导规则:参数求导为0参数乘变量求导为常数变量的次方求导: xyx^yxy求导为yxy?1yx^{y-1}yxy?1复合函数求导:$$(x^2-x)^2$$求导: 先将括号看成一个整体求导, 结果再乘以括号内的求导结果$$2(x^2-x)(2x-1)$$有多个变量得函数求导:对函数: f(x,y)=x2+xy+y2f(x, y) = x^2+xy+y^2f(x,y)=x2+xy+y2 求导:求导规则: 多变量函数只能针对某一个变量求导,此时将其他变量看成常数将x看成常数a: fa(y)=a2+ay+y2f_a(y) = a^2+ay+y^2fa?(y)=a2+ay+y2求导得:fa′(y)=a+2yf_a'(y) = a+2yfa′?(y)=a+2y故求导得: ?f?y(x,y)=x+2yfrac{partial f}{partial y}(x,y)=x+2y?y?f?(x,y)=x+2y实现线性回归的两种方式:正规方程梯度下降二: 正规方程(一): 损失函数最小二乘法:min?w∣∣Xw?y∣∣22minlimits_{w}||Xw-y||_2^2wmin?∣∣Xw?y∣∣22?当X和y都是常数时,按照向量2范数将上面的最小二乘法解开:f(w)=(Xw?y)2f(w)=(Xw-y)^2f(w)=(Xw?y)2将X,y替换成常数a,bf(w)=(aw?b)2f(w)=(aw-b)^2f(w)=(aw?b)2f(w)=a2w2?2abw+b2f(w)=a^2w^2 - 2abw + b^2f(w)=a2w2?2abw+b2 由于最小二乘法方程的函数值都是大雨或等于0的,所以此时得到一个开口向上的抛物线(一元二次方程)此时的f(w)f(w)f(w)就是损失函数,在此时求该函数的导数(抛物线函数顶点的导数为0)就能得到该函数的最小值,也就是最小损失f′(w)=2a2w?2ab=0f'(w)=2a^2w-2ab=0f′(w)=2a2w?2ab=0(二): 矩阵常用求导公式X的转置矩阵对X矩阵求导, 求解出来是单位矩阵dXTdX=Ifrac{dX^T}{dX} = IdXdXT?=IdXdXT=Ifrac{dX}{dX^T} = IdXTdX?=IX的转置矩阵和一个常数矩阵相乘再对X矩阵求导, 求解出来就是改常数矩阵dXTAdX=Afrac{dX^TA}{dX} = AdXdXTA?=AdAXdX=ATfrac{dAX}{dX} = A^TdXdAX?=ATdXAdX=ATfrac{dXA}{dX} = A^TdXdXA?=ATdAXdXT=Afrac{dAX}{dX^T} = AdXTdAX?=A(三): 正规方程矩阵推导过程此时X,w,y都是矩阵1: 公式化简1: 最小二乘法:f(w)=∣∣Xw?y∣∣22f(w) = ||Xw-y||_2^2f(w)=∣∣Xw?y∣∣22?2: 向量2范数:∣∣X∣∣2=∑i=1nxi2||X||_2 = sqrt{sumlimits_{i = 1}^nx_i^2}∣∣X∣∣2?=i=1∑n?xi2?3: 将向量2范数的公式带入到最小二乘法中得:f(w)=((Xw?y)2)2f(w)=(sqrt{(Xw-y)^2})^2f(w)=((Xw?y)2?)2f(w)=(Xw?y)2f(w)=(Xw-y)^2f(w)=(Xw?y)2由于X, w, y都是矩阵, 运算后还是矩阵; 矩阵得乘法是一个矩阵得行和另一个矩阵得列相乘; 所以矩阵的平方就是该矩阵乘以他本身的转置矩阵f(w)=(Xw?y)T(Xw?y)f(w)=(Xw-y)^T(Xw-y)f(w)=(Xw?y)T(Xw?y)注意: 整体转置变成每个元素都转置时,若是有乘法, 则相乘的两个矩阵要交换位置; 如下所示!f(w)=(wTXT?yT)(Xw?y)f(w)=(w^TX^T-y^T)(Xw-y)f(w)=(wTXT?yT)(Xw y)f(w)=wTXTXw?wTXTy?yTXw+yTyf(w)=w^TX^TXw-w^TX^Ty-y^TXw+y^Tyf( w)=wTXTXw?wTXTy?yTXw+yTy注意: 若想交换两个相乘的矩阵在算式中的位置,则交换之后双方都需要转置一次; 如下所示!f(w)=wTXTXw?(XTy)T(wT)T?yTXw+yTyf(w)=w^TX^TXw-(X^Ty)^T(w^T)^ T-y^TXw+y^Tyf(w)=wTXTXw?(XTy)T(wT)T?yTXw+yTyf(w)=wTXTXw?yTXw?yTXw+yTyf(w)=w^TX^TXw-y^TXw-y^TXw+y^Tyf(w)= wTXTXw?yTXw?yTXw+yTyf(w)=wTXTXw?2yTXw+yTyf(w) = w^TX^TXw - 2y^TXw + y^Ty f(w)=wTXTXw?2yTXw+yTyf(w)=wTXTXw?2yTXw+yTyf(w) = w^TX^TXw - 2y^TXw + y^Ty f(w)=wTXTXw?2yTXw+yTy这里 yTyy^TyyTy 是常数求导后为02yTXw2y^TXw2yTXw 求导:d(2yTX)wdw=(2yTX)T=2XT(yT)T=2XTyfrac{d(2y^TX)w}{dw}=(2y^TX)^ T=2X^T(y^T)^T=2X^Tydwd(2yTX)w?