2012年高考数学二轮精品复习资料 专题04 三角函数(教师版)
- 格式:doc
- 大小:1.73 MB
- 文档页数:23
2012版高考数学 3-2-1精品系列专题04 三角函数(教师版)【考点定位】2012考纲解读和近几年考点分布2012考纲解读三角恒等变换(1)和与差的三角函数公式①会用向量的数量积推导出两角差的余弦公式.②能利用两角差的余弦公式导出两角差的正弦、正切公式.③能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.(2)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.(2)应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.考纲解读:三角题目一般不难;三角函数重点考查化简求值、图像变换、恒等变换;解答题中单纯的三角变换问题已不多见,要重视解三角形,特别是实际应用问题。
解答题也要重视与其它知识的综合,如平面向量。
近几年考点分布分析近五年的全国高考试题,有关三角函数的内容平均每年有25分,约占17%,试题的内容主要有两方面;其一是考查三角函数的性质和图象变换;尤其是三角函数的最大值、最小值和周期,题型多为选择题和填空题;其二是考查三角函数式的恒等变形,如利用有关公式求植,解决简单的综合问题,除了在填空题和选择题中出现外,解答题的中档题也经常出现这方面的内容,是高考命题的一个常考的基础性的题型。
其命题热点是章节内部的三角函数求值问题,命题新趋势是跨章节的学科综合问题。
因此,在复习过程中既要注重三角知识的基础性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质。
以及化简、求值和最值等重点内容的复习,又要注重三角知识的工具性,突出三角与代数、几何、向量的综合联系,以及三角知识的应用意识。
基于以上分析,预测在2012年的高考试卷中,考查三角函数的题仍为一小题一大题。
2014届高考数学二轮复习资料 专题三:三角函数(教师版)【考纲解读】1.了解任意角的概念,了解弧度制的概念,能进行弧度与角度的互化;理解任意角的三角函数(正弦、余弦、正切)的定义.2.能利用单位圆中的三角函数线推导出2πα±,πα±的正弦、余弦、正切的诱导公式;理解同角的三角函数的基本关系式:sin 2x+cos 2x=1,sin tan cos xx x=. 3.能画出y=sinx, y=cosx, y=tanx 的图象,了解三角函数的周期性;2.理解正弦函数,余弦函数在区间[0,2π]上的性质(如单调性,最大值和最小值以及与x 轴的交点等),理解正切函数在区间(-2π,2π)内的单调性.4.了解函数sin()y A x ωϕ=+的物理意义;能画出sin()y A x ωϕ=+的图象,了解,,A ωϕ对函数图象变化的影响.5.会用向量的数量积推导两角差的余弦公式;能利用两角差的余弦公式导出两角和与差的正弦、余弦和正切公式,了解它们的内在联系.6.能利用两角差的余弦公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【考点预测】从近几年高考试题来看,对三角函数的考查:一是以选择填空的形式考查三角函数的性质及公式的应用,一般占两个小题;二是以解答题的形式综合考查三角恒等变换、sin()y A x ωϕ=+的性质、三角函数与向量等其他知识综合及三角函数为背景的实际问题等.预测明年,考查形式不变,选择、填空题以考查三角函数性质及公式应用为主,解答题将会以向量为载体,考查三角函数的图象与性质或者与函数奇偶性、周期性、最值等相结合,以小型综合题形式出现.【要点梳理】1.知识点:弧度制、象限角、终边相同的角、任意角三角函数的定义、同角三角函数基本关系式、诱导公式、三角函数线、三角函数图象和性质;和、差、倍角公式,正、余弦定理及其变形公式.2.三角函数中常用的转化思想及方法技巧:(1)方程思想:sin cos αα+, sin cos αα-,sin cos αα三者中,知一可求二; (2)“1”的替换: 22sin cos 1αα+=; (3)切弦互化:弦的齐次式可化为切;(4)角的替换:2()()ααβαβ=++-,()22αβαβααββ+-=+-=+;(5)公式变形:21cos 2cos 2αα+=, 21cos 2sin 2αα-=, tan tan tan()(1tan tan )αβαβαβ+=+-;(6)构造辅助角(以特殊角为主):sin cos )(tan )ba b aαααϕϕ+=+=.3.函数sin()y A x ωϕ=+的问题: (1)“五点法”画图:分别令0x ωϕ+=、2π、π、32π、2π,求出五个特殊点; (2)给出sin()y A x ωϕ=+的部分图象,求函数表达式时,比较难求的是ϕ,一般从“五点法”中取靠近y 轴较近的已知点代入突破;(3)求对称轴方程:令x ωϕ+=2k ππ+()k Z ∈, 求对称中心: 令x ωϕ+=k π()k Z ∈; (4)求单调区间:分别令22k x ππωϕ-≤+≤22k ππ+()k Z ∈;22k x ππωϕ+≤+≤322k ππ+()k Z ∈,同时注意A 、ω符号. 4.解三角形:(1)基本公式:正弦、余弦定理及其变形公式;三角形面积公式; (2)判断三角形形状时,注意边角之间的互化. 【考点在线】考点1 三角函数的求值与化简此类题目主要有以下几种题型:⑴考查运用诱导公式和逆用两角和的正弦、余弦公式化简三角函数式能力,以及求三角函数的值的基本方法. ⑵考查运用诱导公式、倍角公式,两角和的正弦公式,以及利用三角函数的有界性来求的值故f (x )的定义域为.Z ,2|R ⎭⎬⎫⎩⎨⎧∈-≠∈k k x x ππ (Ⅱ)由已知条件得.54531cos 1sin 22-⎪⎭⎫⎝⎛-=-=a a从而)2sin()42cos(21)(ππ+-+=a a a f =aa a cos 4sin 2sin 4cos cos 21⎪⎭⎫ ⎝⎛++ππ =a a a a a a a cos cos sin 2cos 2cos sin 2cos 12+=++ =.514)sin (cos 2=+a a【名师点睛】本小题主要考查三角函数的定义域和两角差的公式,同角三角函数的关系等基本知识,考查运算和推理能力,以及求角的基本知识..【备考提示】:熟练掌握三角函数公式与性质是解答好本类题的关键. 练习1: (2011年高考福建卷文科9)若α∈(0,2π),且2sin α+1cos 24α=,则tan α的值等于( )A.B.C.D.【答案】D【解析】因为α∈(0, 2π),且2sin α+1cos 24α=,所以2sin α+221cos sin 4αα-=, 即21cos 4α=,所以cos α=12或12-(舍去),所以3πα=,即tan α=选D.考点2 考查sin()y A x ωϕ=+的图象与性质考查三角函数的图象和性质的题目,是高考的重点题型.此类题目要求考生在熟练掌握三角函数图象的基础上要对三角函数的性质灵活运用,会用数形结合的思想来解题.【备考提示】:三角函数的图象及性质是高考考查的热点内容之一,熟练其基础知识是解答好本类题的关键.练习2.(2011年高考江苏卷9)函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则____)0(=f【解析】由图象知:函数()sin()f x A wx φ=+的周期为74()123πππ-=,而周期2T wπ=,所以2w =,由五点作图法知:23πφπ⨯+=,解得3πφ=,又A=,所以函数()s i n (2)3f x x π=+,所以(0)f =3π=考点3 三角函数与向量等知识的综合三角函数与平面向量的综合,解答过程中,向量的运算往往为三角函数提供等量条件. 例3.(2009年高考江苏卷第15题)设向量(4cos ,sin ),(sin ,4cos ),(cos ,4sin )a b c ααββββ===-(1)若a 与2b c -垂直,求tan()αβ+的值;(2)求||b c +的最大值;(3)若tan tan 16αβ=,求证:a ∥b.【解析】【名师点睛】本小题主要考查向量的基本概念,同时考查同角三角函数的基本关系式、二倍角的正弦、两角和的正弦与余弦公式,考查运算和证明得基本能力.【备考提示】:熟练三角公式与平面向量的基础知识是解决此类问题的关键. 练习3.(天津市十二区县重点中学2011年高三联考二理)(本小题满分13分)已知向量2,1),(cos ,cos )444x x x m n == ,()f x m n =⋅ .(I )若()1f x =,求cos()3x π+值;(II )在ABC ∆中,角,,A B C 的对边分别是,,a b c ,且满足(2)cos cos a c B b C -=,求函数()f A 的取值范围.