一元非线性回归分析
- 格式:ppt
- 大小:355.50 KB
- 文档页数:15
非线性回归分析常见曲线及方程Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】非线性回归分析回归分析中,当研究的因果关系只涉及和一个时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。
此外,回归分析中,又依据描述自变量与因变量之间因果关系的表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。
通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理两个现象变量之间的相关关系并非线性关系,而呈现某种非线性的曲线关系,如:双曲线、二次曲线、三次曲线、幂函数曲线、指数函数曲线(Gompertz)、S型曲线(Logistic) 对数曲线、指数曲线等,以这些变量之间的曲线相关关系,拟合相应的回归曲线,建立非线性回归方程,进行回归分析称为非线性回归分析常见非线性规划曲线1.双曲线1bay x =+2.二次曲线3.三次曲线4.幂函数曲线5.指数函数曲线(Gompertz)6.倒指数曲线y=a/e b x其中a>0,7.S型曲线(Logistic)1e x ya b-=+8.对数曲线y=a+b log x,x>09.指数曲线y=a e bx其中参数a>01.回归:(1)确定回归系数的命令[beta,r,J]=nlinfit(x,y,’model’,beta0)(2)非线性回归命令:nlintool(x,y,’model’, beta0,alpha)2.预测和预测误差估计:[Y,DELTA]=nlpredci(’model’, x,beta,r,J)求nlinfit 或lintool所得的回归函数在x处的预测值Y及预测值的显着性水平为1-alpha的置信区间Y,DELTA.例2 观测物体降落的距离s与时间t的关系,得到数据如下表,求s关于t的回归方程2ˆct=.+btas+解:1. 对将要拟合的非线性模型y=a/e b x,建立M文件如下:function yhat=volum(beta,x)yhat=beta(1)*exp(beta(2)./x);2.输入数据:x=2:16;y=[ 10];beta0=[8 2]';3.求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta即得回归模型为:1.064111.6036e x y-=4.预测及作图:[YY,delta]=nlpredci('volum',x',beta,r ,J); plot(x,y,'k+',x,YY,'r')2.非线性函数的线性化曲线方程曲线图形变换公式变换后的线性函数by ax=ln ln ln c a v x u y=== u c bv +=bx y ae =ln ln c a u y==u c bv +=b xe y a=1ln ln x c a v u y===u c bv +=ln y a b x +=ln v x u y== u bv +=a。
非线性回归分析随着数据科学和机器学习的发展,回归分析成为了数据分析领域中一种常用的统计分析方法。
线性回归和非线性回归是回归分析的两种主要方法,本文将重点探讨非线性回归分析的原理、应用以及实现方法。
一、非线性回归分析原理非线性回归是指因变量和自变量之间的关系不能用线性方程来描述的情况。
在非线性回归分析中,自变量可以是任意类型的变量,包括数值型变量和分类变量。
而因变量的关系通常通过非线性函数来建模,例如指数函数、对数函数、幂函数等。
非线性回归模型的一般形式如下:Y = f(X, β) + ε其中,Y表示因变量,X表示自变量,β表示回归系数,f表示非线性函数,ε表示误差。
二、非线性回归分析的应用非线性回归分析在实际应用中非常广泛,以下是几个常见的应用领域:1. 生物科学领域:非线性回归可用于研究生物学中的生长过程、药物剂量与效应之间的关系等。
2. 经济学领域:非线性回归可用于经济学中的生产函数、消费函数等的建模与分析。
3. 医学领域:非线性回归可用于医学中的病理学研究、药物研发等方面。
4. 金融领域:非线性回归可用于金融学中的股票价格预测、风险控制等问题。
