单个球面的折射
- 格式:ppt
- 大小:579.50 KB
- 文档页数:14
单球面折射成像公式(一)单球面折射成像公式及其相关公式1. 折射定律•公式:n1d1+n2d2=n2−n1R•解释:折射定律描述了光线从一个介质经过界面进入另一个介质时的折射行为,其中n1和n2为光线所在介质的折射率,d1和d2为入射光线和折射光线与法线的夹角的正切值,R为介质间的曲率半径。
2. 维梅尔公式•公式:n1v1−n2v2=(n2−n1)R•解释:维梅尔公式是折射定律的一种形式,其中n1和n2为介质的折射率,v1和v2为光线在介质中的光速,R为介质间的曲率半径。
3. 焦距与物距、像距的关系•公式:1f =(n−1)(1r1−1r2)•解释:该公式描述了球面透镜的焦距与物距、像距之间的关系,其中f为焦距,n为透镜的折射率,r1和r2分别为透镜两个表面的曲率半径。
4. 薄透镜成像公式•公式:1f =1d o+1d i•解释:薄透镜成像公式描述了薄透镜对光线的成像行为,其中f 为透镜的焦距,d o为物体距离透镜的距离,d i为像距。
5. 球面镜成像公式凸透镜成像公式•公式:1f =1d o+1d i•解释:凸透镜成像公式描述了凸透镜对光线的成像行为,其中f 为透镜的焦距,d o为物体距离透镜的距离,d i为像距。
凹透镜成像公式•公式:1f =1d o−1d i•解释:凹透镜成像公式描述了凹透镜对光线的成像行为,其中f 为透镜的焦距,d o为物体距离透镜的距离,d i为像距。
6. 求物距、像距和焦距的公式物距公式•公式:1d i −1f=1d o•解释:物距公式描述了物体距离透镜和像距之间的关系,其中f 为透镜的焦距,d o为物体距离透镜的距离,d i为像距。
像距公式•公式:1d i +1f=1d o•解释:像距公式描述了物体距离透镜和像距之间的关系,其中f 为透镜的焦距,d o为物体距离透镜的距离,d i为像距。
焦距公式•公式:f=d o⋅d id o+d i•解释:焦距公式描述了透镜的焦距与物距、像距之间的关系,其中d o为物体距离透镜的距离,d i为像距。
§3-5 光在球面上的反射和折射单独一个球面不仅是一个简单的光学系统,而且是组成光学仪器的基本元件,研究光经由球面的反射和折射,是一般光学系统成象的基础。
一、符号法则为了研究光线经由球面反射和折射后的光路,必须先说明一些概念以及规定一些适当的符号法则,以便使所得的结果能普遍适用。
(图3-12)图3-12中的AOB 所示球面的一部分,这部分球面的中心点O 称为顶点,球面的球心C 称为曲率中心,球面的半径称为曲率半径,连接顶点的曲率中心的直线CO 称为主轴,通过主轴的平面称为主截面,主轴对于所有的主截面具有对称性,因而我们只须讨论一个主截面内光线的反射。
图3-12表示球面的一个主截面。
在计算任一条光线的线段长度和角度时,我们对符号作如下规定。
(1)光线和主轴交点的位置都从顶点算起,凡在顶点右方者,其间距离的数值为正;凡在顶点左方者,其间距离的数值为负,物点或象点至主轴的距离,在主轴上方为正,在下方为负。
(2)光线方向的倾斜角度都从主轴(或球面法线)算起,并取小于2π的角度,由主轴(或球面法线)转向有关光线时,若沿顺时针方向转,则该角度的数值为正;若沿逆时针方向转动的,则该角度的数值为负(在考虑角度的符号时,不必考虑组成该角度两边的线段的符号)。
(3)在图中出现的长度和角度(几何量)只用正值,例如s 表示的某线段值是负的,则应用()s -来表示该线值的几何长度。
以下讨论的都是假定光线自左向右进行。
二、球面反射对光束单心性的破坏在图3-12中,一个从点光源P 发出的光波从左向右入射到曲率中心为C ,顶点为O ,曲率半径为γ的一个凹球面镜上,光线PA 经球面镜AOB 反射后,在'P 点与主轴相交,令 '',,'',ττ==-=-=AP PA s O P s PO半径AC 与主轴的夹角为ϕ,则光线'PAP 的光程为 (')'P A P n n ττ=+ 在PAC ∆和'ACP ∆中应用余弦定理,并注意c o s c o s ()()()'()(')',P C sr r s C P r s s r ϕπϕ=--=---=-=---=- 从而可得()()()()[]2122cos 2ϕs r