【解析】(I )()f x m n =⋅= 2cos cos 444x x x + ----------------1分11cos 2222x x ++ ----------------3分 =1sin()262x π++----------------4分∵()1f x = ∴1sin()262x π+=∴2cos()12sin ()326x x ππ+=-+=12-------6分 (II )∵(2)cos cos a c B b C -=,由正弦定理得(2sin sin )cos sin cos A C B B C -= -----------------8分 ∴2sin sin cos sin cos AcosB C B B C -=∴2sin cos sin()A B B C =+- ----------------9分 ∵A B C π++=∴sin()sin B C A +=,且sin 0A ≠∴1cos ,2B =∵0B <<π∴3B π= ----------------10分∴203A π<< ----------------11分∴1,sin()16262226A A ππππ<+<<+< ----------------12分∴131sin()2622A π<++<∴()f A =1sin()262A π++3(1,)2∈ ---13分考点4. 解三角形解决此类问题,要根据已知条件,灵活运用正弦定理或余弦定理,求边角或将边角互化.例4. (2011年高考安徽卷文科16) 在 ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,12cos()0B C ++=,求边BC 上的高.【解析】∵A +B +C =180°,所以B +C =A ,又12cos()0B C ++=,∴12cos(180)0A +-=, 即12cos 0A -=,1cos 2A =,又0°<A<180°,所以A =60°.在△ABC 中,由正弦定理sin sin a b A B=得sin sin b A B a ===, 又∵b a <,所以B <A ,B =45°,C =75°,∴BC 边上的高AD =AC ·sinC 30)=+45cos30cos45sin30)+ 112()22222=+=.【名师点睛】本题考察两角和的正弦公式,同角三角函数的基本关系,利用内角和定理、正弦定理、余弦定理以及三角形边与角之间的大小对应关系解三角形的能力,考察综合运算求解能力.【备考提示】:解三角形问题所必备的知识点是三大定理“内角和定理、正弦定理、余弦定理”具体的思路是化统一的思想“统一成纯边或纯角问题”即可.练习4. (2011年高考山东卷文科17)在 ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cos C 2c-a=cos B b.(I ) 求sin sin CA的值; (II )若cosB=14,5b ABC 的周长为,求的长.【解析】(1)由正弦定理得2sin ,a R A =2sin ,b R B =2sin ,c R C =所以cos A-2cos C 2c-a =cos B b=2sin sin sin C AB -,即sin cos 2sin cos 2sin cos sin cos B A B C C B A B -=-,即有sin()2sin()A B B C +=+,即sin 2sin C A =,所以sin sin CA=2. (2)由(1)知sin sin CA=2,所以有2c a =,即c=2a,又因为ABC ∆的周长为5,所以b=5-3a,由余弦定理得:2222cos b c a ac B =+-,即22221(53)(2)44a a a a -=+-⨯,解得a=1,所以b=2.【易错专区】问题:三角函数的图象变换例. (2011年高考全国卷理科5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于( ) (A )13(B )3 (C )6 (D )9【答案】C 【解析】()cos[()]cos 33f x x x ππωω-=-=即cos()cos 3x x ωπωω-=, 22()663k k Z k ωπππω∴-=+∈⇒=--z 则1k =-时min 6ω=故选C.【名师点睛】本题考查三角函数的图象平移,在平移时,应注意x 的系数. 【备考提示】:三角函数的图象变换是高考的热点,必须熟练此类问题的解法. 【考题回放】1. (2011年高考山东卷理科3)若点(a,9)在函数3xy =的图象上,则tan=6a π的值为( )(A )0 (B) 3【答案】D【解析】由题意知:9=3a,解得a =2,所以2tantan tan 663a πππ===故选D.2. (2011年高考山东卷理科6)若函数()s i n f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在【答案】C.【解析】若()()6f x f π≤对x R ∈恒成立,则()sin()163f ππϕ=+=,所以,32k k Z ππϕπ+=+∈,,6k k Z πϕπ=+∈.由()()2f f ππ>,(k Z ∈),可知sin()sin(2)πϕπϕ+>+,即s i n 0ϕ<,所以72,6k k Z πϕπ=+∈,代入()sin(2)f x x ϕ=+,得7()sin(2)6f x x π=+,由7222262k x k πππππ-++剟,得563k x k ππππ--剟,故选C.4.(2011年高考辽宁卷理科4)△ABC 的三个内角A 、B 、C 所对的边分别为a ,b ,c ,asin AsinB+bcos 2则ba=( )(A) (B) (C) 【答案】 D【解析】由正弦定理得,sin 2AsinB+sinBcos 2,即sinB (sin 2A+cos 2A ),故,所以ba=; 5.(2011年高考辽宁卷理科7)设sin1+=43πθ(),则sin 2θ=( ) (A) 79- (B) 19- (C) 19 (D)79【答案】A【解析】217sin 2cos 22sin 121.2499ππθθθ⎛⎫⎛⎫=-+=+-=⨯-=- ⎪ ⎪⎝⎭⎝⎭6.(2011年高考浙江卷理科6)若02πα<<,02πβ-<<,1cos()43πα+=,cos()42πβ-=,则c o s ()2βα+=( )(A (B )(C (D )-【答案】 C 【解析】()()2442βππβαα+=+-- cos()cos[()()]2442βππβαα∴+=+--sin()sin()442ππβα+++ 13===, 故选C. 7. (2011年高考全国新课标卷理科5)已知角θ的顶点与原点重合,始边与横轴的正半轴重合,终边在直线x y 2=上,则,=θ2cos ( ) A 54-B 53- C 32 D 43【答案】B【解析】因为该直线的斜率是θtan 2==k ,所以,53tan 1tan 1cos 22-=+-=θθθ.8. (2011年高考全国新课标卷理科11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )(A )()f x 在0,2π⎛⎫⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 【答案】A【解析】函数解析式可化为)4sin(2)(πϕω++=x x f ,2,2=∴=ωπωπT又因为该函数是偶函数,所以,x x f 2cos 2)(4=∴=πϕ,所以,该函数在⎪⎭⎫⎝⎛2,0π上是减函数。
2012届高考数学三角函数概念知识归纳复习教案1.三角函数概念一、知识清单1.角的概念2.象限角第I象限角的集合:第II角限角的集合:第III象限角的集合:第IV象限角的集合:3.轴线角4.终边相同的角①与(0°≤②终边在x轴上的角的集合:;③终边在y轴上的角的集合:;④终边在坐标轴上的角的集合:.5.弧度制定义:我们把长度等于半径长的弧所对的圆心角叫1弧度角角度制与弧度制的互化:1弧度6.弧度制下的公式扇形弧长公式,扇形面积公式,其中为弧所对圆心角的弧度数。
7.任意角的三角函数定义:利用直角坐标系,可以把直角三角形中的三角函数推广到任意角的三角数.在终边上任取一点(与原点不重合),记,则,,,注:⑴三角函数值只与角的终边的位置有关,由角的大小唯一确定,三角函数是以角为自变量,以比值为函数值的函数.(2)正弦、余弦、正切函数的定义域8.各象限角的各种三角函数值符号:一全二正弦,三切四余弦典型例题命题方向:角的概念例1(1)写出与终边相同的角的集合M;(2)把的角写成()的形式;(3)若角,且求;解:(1)(2)(3)∵且∴∴∴又∵∴∴或例2已知“是第三象限角,则是第几象限角?分析由是第三象限角,可得到角的范围,进而可得到的取值范围,再根据范围确定其象限即可也可用几何法来确定所在的象限解法一:因为是第三象限角,所以∴∴当k=3m(m∈Z)时,为第一象限角;当k=3m+1(m∈Z)时,为第三象限角,当k=3m+2(m∈Z)时,为第四象限角故为第一、三、四象限角解法二:把各象限均分3等份,再从x轴的正向的上方起依次将各区域标上I、Ⅱ、Ⅲ、Ⅳ,并依次循环一周,则原来是第Ⅲ象限的符号所表示的区域即为的终边所在的区域由图可知,是第一、三、四象限角小结:已知角的范围或所在的象限,求所在的象限是常考题之一,一般解法有直接法和几何法,其中几何法具体操作如下:把各象限均分n等份,再从x轴的正向的上方起,依次将各区域标上I、Ⅱ、Ⅲ、Ⅳ,并循环一周,则原来是第几象限的符号所表示的区域即为(n∈N*)的终边所在的区域命题方向:三角函数符号的判断例3.已知sin=,cos=-,那么α的终边在A.第一象限B.第三或第四象限C.第三象限D.第四象限解析:sinα=2sincos=-<0,cosα=cos2-sin2=>0,∴α终边在第四象限.答案:D变式.若且是,则是(C)A.第一象限角B.第二象限角C.第三象限角D.第四象限角例4.若θ是第二象限的角,则的符号是什么?剖析:确定符号,关键是确定每个因式的符号,而要分析每个因式的符号,则关键看角所在象限.解:∵2kπ+<θ<2kπ+π(k∈Z),∴-1<cosθ<0,4kπ+π<2θ<4kπ+2π,-1<sin2θ<0.∴sin(cosθ)<0,cos(sin2θ)>0.∴<0.命题方向:弧长公式的应用例5、在复平面内,复数对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限解:D例6已知一扇形的中心角是,所在圆的半径是R,(1)若,R=,求扇形的弧长交该弧所在的弓形面积。