三、非线性回归分析的实现方法非线性回归分析的实现通常涉及到模型选择、参数估计和模型诊断等步骤。
1. 模型选择:在进行非线性回归分析前,首先需选择适合的非线性模型来拟合数据。
可以根据领域知识或者采用试错法进行模型选择。
2. 参数估计:参数估计是非线性回归分析的核心步骤。
常用的参数估计方法有最小二乘法、最大似然估计法等。
3. 模型诊断:模型诊断主要用于评估拟合模型的质量。
通过分析残差、偏差、方差等指标来评估模型的拟合程度,进而判断模型是否适合。
四、总结非线性回归分析是一种常用的统计分析方法,可应用于各个领域的数据分析任务中。
通过选择适合的非线性模型,进行参数估计和模型诊断,可以有效地拟合和分析非线性关系。
在实际应用中,需要根据具体领域和问题的特点来选择合适的非线性回归方法,以提高分析结果的准确性和可解释性。
非线性回归分析回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。
此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。
通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理 两个现象变量之间的相关关系并非线性关系,而呈现某种非线性的曲线关系,如:双曲线、二次曲线、三次曲线、幂函数曲线、指数函数曲线(Gompertz)、S 型曲线(Logistic) 对数曲线、指数曲线等,以这些变量之间的曲线相关关系,拟合相应的 回归曲线,建立非线性回归方程,进行回归分析称为非线性回归分析常见非线性规划曲线1. 双曲线1b a y x =+2.二次曲线 3.三次曲线 4.幂函数曲线 5.指数函数曲线(Gompertz) 6.倒指数曲线y=a /e b x 其中a>0, 7.S 型曲线(Logistic) 1e x y a b -=+ 8.对数曲线 y=a+b log x,x >0 9. 指数曲线y =a e bx 其中参数a >01.回归:(1)确定回归系数的命令[beta ,r ,J]=nlinfit (x,y,’model’,beta0)(2)非线性回归命令:nlintool (x ,y ,’model’, beta0,alpha )2.预测和预测误差估计:[Y ,DELTA]=nlpredci (’model’, x,beta ,r ,J )求nlinfit 或lintool 所得的回归函数在x 处的预测值Y 及预测值的显著性水平为1-alpha 的置信区间Y ,DELTA.例2 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s关于t 的回归方程2ˆct bt a s++=. 解:1. 对将要拟合的非线性模型y=a /e b x ,建立M 文件volum.m 如下:function yhat=volum(beta,x)yhat=beta(1)*exp(beta(2)./x);2.输入数据:x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.5910.60 10.80 10.60 10.90 10.76];beta0=[8 2]';3.求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta即得回归模型为:1.064111.6036e x y-=4.预测及作图:[YY,delta]=nlpredci('volum',x',beta,r ,J); plot(x,y,'k+',x,YY,'r')2.非线性函数的线性化。
非线性回归分析简介在统计学和机器学习领域,回归分析是一种重要的数据分析方法,用于研究自变量和因变量之间的关系。
在实际问题中,很多情况下自变量和因变量之间的关系并不是简单的线性关系,而是呈现出一种复杂的非线性关系。
因此,非线性回归分析应运而生,用于描述和预测这种非线性关系。
本文将介绍非线性回归分析的基本概念、方法和应用。
一、非线性回归分析概述1.1 非线性回归模型在回归分析中,最简单的模型是线性回归模型,即因变量和自变量之间的关系可以用一个线性方程来描述。
但是在实际问题中,很多情况下因变量和自变量之间的关系并不是线性的,而是呈现出曲线、指数、对数等非线性形式。