r s r r l --+-+-=(3-10)以及()()()()[]2122'cos '2'ϕr s r r s r l ----+-= (3-11)因此,光线'PAP 的光程可写成12221222(')()()2()()cos ()(')2()(')cos PAP n r r s r r s n r s r r s r ϕϕ⎡⎤=-+-+--⎣⎦⎡⎤+-+----⎣⎦(3-12)由于当A 点在镜面上移动时,半径r 是常数,而ϕ才是位置的变量,根据费马原理,物象间的光程应取稳定值,为此,把(3-12)式对ϕ求导,并令其等于零,即()()[]()[]0sin '21sin 21''=-+--=ϕϕϕr s r ln s r r l n d PAP d 由此可得 0''=---l rs l s r 或者⎪⎭⎫⎝⎛+=+l s l s r l l ''111'(3-13) 如果发光点P 至O 点的距离s 为已知,从此式即可算出任一反射线和主轴的交点'P 到 O 点的距离's 的值,显然's 的值将随着所取入射线的倾斜角u ,亦即角ϕ的变化而变化,这就是说,从物点发散的单心光束经球面反射后,将不再保持单心(即使平等光束入射时也不例外),关于这一点可说明如下:PC A 1A 2OP 2P'P 3 (图3-13)图3-13中,相应于1PA 及2PA 两入射光线的反射线分别交主轴于1P 和2P 两点,且相交于'P 点,把该图绕主轴PO 转过一个小角度,使三角形12PA A 展成一单心的空间光束,此时'P 点描出一条很短的弧线,它垂直于图面即反射光束的子午象线,而图面中的12PP 则为弧矢象线。
证明单折射球面的主点球面顶点重合
设单折射球面的折射率为n,球心为O,球面上一点为P,球面顶点为V。
要证明主点球面顶点重合,即证明PV经过球心O。
根据折射定律,入射光线、法线和折射光线在同一平面内,且入射角i和折射角r满足Snell定律:
n1*sin(i) = n2*sin(r)
其中,n1为入射介质的折射率,n2为折射介质的折射率。
设入射光线OP与球面的交点为A,入射光线与法线的夹角为θ1,折射光线与法线的夹角为θ2。
根据几何关系,可得到OAP和OAV相似,即:
OA / OP = OV / OA
由此可得:
OA²= OP * OV
又根据三角形的正弦定理,可得:
OP / sin(θ1) = OA / sin(θ2)
将上述两个等式联立,可得:
OP * OV = OP * sin(θ1) / sin(θ2)
化简得:
OV = sin(θ1) / sin(θ2)
根据Snell定律,可得:
n1 * sin(θ1) = n2 * sin(θ2)
将上述等式代入前面的等式,可得:
OV = n1 / n2
由此可见,OV与折射率n1 / n2无关,即OV是一个常数。
因此,无论入射光线OP的位置如何变化,球面顶点V都位于PV上,即PV经过球心O。
综上所述,单折射球面的主点球面顶点重合。
单球面折射成像公式适用条件
一般情况下,球面折射是把光线从一个折射介质彻底的折射到另一个折射介质,这种现象也被称为球面折射。
为了精确计算出从一个介质折射到另一个介质的物理位移,并对空间进行准确的的定位,建立球面折射成像公式是非常重要的步骤。
当折射介质是光滑的,平滑的球面时,球面折射成像公式即适用。
它是以两个球面作折射面,一个球面为入射面,另一个球面为折射面,假定在这两个球面之间的距离是一定的。
球面折射成像公式定义了从一个球面折射到另一个球面时,光源和观察点所处的球面半径和位置之间的关系。
球面折射成像公式的主要使用场景是:在折射介质中折射得到完整的图像(如水面上望到的画面)、把光照射到另一个介质上得到另一种图像(如把镜子放入水中)。
在这些情况下,必须对球面形状,尤其是球面的曲率进行计算,并正确使用球面折射成像公式,才能获得准确的结果。
此外,在风景和音乐的形象化中,也可以利用球面折射成像公式,获得复杂的影像效果。
总之,球面折射成像公式是一个重要的光学技术,能够优秀的描述光的折射规律,并为复杂的图像效果奠定基础。
此外,只有当折射媒质是光滑平滑的球面时,球面折射成像公式才能适用,必须对球面形状,尤其是球面的曲率进行精确描述,才能精确地推导出正确的球面折射成像公式。