2012高考数学精品题库第20集:三角函数(参考答案见第21集)必修4 第1章三角函数§1.1任意角的概念、弧度制重难点:理解任意角的概念,掌握角的概念的推广方法,能在直角坐标系讨论任意角,判断象限角、轴线角,掌握终边相同角的集合.掌握弧长公式、扇形面积公式并能灵活运用.考纲要求:①了解任意角的概念.②了解弧度制概念,能进行弧度与角度的互化.经典例题:写出与下列各角终边相同的角的集合S,并把S中适合不等式-3600≤β<7200的元素β写出来:(1)600;(2)-210;(3)363014,当堂练习:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.A C D.A=B=C2 下列各组角中,终边相同的角是()A.与B.C.D.3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2 B.C.D.4.设角的终边上一点P的坐标是,则等于()A.B.C.D.5.将分针拨慢10分钟,则分钟转过的弧度数是()A.B.-C.D.-6.设角和的终边关于轴对称,则有()A.B.C.D.7.集合A={ ,B={ ,则A、B之间关系为()A.B.C.B A D.A B8.某扇形的面积为1 ,它的周长为4 ,那么该扇形圆心角的度数为()A.2°B.2 C.4°D.49.下列说法正确的是()A.1弧度角的大小与圆的半径无关B.大圆中1弧度角比小圆中1弧度角大C.圆心角为1弧度的扇形的弧长都相等D.用弧度表示的角都是正角10.中心角为60°的扇形,它的弧长为2 ,则它的内切圆半径为()A.2 B.C.1 D.11.一个半径为R的扇形,它的周长为4R,则这个扇形所含弓形的面积为()A.B.C.D.12.若角的终边落在第三或第四象限,则的终边落在()A.第一或第三象限B.第二或第四象限C.第一或第四象限D.第三或第四象限13.,且是第二象限角,则是第象限角.14.已知的取值范围是.15.已知是第二象限角,且则的范围是.16.已知扇形的半径为R,所对圆心角为,该扇形的周长为定值c,则该扇形最大面积为.17.写出角的终边在下图中阴影区域内角的集合(这括边界)(1)(2)(318.一个视力正常的人,欲看清一定距离的文字,其视角不得小于5′.试问:(1)离人10米处能阅读的方形文字的大小如何?(2)欲看清长、宽约0.4米的方形文字,人离开字牌的最大距离为多少?19.一扇形周长为20cm,当扇形的圆心角等于多少弧度时,这个扇形的面积最大?并求此扇形的最大面积?20.绳子绕在半径为50cm的轮圈上,绳子的下端B处悬挂着物体W,如果轮子按逆时针方向每分钟匀速旋转4圈,那么需要多少秒钟才能把物体W的位置向上提升100cm? 21.已知集合A={求与A∩B中角终边相同角的集合S.必修4 第1章三角函数考纲总要求:①理解任意角三角函数(正弦、余弦、正切)的定义.②能利用单位圆中的三角函数线推导出,的正弦、余弦、正切的诱导公式,能画出,,的图像,了解三角函数的周期性.③理解正弦函数、余弦函数在区间的性质(单调性、最大和最小值与轴交点等),理解正切函数在区间的单调性.④理解同角三角函数的基本关系式.⑤了解函数的物理意义;能画出的图像,了解参数对函数图像变化的影响.⑥了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.§1.2.1-2任意角的三角函数值、同角三角函数的关系重难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式;能利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用他们的集合形式表示出来;掌握同角三角函数的基本关系式,三角函数值的符号的确定,同角三角函数的基本关系式的变式应用以及对三角式进行化简和证明.经典例题:已知为第三象限角,问是否存在这样的实数m,使得、是关于的方程的两个根,若存在,求出实数m,若不存在,请说明理由.当堂练习:1.已知的正弦线与余弦线相等,且符号相同,那么的值为()A.B.C.D.2.若为第二象限角,那么的值为()A.正值B.负值C.零D.为能确定3.已知的值为()A.-2 B.2 C.D.-4.函数的值域是()A.{-1,1,3} B.{-1,1,-3} C.{-1,3} D.{-3,1}5.已知锐角终边上一点的坐标为(则=()A.B.3 C.3-D.-36.已知角的终边在函数的图象上,则的值为()A.B.-C.或-D.7.若那么2 的终边所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限8.、、的大小关系为()A.B.C.D.9.已知是三角形的一个内角,且,那么这个三角形的形状为()A.锐角三角形B.钝角三角形C.不等腰的直角三角形D.等腰直角三角形10.若是第一象限角,则中能确定为正值的有()A.0个B.1个C.2个D.2个以上11.化简(是第三象限角)的值等于()A.0 B.-1 C.2 D.-212.已知,那么的值为()A.B.-C.或-D.以上全错13.已知则.14.函数的定义域是_________.15.已知,则=______.16.化简.17.已知求证:.18.若,求角的取值范围.19.角的终边上的点P和点A()关于轴对称()角的终边上的点Q与A关于直线对称. 求的值.20.已知是恒等式. 求a、b、c的值.21.已知、是方程的两根,且、终边互相垂直. 求的值.必修4 第1章三角函数§1.2.3三角函数的诱导公式重难点:能借助于单位圆,推导出正弦、余弦的诱导公式;能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决求值、化简和恒等式证明问题;能通过公式的运用,了解未知到已知、复杂到简单的转化过程.经典例题:已知数列的通项公式为记求当堂练习:1.若那么的值为()A.0 B.1 C.-1 D.2.已知那么()A.B.C.D.3.已知函数,满足则的值为()A.5 B.-5 C.6 D.-64.设角的值等于()A.B.-C.D.-5.在△ABC中,若,则△ABC必是()A.等腰三角形B.直角三角形C.等腰或直角三角形D.等腰直角三角形6.当时,的值为()A.-1 B.1 C.±1 D.与取值有关7.设为常数),且那么()A.1 B.3 C.5 D.78.如果则的取值范围是()A.B.C.D.9.在△ABC中,下列各表达式中为常数的是()A.B.C.D.10.下列不等式上正确的是()A.B.C.D.11.设那么的值为()A.B.-C.D.12.若,则的取值集合为()A.B.C.D.13.已知则.14.已知则.15.若则.16.设,其中m、n、、都是非零实数,若则.17.设和求的值.18.已知求证:19.已知、是关于的方程的两实根,且求的值. 20.已知(1)求的表达式;(2)求的值.21.设满足,(1)求的表达式;(2)求的最大值.的最小值为多少?当堂练习:1.函数的图象()A.关于原点对称B.关于点(-,0)对称C.关于y轴对称D.关于直线x= 对称2.要得到的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位3.如图,曲线对应的函数是()A.y=|sinx|B.y=sin|x|C.y=-sin|x|D.y=-|sinx|4.已知f(1+cosx)=cos2x,则f(x)的图象是下图中的()5.如果函数y=sin2x+αcos2x的图象关于直线x=-对称,那么α的值为()A.B.-C.1 D.-16.已知函数在同一周期内,时取得最大值,时取得最小值-,则该函数解析式为()A.B.C.D.7.方程的解的个数为()A.0 B.无数个C.不超过3 D.大于38.已知函数那么函数y=y1+y2振幅的值为()A.5 B.7 C.13 D.9.已知的图象可以看做是把的图象上所有点的横坐标压缩到原来的1/3倍(纵坐标不变)得到的,则= ()A.B.2 C.3 D.10.函数y=-x•cosx的部分图象是()11.函数的单调减区间是()A.B.C.D.12.函数的最小正周期为()A.πB.C.2πD.4π13.若函数的周期在内,则k的一切可取的正整数值是. 14.函数的最小值是.15.振动量的初相和频率分别为,则它的相位是.16.函数的最大值为.17.已知函数(1)求的最小正周期;(2)求的单调区间;(3)求图象的对称轴,对称中心.18.函数的最小值为-2,其图象相邻的最高点与最低点横坐标差是3π,又图象过点(0,1)求这个函数的解析式.19.已知函数=sin2x+acos2x在下列条件下分别求a的值.(1)函数图象关于原点对称;(2)函数图象关于对称.20.已知函数的定义域为,值域为[-5,1]求常数a、b的值.21.已知α、β为关于x的二次方程的实根,且,求θ的范围.