这时就需要使用非线性回归模型来拟合数据,通常非线性回归模型可以表示为:$$y = f(x, \beta) + \varepsilon$$其中,$y$为因变量,$x$为自变量,$f(x, \beta)$为非线性函数,$\beta$为参数向量,$\varepsilon$为误差项。
1.2 非线性回归分析的优势与线性回归相比,非线性回归分析具有更强的灵活性和适用性。
通过使用适当的非线性函数,可以更好地拟合实际数据,提高模型的预测能力。
非线性回归分析还可以揭示数据中潜在的复杂关系,帮助研究人员更好地理解数据背后的规律。
1.3 非线性回归分析的挑战然而,非线性回归分析也面临一些挑战。
首先,选择合适的非线性函数是一个关键问题,需要根据实际问题和数据特点进行合理选择。
其次,非线性回归模型的参数估计通常比线性回归模型更复杂,需要使用更为复杂的优化算法进行求解。
因此,在进行非线性回归分析时,需要谨慎选择模型和方法,以确保结果的准确性和可靠性。
二、非线性回归分析方法2.1 常见的非线性回归模型在实际应用中,有许多常见的非线性回归模型,常用的包括多项式回归模型、指数回归模型、对数回归模型、幂函数回归模型等。
这些模型可以根据实际问题的特点进行选择,用于描述和预测自变量和因变量之间的非线性关系。
非线性回归分析简介非线性回归分析是一种用于建立非线性关系模型的统计方法。
与线性回归不同,非线性回归可以更好地拟合非线性数据,提供更准确的预测结果。
在许多实际问题中,数据往往呈现出非线性的趋势,因此非线性回归分析在实际应用中具有广泛的应用价值。
一、非线性回归模型的基本形式非线性回归模型的基本形式可以表示为:y = f(x, β) + ε其中,y是因变量,x是自变量,β是模型参数,f(x, β)是非线性函数,ε是误差项。
非线性函数可以是任意形式的函数,如指数函数、对数函数、幂函数等。
二、非线性回归模型的参数估计与线性回归不同,非线性回归模型的参数估计不能直接使用最小二乘法。
常见的非线性回归参数估计方法有以下几种:1. 非线性最小二乘法(NLS)非线性最小二乘法是一种常用的参数估计方法,它通过最小化残差平方和来估计模型参数。
具体而言,通过迭代的方式不断调整参数,使得残差平方和最小化。
2. 非线性广义最小二乘法(GNLS)非线性广义最小二乘法是对非线性最小二乘法的改进,它在最小化残差平方和的同时,还考虑了误差项的方差结构。
通过引入权重矩阵,可以更好地处理异方差性的数据。
3. 非线性加权最小二乘法(WNLS)非线性加权最小二乘法是对非线性广义最小二乘法的进一步改进,它通过引入加权矩阵,对不同数据点赋予不同的权重。
可以根据数据的特点,调整权重矩阵,提高模型的拟合效果。
三、非线性回归模型的评估指标在进行非线性回归分析时,需要对模型进行评估,以确定模型的拟合效果。
常见的评估指标有以下几种:1. 残差分析残差分析是一种常用的评估方法,通过分析残差的分布情况,判断模型是否符合数据的分布特征。
如果残差呈现随机分布,说明模型拟合效果较好;如果残差呈现一定的规律性,说明模型存在一定的问题。
2. 决定系数(R-squared)决定系数是衡量模型拟合优度的指标,其取值范围为0到1。
决定系数越接近1,说明模型对数据的解释能力越强;决定系数越接近0,说明模型对数据的解释能力越弱。
【一元非线性回归分析例题】商店销售额与流通率的非线性回归分析下列数据是九个商店的销售额与流通率的有关数据表销售额与流通费率数据MATLAB数据处理与分析1.绘制散点图x=[1.5, 4.5, 7.5,10.5,13.5,16.5,19.5,22.5,25.5];y=[7.0,4.8,3.6,3.1,2.7,2.5,2.4,2.3,2.2];sdt(x,y)2.拟合倒幂函数曲线nlin1(x,y)拟合曲线方程是y=2.2254+7.6213/x剩余标准误差Sy=0.42851可决系数R=0.96733'方差来源' '偏差平方和' '自由度' '方差' ' F值' 'F临界值''显著性''回归' [18.7146] [ 1] [18.7146] [101.9186] [ 5.5914]'* *''剩余' [ 1.2854] [ 7] [ 0.1836] [] [12.2464] []'总和' [ 20] [ 8] [] [] [] []3.