=(2yTX)T=2XT(yT)T=2XTy wTXTXww^TX^TXwwTXTXw求导:dwTXTXwdw=d(wTXTX)wdw+dwT(XTXw)dw=(wTXTX)T+XTXw=XT(XT)T(wT)T +XTXw=2XTXwfrac{dw^TX^TXw}{dw}=frac{d(w^TX^TX)w}{dw}+frac{dw^T(X^TXw)}{dw}=(w^TX^TX)^T+X^TXw=X^T(X^T)^T(w^T)^T+X^TXw=2X^TXwdwd wTXTXw?=dwd(wTXTX)w?+dwdwT(XTXw)?=(wTXTX)T+XTXw=XT(XT)T(wT)T+XT Xw=2XTXwf′(w)=2XTXw?2XTyf'(w) = 2X^TXw - 2X^Tyf′(w)=2XTXw?2XTy令f′(w)=0f'(w)=0f′(w)=0,则:2XTXw?2XTy=02X^TXw - 2X^Ty = 02XTXw?2XTy=0XTXw=XTyX^TXw=X^TyXTXw=XTy矩阵运算没有除法,可以用逆矩阵实现除法的效果等式两边同时乘以XTXX^TXXTX的逆矩阵(XTX)?1(X^TX)^{-1}(XTX)?1 (XTX)?1(XTX)w=(XTX)?1XTy(X^TX)^{-1}(X^TX)w=(X^TX)^{-1}X^Ty(X TX)?1(XTX)w=(XTX)?1XTyIw=(XTX)?1XTyIw=(X^TX)^{-1}X^TyIw=(XTX)?1XTy I是单位矩阵得到正规方程:w=(XTX)?1XTyw=(X^TX)^{-1}X^Tyw=(XTX)?1XTy(四): 数据挖掘实例(预测2020年淘宝双十一交易额)import numpy as npimport matplotlib.pyplot as pltfrom sklearn.linear_model import LinearRegressionX = np.arange(2009, 2020) # 年份X = X -2008 # 年份数值太大,差别不明显y = np.array([0.5, 9.36, 52, 191, 350, 571, 912, 1207, 1682, 2135, 2684]) # 09年到19年的交易额假设X和y之间是一元三次的关系(按照前几年的数据走势提出的假设)f(x)=w1x+w2x2+w3x3+bf(x)=w_1x+w_2x^2+w_3x^3+bf(x)=w1?x+w2?x2 +w3?x3+bf(x)=w0x0+w1x1+w2x2+w3x3f(x)=w_0x^0+w_1x^1+w_2x^2+w_3x^3f(x) =w0?x0+w1?x1+w2?x2+w3?x3# X_oo = np.concatenate([a,a]) # 横着级联X_train = np.c_[X**0, X**1, X**2, X**3] # 竖着级联array([[ 1, 1, 1, 1],[ 1, 2, 4, 8],[ 1, 3, 9, 27],[ 1, 4, 16, 64],[ 1, 5, 25, 125],[ 1, 6, 36, 216],[ 1, 7, 49, 343],[ 1, 8, 64, 512],[ 1, 9, 81, 729],[ 1, 10, 100, 1000],[ 1, 11, 121, 1331]], dtype=int32)linear = LinearRegression(fit_intercept=False) # 声明算法; fit_intercept=False将截距设置为0, w0就是截距linear.fit(X_train, y) # 训练w_ = linear.coef_print(linear.coef_.round(2)) # 获取系数print(linear.intercept_) # 获取截距[ 58.77 -84.06 27.95 0.13]可以得到方程:f(x)=58.77?84.06x+27.95x2+0.13x3f(x)=58.77-84.06x+27.95x^2+0 .13x^3f(x)=58.77?84.06x+27.95x2+0.13x3X_test = np.linspace(0,12,126) # 线性分割(将0,12之间分成126分)等差数列包含1和12X_test = np.c_[X_test**0, X_test**1, X_test**2, X_test**3] # 和训练数据保持一致y_ = linear.predict(X_test) # 使用模型预测plt.plot(np.linspace(0,12,126), y_, color='g') # 绘制预测方程曲线plt.scatter(np.arange(1,12), y, color='red') # 绘制每年的真实销量# 定义函数fun = lambda x : w_[0] + w_[1]*x + w_[2]*x**2 + w_[-1]*x**3 '''3294.2775757576132'''三: 梯度下降梯度下降法的基本思想可以类比为一个下山的过程。