必修4 第1章三角函数§1.3.4三角函数的应用重难点:掌握三角函数模型应用基本步骤:(1)根据图象建立解析式; (2)根据解析式作出图象;(3)将实际问题抽象为与三角函数有关的简单函数模型;利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.经典例题:已知某海滨浴场的海浪高度是时间( ,单位:小时)的函数,记作.下表是某日各时的浪高数据:经长期观察, 的曲线可近似地看成是函数的图象.(1)根据以上数据,求出函数的最小正周期,振幅及函数表达式;(2)依据规定,当海浪高度高于时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午到晚上之间,有多少时间可供冲浪者进行活动?当堂练习:1.若A、B是锐角△ABC的两个内角,则点P(cosB-sinA,sinB-cosA)在( )A.第一象限B.第二象限C.第三象限D.第四象限2.(2004北京西城一模)设0<|α|<,则下列不等式中一定成立的是( )A.sin2α>sinαB.cos2α<cosαC.tan2α>tanαD.cot2α<cotα3.已知实数x、y、m、n满足m2+n2=a,x2+y2=b(a≠b),则mx+ny的最大值为( )A. B. C. D.4. 初速度v0,发射角为,则炮弹上升的高度y与v0之间的关系式为()A. B. C. D.5. 当两人提重为的书包时,夹角为,用力为,则为____时,最小()A. B. C. D.6.某人向正东方向走x千米后向右转,然后朝新的方向走3千米,结果他离出发点恰好千米,那么x的值为()A. B. C. D.7. 甲、乙两楼相距60米,从乙楼底望甲楼顶仰角为,从甲楼顶望乙楼顶俯角为,则甲、乙两楼的高度分别为____________________.8.一树干被台风吹断折成角,树干底部与树尖着地处相距20米,树干原来的高度是________.9.(2006北京海淀模拟)在△ABC中,∠A=60°,BC=2,则△ABC的面积的最大值为_________.10.在高出地面30 m的小山顶上建造一座电视塔CD(如右图),今在距离B点60 m的地面上取一点A,若测得C、D所张的角为45°,则这个电视塔的高度为_______________.11.已知函数的最小正周期为,最小值为,图象经过点,求该函数的解析式.12.如图,某地一天从时到时的温度变化曲线近似满足函数,(I)求这段时间的最大温差;(II)写出这段曲线的函数解析式.13.若x满足,为使满足条件的的值(1)存在;(2)有且只有一个;(3)有两个不同的值;(4)有三个不同的值,分别求的取值范围.14.如图,化工厂的主控制表盘高1米,表盘底边距地面2米,问值班人员坐在什么位置上表盘看得最清楚?(设值班人员坐在椅子上时,眼睛距地面1.2米)必修4 第1章三角函数§1.4三角函数单元测试1. 化简等于()A. B. C. 3 D. 12. 在ABCD中,设, ,, ,则下列等式中不正确的是()A.B.C.D.3. 在中,①sin(A+B)+sinC;②cos(B+C)+cosA;③;④,其中恒为定值的是()A、①②B、②③C、②④D、③④4. 已知函数f(x)=sin(x+ ),g(x)=cos(x-),则下列结论中正确的是()A.函数y=f(x)•g(x)的最小正周期为2B.函数y=f(x)•g(x)的最大值为1C.将函数y=f(x)的图象向左平移单位后得g(x)的图象D.将函数y=f(x)的图象向右平移单位后得g(x)的图象5. 下列函数中,最小正周期为,且图象关于直线对称的是()A.B.C.D.6. 函数的值域是()A、B、C、D、7. 设则有()A. B. C. D.8. 已知sin , 是第二象限的角,且tan( )=1,则tan 的值为()A.-7 B.7 C.-D.9. 定义在R上的函数既是偶函数又是周期函数,若的最小正周期是,且当时,,则的值为()A. B C D10. 函数的周期是()A.B.C.D.11. 2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为,大正方形的面积是1,小正方形的面积是的值等于()A.1 B.C.D.12. 使函数f(x)=sin(2x+ )+ 是奇函数,且在[0,上是减函数的的一()A.B.C.D.13、函数的最大值是3,则它的最小值______________________14、若,则、的关系是____________________15、若函数f(χ)是偶函数,且当χ<0时,有f(χ)=cos3χ+sin2χ,则当χ>0时,f(χ)的表达式为.16、给出下列命题:(1)存在实数x,使sinx+cosx=; (2)若是锐角△的内角,则> ; (3)函数y=sin( x- )是偶函数;(4)函数y=sin2x的图象向右平移个单位,得到y=sin(2x+ )的图象.其中正确的命题的序号是.17、求值:18、已知π2 <α<π,0<β<π2 ,tanα=-34 ,cos(β-α)= 513 ,求sinβ的值.19、已知函数(1)求它的定义域、值域以及在什么区间上是增函数;(2)判断它的奇偶性;(3)判断它的周期性。
2012年高考真题理科数学解析汇编:三角函数一、选择题1 .(2012年高考(天津理))在ABC ∆中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cos C =( )A .725B .725-C .725±D .24252 .(2012年高考(天津理))设R ϕ∈,则“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3 .(2012年高考(新课标理))已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是 ( )A .15[,]24B .13[,]24C .1(0,]2D .(0,2]4 .(2012年高考(浙江理))把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是5 .(2012年高考(重庆理))设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为( )A .3-B .1-C .1D .36 .(2012年高考(上海理))在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是 ( )A .锐角三角形.B .直角三角形.C .钝角三角形.D .不能确定.7 .(2012年高考(陕西理))在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为 ( )A B C .12D .12-8 .(2012年高考(山东理))若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2θ,则sin θ= ( )A .35B .45 C.4D .349 .(2012年高考(辽宁理))已知sin cos αα-=,α∈(0,π),则tan α=( )A .-1 B.2-C.2D .110.(2012年高考(江西理))若tan θ+1tan θ=4,则sin2θ= ( )A .15B .14C .13D .1211.(2012年高考(湖南理))函数f(x)=sinx-cos(x+6π)的值域为 ( )A .[ -2 ,2]B .C .[-1,1 ]D .12.(2012年高考(大纲理))已知α为第二象限角,sin cos 3αα+=,则cos 2α= ( ) A.3-B.9-C.9D.3二、填空题13.(2012年高考(重庆理))设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且35cos ,cos ,3,513A B b ===则c =______14.(2012年高考(上海春))函数()sin(2)4f x x π=+的最小正周期为_______.15.( 2012年高考(江苏))设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(π+a 的值为____. 数()y f x '=的16.(2012年高考(湖南理))函数f(x)=sin (x ωϕ+)的导函部分图像如图4所示,其中,P 为图像与y 轴的交点,A,C 为图像与x 轴的两个交点,B 为图像的最低点.(1)若6πϕ=,点P 的坐标为(0,2则ω=______ ;(2)若在曲线段 ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC内的概率为_______.17.(2012年高考(湖北理))设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . 若()()a b c a b c ab +-++=,则角C =_________.18.(2012年高考(福建理))已知ABC ∆得三边长成公比为的等比数列,则其最大角的余弦值为_________.19.(2012年高考(大纲理))当函数sin (02)y x x x π=≤<取得最大值时,x =_______________.20.(2012年高考(北京理))在△ABC 中,若2a =,7b c +=,1cos 4B =-,则b =___________. 21.