拟合幂函数曲线nlin3(x,y)拟合曲线方程是y=8.5173x^-0.42589剩余标准误差Sy=0.146可决系数R=0.99626'方差来源' '偏差平方和' '自由度' '方差' ' F值' ' F临界值''显著性''回归' [19.8508] [ 1] [19.8508] [931.2285] [ 5.5914]'* *''剩余' [ 0.1492] [ 7] [ 0.0213] [] [12.2464] []'总和' [ 20] [ 8] [] [] [] []4.拟合指数函数曲线nlin5(x,y)拟合曲线方程是y=2.3957exp(1.7808/x)剩余标准误差Sy=0.6497可决系数R=0.92318'方差来源' '偏差平方和' '自由度' '方差' 'F值' ' F临界值' '显著性''回归' [17.0452] [ 1] [17.0452] [40.3812] [ 5.5914]'* *''剩余' [ 2.9548] [ 7] [ 0.4221] [] [12.2464] []'总和' [ 20] [ 8] [] [] [] []5.拟合对数函数曲线nlin6(x,y)拟合曲线方程是y=1632.5-1.713log(x)剩余标准误差Sy=0.2762可决系数R=0.98656'方差来源' '偏差平方和' '自由度' '方差' ' F值' ' F临界值' '显著性''回归' [19.4660] [ 1] [19.4660] [255.1773] [ 5.5914]'* *'剩余' [ 0.5340] [ 7] [ 0.0763] [] [12.2464] []'总和' [ 20] [ 8] [] [] [] []【说明】函数nlin1,nlin2,nlin3,nlin4,nlin5,nlin6,nlin7分别用来拟合第一(倒幂函数)、二(双曲线)、三(幂函数)、四(指数函数)、五(倒指数函数)、六(对数函数)、七(S型曲线)种类型曲线求非线性回归的回归方程函数,并在同一个图形中绘制散点图和回归线图.这几个函数的调用方式相同,以第一个函数为例[S,Sy,r2,table]=nlin1(x,y)输入参数x,y是长度相等的两个向量.输出参数个数可选如果没有输出参数,则在命令窗口中显示回归线方程,剩余标准误差、可决系数、方差分析表,并绘制散点图和拟合曲线图.如果有输出参数,第一个输出参数是拟合曲线方程.如果有两个输出参数,第二个输出参数是剩余标准误差Sy.如果有三个输出参数,第三个输出参数是可决系数.如果有四个输出参数,第四个输出参数是方差分析表.。
非线性回归问题,知识目标:通过典型案例的探讨,进一步学习非线性回归模型的回归分析。
能力目标:会将非线性回归模型通过降次和换元的方式转化成线性化回归模型。
情感目标:体会数学知识转变无穷的魅力。
教学要求:通过典型案例的探讨,进一步了解回归分析的大体思想、方式及初步应用.教学重点:通过探讨使学生体会有些非线性模型通过变换能够转化为线性回归模型,了解在解决实际问题的进程中寻觅更好的模型的方式.教学难点:了解常常利用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较.教学方式:合作探讨 教学进程:一、温习预备:对于非线性回归问题,而且没有给出经验公式,这时咱们能够画出已知数据的散点图,把它与必修模块《数学1》中学过的各类函数(幂函数、指数函数、对数函数等)的图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量代换,把问题转化为线性回归问题,使其取得解决. 二、教学新课:1. 探讨非线性回归方程的肯定:1. 给出例1:一只红铃虫的产卵数y 和温度x 有关,现搜集了7组观测数据列于下表中,试成立y 与x 之间的/y 个 (学生描述步骤,教师演示)2. 讨论:观察右图中的散点图,发觉样本点并无散布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来成立两个变量之间的关系.① 若是散点图中的点散布在一个直线状带形区域,能够选线性回归模型来建模;若是散点图中的点散布在一个曲线状带形区域,就需选择非线性回归模型来建模.② 按照已有的函数知识,能够发觉样本点散布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量.