(2012年高考(安徽理))设ABC ∆的内角,,A B C 所对的边为,,a b c ;则下列命题正确的是_____①若2ab c >;则3C π<②若2a b c +>;则3C π<③若333a b c +=;则2C π<④若()2a b c ab +<;则2C π>⑤若22222()2a b c a b +<;则3C π>三、解答题22.(2012年高考(天津理))已知函数2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--,x R ∈.(Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间[,]44ππ-上的最大值和最小值.23.(2012年高考(浙江理))在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B cos C .(Ⅰ)求tan C 的值;(Ⅱ)若a 求∆ABC 的面积.24.(2012年高考(重庆理))(本小题满分13分(Ⅰ)小问8分(Ⅱ)小问5分)设()4cos()sin cos(2)6f x x x x πωωωπ=--+,其中.0>ω(Ⅰ)求函数()y f x = 的值域 (Ⅱ)若()f x 在区间3,22ππ⎡⎤-⎢⎥⎣⎦上为增函数,求 ω的最大值.25.(2012年高考(四川理))函数2()6coscos 3(0)2xf x x ωωω=+->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形. (Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若0()f x =,且0102(,)33x ∈-,求0(1)f x +的值.26.(2012年高考(上海理))海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海 里A 处,如图. 现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救 援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 若此时 两船恰好会合,求救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?27.(2012年高考(陕西理))函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式; (2)设(0,)2πα∈,则()22f α=,求α的值.28.(2012年高考(山东理))已知向量(sin ,1),cos ,cos 2)(0)3Am x n x x A ==> ,函数()f x m n =⋅ 的最大值为6. (Ⅰ)求A;(Ⅱ)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5[0,]24π上的值域.29.(2012年高考(辽宁理))在ABC ∆中,角A 、B 、C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(Ⅰ)求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值.30.(2012年高考(江西理))在△ABC中,角A,B,C 的对边分别为a,b,c.已知,,sin()sin()444A b C cB a πππ=+-+=.(1)求证:2B C π-=(2)若求△ABC 的面积.31.(2012年高考(江苏))在ABC ∆中,已知3AB AC BA BC =.(1)求证:tan 3tan B A =;(2)若cos C =求A 的值.32.(2012年高考(湖北理))已知向量(cos sin ,sin )x x x ωωω=-a ,(cos sin ,)x x x ωωω=--b ,设函数()f x λ=⋅+a b ()x ∈R 的图象关于直线πx =对称,其中ω,λ为常数,且1(,1)2ω∈.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若()y f x =的图象经过点π(,0)4,求函数()f x 在区间3π[0,]5上的取值范围.33.(2012年高考(广东理))(三角函数)已知函数()2cos 6f x x πω⎛⎫=+⎪⎝⎭(其中0ω>x ∈R )的最小正周期为10π. (Ⅰ)求ω的值;(Ⅱ)设α、0,2πβ⎡⎤∈⎢⎥⎣⎦,56535f απ⎛⎫+=- ⎪⎝⎭,5165617f βπ⎛⎫-= ⎪⎝⎭,求()cos αβ+的值.34.(2012年高考(福建理))某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)2sin 13cos17sin13cos17︒+︒-︒︒ (2)2sin 15cos15sin15cos15︒+︒-︒︒ (3)2sin 18cos12sin18cos12︒+︒-︒︒ (4)2sin (18)cos48sin(18)cos48-︒+︒--︒︒ (5)2sin (25)cos55sin(25)cos55-︒+︒--︒︒ Ⅰ 试从上述五个式子中选择一个,求出这个常数Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广三角恒等式,并证明你的结论.35.(2012年高考(大纲理))(注意..:.在试卷上作答无效........) ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos()cos 1,2A C B a c -+==,求C .36.(2012年高考(北京理))已知函数(sin cos )sin 2()sin x x xf x x-=.(1)求()f x 的定义域及最小正周期; (2)求()f x 的单调递增区间.37.(2012年高考(安徽理))设函数2())sin 24f x x x π=++ (I)求函数()f x 的最小正周期;(II)设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时, 1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式.2012年高考真题理科数学解析汇编:三角函数参考答案一、选择题 1. 【答案】A【命题意图】本试题主要考查了正弦定理、三角函数中的二倍角公式. 考查学生分析、转化与计算等能力.【解析】∵8=5b c ,由正弦定理得8sin =5sin B C ,又∵=2C B ,∴8sin =5sin 2B B ,所以8s i n =10s i nc o s B B B ,易知sin 0B ≠,∴4cos =5B ,2cos =cos 2=2cos 1C B B -=725. 2. 【答案】A【命题意图】本试题主要考查了三角函数的奇偶性的判定以及充分条件与必要条件的判定. 【解析】∵=0ϕ⇒()=cos(+)f x x ϕ()x R ∈为偶函数,反之不成立,∴“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的充分而不必要条件.3. 【解析】选A592()[,]444x πππωω=⇒+∈ 不合题意 排除()D351()[,]444x πππωω=⇒+∈ 合题意 排除()()B C另:()22πωππω-≤⇔≤,3()[,][,]424422x ππππππωωπω+∈++⊂ 得:315,2424224πππππωπωω+≥+≤⇔≤≤4. 【答案】A【解析】把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y 1=cos x +1,向左平移1个单位长度得:y 2=cos(x +1)+1,再向下平移1个单位长度得:y 3=cos(x +1).令x =0,得:y 3>0;x =12π-,得:y 3=0;观察即得答案.5. 【答案】A【解析】tan tan 3tan tan 3,tan tan 2tan()31tan tan 12αβαβαβαβαβ++==⇒+===-+-【考点定位】此题考查学生灵活运用韦达定理及两角和的正切公式化简求值.6. [解析] 由条件结合正弦定理,得222c b a <+,再由余弦定理,得0cos 2222<=-+abc b a C ,所以C 是钝角,选C.7. 解析:由余弦定理得,222221cos 242a b c a b C ab ab +-+==≥当且仅当a b =时取“=”,选C.8. 【解析】因为]2,4[ππθ∈,所以],2[2ππθ∈,02cos <θ,所以812sin 12cos 2-=--=θθ,又81sin 212cos 2-=-=θθ,所以169sin 2=θ,43sin =θ,选D.9. 【答案】A【解析一】sin cos )sin()144ππαααα-=-=∴-=3(0),,tan 14παπαα∈∴=∴=- ,,故选A 【解析二】2sin cos (sin cos )2,sin 21,ααααα-=∴-=∴=-33(0,),2(0,2),2,,tan 124ππαπαπααα∈∴∈∴=∴=∴=- ,故选A 【点评】本题主要考查三角函数中的和差公式、倍角公式、三角函数的性质以及转化思想和运算求解能力,难度适中.10. D 【解析】本题考查三角恒等变形式以及转化与化归的数学思想.因为221sin cos sin cos 1tan 41tan cos sin sin cos sin 22θθθθθθθθθθθ++=+===,所以.1sin 22θ=. 【点评】本题需求解正弦值,显然必须切化弦,因此需利用公式s i n t a nc o s θθθ=转化;另外,22sin cos θθ+在转化过程中常与“1”互相代换,从而达到化简的目的;关于正弦、余弦的齐次分式,常将正弦、余弦转化为正切,即弦化切,达到求解正切值的目的. 体现考纲中要求理解三角函数的基本关系式,二倍角公式.来年需要注意二倍角公式的正用,逆用等.11. 【答案】B【解析】f(x)=sinx-cos(x+6π)1sin cos sin )226x x x x π=-+=-,[]sin()1,16x π-∈- ,()f x ∴值域为【点评】利用三角恒等变换把()f x 化成sin()A x ωϕ+的形式,利用[]sin()1,1x ωϕ+∈-,求得()f x 的值域.12. 答案A【命题意图】本试题主要考查了三角函数中两角和差的公式以及二倍角公式的运用.首先利用平方法得到二倍角的正弦值,然后然后利用二倍角的余弦公式,将所求的转化为单角的正弦值和余弦值的问题.【解析】s i n c o s 3αα+=,两边平方可得121sin 2sin 233αα+=⇒=- α是第二象限角,因此sin 0,cos 0αα><,所以cos sin 3αα-===-22cos 2cos sin (cos sin )(cos sin )3ααααααα∴=-=+-=-法二:单位圆中函数线+估算,因为α是第二象限的角,又1sin cos 2αα+所以“正弦线”要比“余弦线”长一半多点,如图,故2cos α的“余弦线”应选A .二、填空题 13. 【答案】145c =【解析】由35412c o s ,c o ss i n,s i n 513513AB A B ==⇒==,由正弦定理s i n s i na bAB =得43sin 13512sin 513b A a B ⨯===,由余弦定理2222142cos 25905605a c b bc A c c c =+-⇒-+=⇒= 【考点定位】利用同角三角函数间的基本关系求出sin B 的值是本题的突破点,然后利用正弦定理建立已知和未知之间的关系,同时要求学生牢记特殊角的三角函数值. 14. π15.【考点】同角三角函数,倍角三角函数,和角三角函数. 【解析】∵α为锐角,即02<<πα,∴2=66263<<πππππα++. ∵4cos 65απ⎛⎫+= ⎪⎝⎭,∴3sin 65απ⎛⎫+= ⎪⎝⎭.∴3424sin 22sin cos =2=3665525αααπππ⎛⎫⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .∴7cos 2325απ⎛⎫+= ⎪⎝⎭.∴sin(2)=sin(2)=sin 2cos cos 2sin 12343434a a a a πππππππ⎛⎫⎛⎫++-+-+ ⎪ ⎪⎝⎭⎝⎭247=2525 16. 【答案】(1)3;(2)4π 【解析】(1)()y f x '=cos()x ωωϕ=+,当6πϕ=,点P 的坐标为)时cos36πωω=∴=; (2)由图知222T AC ππωω===,122ABC S AC πω=⋅= ,设,A B 的横坐标分别为,a b .设曲线段ABC与x 轴所围成的区域的面积为S则()()sin()sin()2bb aaS f x dx f x a b ωϕωϕ'===+-+=⎰,由几何概型知该点在△ABC 内的概率为224ABC S P S ππ=== . 【点评】本题考查三角函数的图像与性质、几何概型等,(1)利用点P 在图像上求ω,(2)几何概型,求出三角形面积及曲边形面积,代入公式即得. 17.考点分析:考察余弦定理的运用.解析:由222()()a b c a b c ab a b c ab +-+-=⇒+-=-根据余弦定理可得22212cos 223a b c C C ab π+-==-⇒=18.【答案】4-【解析】设最小边为a ,,2a ,由余弦定理得,最大角的余弦值为222cos 4α==- 【考点定位】此题主要考查三角形中的三角函数,等比数列的概念、余弦定理,考查分析推理能力、运算求解能力.19.答案:56π 【命题意图】本试题主要考查了三角函数性质的运用,求解值域的问题.首先化为单一三角函数,然后利用定义域求解角的范围,从而结合三角函数图像得到最值点.【解析】由sin 2sin()3y x x x π==-由502333x x ππππ≤<⇔-≤-<可知22sin()23x π-≤-≤ 当且仅当332x ππ-=即116x π=时取得最小值,32x ππ-=时即56x π=取得最大值.20. 【答案】4【解析】在ABC ∆中,得用余弦定理22214()()47()cos 2444a c b c b c b c b B ac c c+-++-+-=⇒-==,化简得8740c b -+=,与题目条件7b c +=联立,可解得2,4,3a b c ===,答案为4.【考点定位】 本题考查的是解三角形,考查余弦定理的应用.利用题目所给的条件列出方程组求解.21. 【解析】正确的是①②③①222221cos 2223a b c ab ab ab c C C ab ab π+-->⇒=>=⇒< ②2222224()()12cos 2823a b c a b a b a b c C C ab ab π+-+-++>⇒=>≥⇒<③当2C π≥时,22232233c a b c a c b c a b ≥+⇒≥+>+与333a b c +=矛盾④取2,1a b c ===满足()2a b c ab +<得:2C π<⑤取2,1a b c ===满足22222()2a b c a b +<得:3C π<三、解答题22. 【命题意图】本题考查两角和与差的正弦公式、二倍角的余弦公式,三角函数的最小周期,单调性等知识.()=sin 2coscos 2sin sin 2cos cos 2sin cos 23333f x x x x x x ππππ++-+sin 2cos 2)4x x x π=+=+所以,()f x 的最小正周期22T ππ==. (2)因为()f x 在区间[,]48ππ-上是增函数,在区间[,]84ππ上是减函数,又()14f π-=-,()()184f f ππ==,故函数()f x 在区间[,]44ππ-最小值为1-.【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可.23. 【解析】本题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ) ∵cos A =23>0,∴sin A ,C =sin B =sin(A +C )=sin A cos C +sin C cos Acos C +23sin C .整理得:tan C(Ⅱ)由图辅助三角形知:sin C 又由正弦定理知:sin sin a cA C=,故c =对角A 运用余弦定理:cos A =222223b c a bc +-=. (2)解(1) (2)得:b =or b (舍去).∴∆ABC 的面积为:S .【答案】(Ⅰ). 24. 【考点定位】本题以三角函数的化简求值为主线,三角函数的性质为考查目的的一道综合题,考查学生分析问题解决问题的能力,由正弦函数的单调性结合条件可列32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,从而解得ω的取值范围,即可得ω的最在值.解:(1)()14cos sin sin cos 222f x x x x x ωωωω⎛⎫=++ ⎪ ⎪⎝⎭222cos 2sin cos sin x x x x x ωωωωω=++-21x ω=+因1sin 21x ω-≤≤,所以函数()y f x =的值域为1⎡⎣(2)因sin y x =在每个闭区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上为增函数,故()21f x x ω=+()0ω>在每个闭区间(),44k k k Z ππππωωωω⎡⎤-+∈⎢⎥⎣⎦上为增函数. 依题意知3,22ππ⎡⎤-⊆⎢⎥⎣⎦,44k k ππππωωωω⎡⎤-+⎢⎥⎣⎦对某个k Z ∈成立,此时必有0k =,于是 32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得16ω≤,故ω的最大值为16. 25. [解析](Ⅰ)由已知可得:2()6cos3(0)2xf x x ωωω=->=3cos ωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,则BC=4 所以,函数482824)(πωωπ===⨯=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f(Ⅱ)因为,由538)(0=x f (Ⅰ)有 ,538)34(sin 32)(00=+=ππx x f 54)34(sin 0=+ππx 即由x 0)2,2()34x (323100ππππ-∈+-∈),得,( 所以,53)54(1)34(cos 20=-=+ππx 即 故=+)1(0x f =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin)34cos(4cos)34([sin 320⨯+⨯=+++=ππππππx x567=[点评]本题主要考查三角函数的图像与性质同三角函数的关系、两角和的正(余)弦公式、二倍角公式等基础知识,考查运算能力,考查树形结合、转化等数学思想.26. [解](1)5.0=t 时,P 的横坐标x P =77=t,代入抛物线方程24912x y = 中,得P 的纵坐标y P =3 由|AP |=2949,得救援船速度的大小为949海里/时由tan∠OAP =30712327=+,得∠OAP =arctan 307,故救援船速度的方向为北偏东arctan 307弧度(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为)12,7(2t t . 