③ 在上式两边取对数,得21ln ln y c x c =+,再令ln z y =,则21ln z c x c =+,能够用线性回归方程来拟合.④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为0.272 3.843z x =-,因此红铃虫的产卵数对温度的非线性回归方程为0.272 3.843x y e -=.⑤ 利用回归方程探讨非线性回归问题,可按“作散点图→建模→肯定方程”这三个步骤进行.其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 三、合作探讨例 2.:炼钢厂出钢时所用的盛钢水的钢包,在利用进程中,由于钢液及炉渣对包衬耐火材料的侵蚀,使其容积不断增大,请按照表格中的数据找出利用次数x 与增大的容积y 之间的关系.【解】先按如实验数据作散点图,如图所示:z =a ′+bt ,t 、z 的数值对应表为:【题后点评】作出散点图,由散点图选择适合的回归模型是解决本题的关键,在这里线性回归模型起了转化的作用.例2:一只红铃虫的产卵数y 和温度x 有关,现搜集了7组观测数据列于下表中,试成立y 与x 之间的回归方程./y 个 二、讨论:观察右图中的散点图,发觉样本点并无散布在某个带状区域内,即两个变量呈非线性相关关系,所以不能直接....用线性回归方程来成立两个变量之间的关系. ① 若是散点图中的点散布在一个直线状带形区域,能够选线性回归模型来建模;若是散点图中的点散布在一个曲线状带形区域,就需选择非线性回归模型.......来建模. ② 按照已有的函数知识,能够发觉样本点散布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待z =a ′+bt ,t 、z 的数值对应表为:从图中可以看出x 与y 之间不存在线性相关关系. 但仔细分析一下,知道钢包开始使用时侵蚀速度快, 然后逐渐减慢.显然,钢包容积不会无限增大,它必 有一条平行于x 轴的渐近线.于是根据这一特点,我们试设指数型函数曲线y =a e bx.对它两边取对数得ln y =ln a +bx .令z =ln y ,t =1x,a ′=ln a ,则上式可写为线性方程:定的参数),故可用指数函数模型来拟合这两个变量.③ 在上式两边取对数,得21ln ln y c x c =+,再令ln z y =,则21ln z c x c =+,而z 与x 间的关系如下:观察z 与x 的散点图,能够发觉变换后样本点散布在一条直线的周围,因此能够用线性回归方程来拟合.④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为0.272 3.843z x =-,因此红铃虫的产卵数对温度的非线性回归方程为0.272 3.843x y e -=.⑤ 利用回归方程探讨非线性回归问题,可按“作散点图→建模→肯定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 2. 小结:用回归方程探讨非线性回归问题的方式、步骤. 3、常见的非线性回归模型 ⑴ 幂函数曲线 y=ax b处置方式:两边取自然对数得:lny=lna+blnx; 再设{yy x x ln ln ,,==则原方程变成 y ′=lna+bx ′,再按照一次线性回归模型的方式得出lna 和b ⑵ 指数曲线 y=ae bx处置方式: 两边取自然对数得:lny=lna+bx; 再设{yy x x ln ,,==则原方程变成 y ′=lna+bx ′,再按照一次线性回归模型的方式得出lna 和b⑶ 倒指数曲线 xb ae y =处置方式:两边取自然对数得:lny=lna+x b; 再设⎩⎨⎧==y y xx ln 1,,则原方程变成 y ′=lna+bx ′,再按照一次线性回归模型的方式得出lna 和b ⑷ 对数曲线 y=a+blnx 处置方式:设{yy xx ==,,ln 则原方程变成 y ′=a+bx ′,再按照一次线性回归模型的方式得出a 和b三、巩固练习:为了研究某种细菌随时刻x 转变,繁衍的个数,搜集数据如下: 1)用天数作解释变量,繁衍个数作预报变量,作出这些数据的散点图;2)试求出预报变量对解释变量的回归方程.(答案:所求非线性回归方程为0.69 1.112ˆy=e x +.) 四、作业布置:讲义第13页的练习题。