由222)1212()7(++=t t vt ,整理得337)(1442122++=tt v因为2212≥+t t ,当且仅当t =1时等号成立,所以22253372144=+⨯≥v ,即25≥v .因此,救援船的时速至少是25海里才能追上失事船27.解析:(1)∵函数()f x 的最大值为3,∴13,A +=即2A =∵函数图像的相邻两条对称轴之间的距离为2π,∴最小正周期为T π= ∴2ω=,故函数()f x 的解析式为sin(2)16y x π=-+(2)∵()2sin()1226f απα=-+=即1sin()62πα-=∵02πα<<,∴663πππα-<-<∴66ππα-=,故3πα=28.解析:(Ⅰ)⎪⎭⎫ ⎝⎛+=+=+=⋅=62sin 2cos 22sin 232cos 2sin cos 3)(πx A x A x A x A x x A n m x f , 则6=A ;(Ⅱ)函数y=f(x)的图象像左平移12π个单位得到函数]6)12(2sin[6ππ++=x y 的图象, 再将所得图象各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数)34sin(6)(π+=x x g .当]245,0[π∈x 时,]1,21[)34sin(],67,3[34-∈+∈+ππππx x ,]6,3[)(-∈x g . 故函数()g x 在5[0,]24π上的值域为]6,3[-. 另解:由)34sin(6)(π+=x x g 可得)34cos(24)(π+='x x g ,令0)(='x g ,则)(234Z k k x ∈+=+πππ,而]245,0[π∈x ,则24π=x ,于是367sin6)245(,62sin 6)24(,333sin 6)0(-======πππππg g g , 故6)(3≤≤-x g ,即函数()g x 在5[0,]24π上的值域为]6,3[-. 29. 【答案及解析】(1)由已知12=+,++=,=,cos =32B AC A B C B B ππ∴ (2)解法一:2=b ac ,由正弦定理得23sin sin =sin =4A CB 解法二:2=b ac ,222221+-+-=cos ==222a c b a c ac B ac ac,由此得22+-=,a c ac ac 得=a c所以===3A B C π,3sin sin =4A C 【点评】本题主要考查三角形的正弦定理、余弦定理、三角形内角和定理及等差、等比数列的定义,考查转化思想和运算求解能力,属于容易题.第二小题既可以利用正弦定理把边的关系转化为角的关系,也可以利用余弦定理得到边之间的关系,再来求最后的结果. 30. 【解析】解:(1)证明:由 sin()sin()44b Cc B a ππ+-+=及正弦定理得:sin sin()sin sin()sin 44B C C B A ππ+-+=,即sin )sin )B C C C B B -+=整理得:sin cos cos sin 1B C B C -=,所以sin()1B C -=,又30,4B C π<< 所以2B C π-=(2) 由(1)及34B C π+=可得5,88B C ππ==,又,4A a π==所以sin 5sin 2sin ,2sin sin 8sin 8a B a Cbc A A ππ====,所以三角形ABC 的面积151sin sin cos 28888242bc A πππππ===== 【点评】本题考查解三角形,三角形的面积,三角恒等变换、三角和差公式以及正弦定理的应用.高考中,三角解答题一般有两种题型:一、解三角形:主要是运用正余弦定理来求解边长,角度,周长,面积等;二、三角函数的图像与性质:主要是运用和角公式,倍角公式,辅助角公式进行三角恒等变换,求解三角函数的最小正周期,单调区间,最值(值域)等.来年需要注意第二种题型的考查.31. 【答案】解:(1)∵3AB AC BA BC =,∴cos =3cos AB AC A BA BC B,即cos =3cos AC A BC B . 由正弦定理,得=sin sin AC BCB A,∴sin cos =3sin cos B A A B . 又∵0<A B <π+,∴cos 0 cos 0A >B >,.∴sin sin =3cos cos B AB A即tan 3tan B A =.(2)∵ cos 0C <C <π=,∴sin C =∴tan 2C =. ∴()tan 2A B π⎡-+⎤=⎣⎦,即()tan 2A B +=-.∴tan tan 21tan tan A BA B+=-- .由 (1) ,得24tan 213tan AA=--,解得1tan =1 tan =3A A -,. ∵cos 0A >,∴tan =1A .∴=4A π.【考点】平面微量的数量积,三角函数的基本关系式,两角和的正切公式,解三角形.【解析】(1)先将3AB AC BA BC =表示成数量积,再根据正弦定理和同角三角函数关系式证明.(2)由cos C =可求tan C ,由三角形三角关系,得到()tan A B π⎡-+⎤⎣⎦,从而根据两角和的正切公式和(1)的结论即可求得A 的值.32.考点分析:本题考察三角恒等变化,三角函数的图像与性质.解析:(Ⅰ)因为22()sin cos cos f x x x x x ωωωωλ=-+⋅+cos22x x ωωλ=-+π2sin(2)6x ωλ=-+.由直线πx =是()y f x =图象的一条对称轴,可得πsin(2π)16ω-=±,所以ππ2ππ()62k k ω-=+∈Z ,即1()23k k ω=+∈Z .又1(,1)2ω∈,k ∈Z ,所以1k =,故56ω=.所以()f x 的最小正周期是6π5. (Ⅱ)由()y f x =的图象过点π(,0)4,得π()04f =,即5πππ2sin()2sin 6264λ=-⨯-=-=,即λ=故5π()2sin()36f x x =-由3π05x ≤≤,有π5π5π6366x -≤-≤,所以15πsin()1236x -≤-≤,得5π12sin()236x --故函数()f x 在3π[0,]5上的取值范围为[12-. 33.解析:(Ⅰ)210T ππω==,所以15ω=.(Ⅱ)515652cos 52cos 2sin 353625f ππαπαπαα⎡⎤⎛⎫⎛⎫⎛⎫+=++=+=-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以3s in 5α=.5151652cos 52cos 656617f πβπβπβ⎡⎤⎛⎫⎛⎫-=-+== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以8c o s 17β=.因为α、0,2πβ⎡⎤∈⎢⎥⎣⎦,所以4c o 1s i n 5α==,15sin 17β=,所以()4831513co s co sc o s s i n s i n 51751785αβαβαβ+=-=⨯-⨯=-. 34. 【考点定位】本题主要考查同角函数关系、两角和与差的三角函数公式、二倍角公式、考查运算能力、特殊与一般思想、化归与转化思想.解:(1)选择(2)式计算如下213sin 15cos15sin15cos151sin 3024︒+︒-︒︒=-︒= (2)证明:22sin cos (30)sin cos(30)αααα+︒--︒-22sin (cos30cos sin30sin )sin (cos30cos sin30sin )αααααα=+︒+︒-︒+︒2222311sin cos cos sin cos sin 442αααααααα=+++-22333sin cos 444αα=+= 35. 【命题意图】本试题主要考查了解三角形的运用,给出两个公式,一个是边的关系,一个角的关系,而求解的为角,因此要找到角的关系式为好. 【解析】由()A B C B A C ππ++=⇔=-+,由正弦定理及2a c =可得sin 2sin A C =所以cos()cos cos()cos(())cos()cos()A C B A C A C A C A C π-+=-+-+=--+cos cos sin sin cos cos sin sin 2sin sin A C A C A C A C A C =+-+=故由cos()cos 1A C B -+=与sin 2sin A C =可得22sin sin 1A C =而C 为三角形的内角且2a c c =>,故02C π<<,所以1sin 2C =,故【点评】该试题从整体来看保持了往年的解题风格,理的知识,以及正弦定理和余弦定理,求解三角形中的角的问题.,思路也比较容易想,,得到两角的二元一次方程组,36. 考生应该觉得非常容易入手.解:()f x =2(sin cos )cos x x x-=sin 21x --x -}Z ,最小正周期为π; ,)k k Z π∈,3(,]8k k k Z πππ+∈. 112sin 2(1cos 2)22x x x -+-11sin 222x =-π 21sin 222x当[,0]2x π∈-时,()[0,]22x ππ+∈ 11()()sin 2()sin 22222g x g x x x ππ=+=+=- 当[,)2x ππ∈--时,()[0,)2x ππ+∈ 11()()sin 2()sin 222g x g x x x ππ=+=+=得:函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩。
一、主要内容:东胜神州傲来国有一花果山,山顶一石,产下一猴。
石猴求师学艺,得名孙悟空,学会七十二般变化,一个筋斗去可行十万八千里,自称"美猴王"。
他盗得定海神针,化作如意金箍棒,可大可小,重一万三千五百斤。
又去阴曹地府,把猴属名字从生死簿上勾销。
玉帝欲遣兵捉拿,太白金星建议,把孙悟空召入上界,做弼马温。
当猴王得知弼马温只是个管马的小官后,便打出天门,返回花果山,自称"齐天大圣"。
玉帝派天兵天将捉拿孙悟空,美猴王连败巨灵神、哪咤二将。
孙悟空又被请上天管理蟠桃园。
他偷吃了蟠桃,搅闹了王母娘娘的蟠桃宴、盗食了太上老君的金丹,逃离天宫。
玉帝又派天兵捉拿。
孙悟空与二郎神赌法斗战,不分胜负。
太上老君用暗器击中孙悟空,猴王被擒。
经刀砍斧剁,火烧雷击,丹炉锻炼,孙悟空毫发无伤。
玉帝请来佛祖如来,才把孙悟空压在五行山下。
如来派观音菩萨去东土寻一取经人,来西天取经,劝化众生。
观音点化陈玄奘去西天求取真经。
唐太宗认玄奘做御弟,赐号三藏。
唐三藏西行,在五行山,救出孙悟空。
孙悟空被带上观世音的紧箍,唐僧一念紧箍咒,悟空就头疼难忍。
师徒二人西行,在鹰愁涧收伏白龙,白龙化作唐僧的坐骑。
在高老庄,收伏猪悟能八戒,猪八戒做了唐僧的第二个徒弟;在流沙河,又收伏了沙悟净,沙和尚成了唐僧的第三个徒弟。
师徒四人跋山涉水,西去求经。
观音菩萨欲试唐僧师徒道心,和黎山老母、普贤,文殊化成美女,招四人为婿,唐僧等三人不为所动,只有八戒迷恋女色,被菩萨吊在树上。
在万寿山五庄观,孙悟空等偷吃人参果,推倒仙树。
为了赔偿,孙悟空请来观音,用甘露救活了仙树。
白骨精三次变化,欲取唐僧,都被悟空识破。
唐僧不辨真伪,又听信八戒谗言,逐走悟空,自己却被黄袍怪拿住。
八戒、沙僧斗不过黄袍怪,沙僧被擒,唐僧被变成老虎。
八戒在白龙马的苦劝下,到花果山请转孙悟空,降伏妖魔,师徒四人继续西行。
乌鸡国国王被狮精推人井内淹死,狮精变作国王。
三角函数重点题型归纳1、设函数f(x)=2)0(sin sin cos 2cos sin 2πϕϕϕ<<-+x x x 在π=x 处取最小值.(1)求ϕ的值;(2)在∆ABC 中,c b a ,,分别是角A,B,C 的对边,已知,2,1==b a 23)(=A f ,求角C. 2、已知函数R x x x x f ∈++=),2sin(sin )(π(Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 的最大值和最小值; (Ⅲ)若43)(=αf ,求α2sin 的值.3、在△ABC 中,已知内角,32,3==BC A 边π设内角B =x ,周长为y .(Ⅰ)求函数y=f (x )的解析式和定义域; (Ⅱ)求y 的最大值.4、设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小; (Ⅱ)求cos sin A C +的取值范围.5、在△ABC 中,135cos -=B ,54cos =C .(Ⅰ)求A sin 的值; (Ⅱ)求△ABC 的面积233=ABCS,求BC 的长. 6、(本小题满分10分)在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知222a c b -=,且sin cos 3cos sin ,A C A C = 求b 。
7、设ABC ∆内角A 、B 、C 的对边长分别为a 、b 、c ,3cos()cos 2A CB -+=,2b ac =,求B 。
8、已知1tan 2,tan 42παβ⎛⎫+== ⎪⎝⎭.(1) 求tan α的值; (2) 求()()sin 2sin cos 2sin sin cos αβαβαβαβ+-++的值.9、已知)(x f =, =(2cos x,cos x+sin x), =(sin x,cos x-sin x) (1)求)(x f 图象的对称中心坐标,对称轴方程; (2)若⎥⎦⎤⎢⎣⎡∈∀2,0πx ,)(x f <m ,求实数m 的取值范围。
第三部分:三角函数、平面向量(2)(限时:时间45分钟,满分100分)一、选择题1.(2010年湖北高考)设a =(1,-2),b =(-3,4),c =(3,2),则(a +2b )·c =( )A .(-15, 12)B .0C .-3D .-11【解析】 ∵a +2b =(-5,6),∴(a +2b )·c =(-5,6)·(3,2)=-15+12=-3.【答案】 C2.如图,已知正六边形P 1P 2P 3P 4P 5P 6,下列向量的数量积中最大的是( )A.P 1P →2·P 1P →3B.P 1P →2·P 1P →4C.P 1P →2·P 1P →5D.P 1P →2·P 1P →6【解析】 利用数量积的几何意义,向量P 1P →3、P 1P →4、P 1P →5、P 1P →6中,P 1P →3在向量P 1P →2方向上的投影最大,故P 1P →2·P 1P →3最大.【答案】 A3.(2012年江安质检)设A(a,1),B(2,b),C(4,5)为坐标平面上三点,O 为坐标原点.若O A →与O B →在O C →方向上的投影相同,则a 与b 满足的关系式为( )A .4a -5b =3B .5a -4b =3C .4a +5b =14D .5a +4b =12【解析】 由已知得O A →·O C →|O C →|=O B →·O C →|O C →|, ∴4a +541=8+5b 41,∴4a-5b =3. 【答案】 A4.已知a =⎝ ⎛⎭⎪⎫13,2sin α,b =⎝ ⎛⎭⎪⎫12cos α,32,且a 与b 平行,则锐角α的值为( )A.π8 B.π6 C.π4 D.π3【解析】 ∵a ∥b ,∴13×32-2sin α·12cos α=0, 即12-12sin 2α=0,∴ sin 2α=1. 又∵0<α<π2,∴0<2α<π, 则2α=π2,∴α=π4. 【答案】 C5.(2011年汤阴模拟)在△ABC 中,(B C →+B A →)·A C →=|A C →|2,则三角形ABC 的形状一定是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形【解析】 由(B C →+B A →)·A C →=|A C →|2,得A C →·(B C →+B A →-A C →)=0,即A C →·(B C →+B A →+C A →)=0,∴A C →·2B A →=0,∴A C →⊥B A →,∴∠A=90°.【答案】 C二、填空题6.(2011年上海春招)已知|a |=3,|b |=2,若a·b =-3,则a 与b 夹角的大小为________.【解析】 ∵a·b =|a||b|cos θ,∴-3=3×2×cos θ,即cos θ=-12. 又∵θ∈[0,π],∴θ=2π3. 【答案】 2π37.(2008年江西高考)如图,正六边形ABCDEF 中,有下列四个命题:A .A C →+A F →=2BC →B .A D →=2A B →+2A F →C .A C →·AD →=A D →·A B →D .(A D →·A F →)EF →=A D →(A F →·E F →)其中真命题的代号是________.(写出所有真命题的代号)【解析】 对于A ,A C →+A F →=A C →+C D →=A D →=2B C →,故A 正确.对于B ,∵A D →=A B →+B C →+C D →=A B →+12A D →+A F →, ∴12A D →=AB →+A F →, ∴A D →=2A B →+2A F →,故B 正确.对于C ,∵A C →·A D →=|A D →||A C →|cos∠DAC=|A D →|·3|A B →|cos 30°=32|A B →||A D →|,A D →·A B →=|A D →|·|A B →|cos∠DAB =|A D →||A B →|cos 60°=12|A B →||A D →|.故C 不正确. 对于D ,∵(A D →·A F →)E F →=|A D →||A F →|cos 60°·E F →,=12|A D →||A F →|·E F →,A D →(A F →·E F →) =A D →·|A F →||E F →|cos 120°=(-2E F →)·|A F →|·|A D →2|·(-12)=12|A D →|·|A F →|·E F →,故D 正确. 【答案】 A 、B 、D8.(2011年淮安模拟)△ABC 内接于以O 为圆心的圆,且3O A →+4O B →-5O C →=0,则∠C=________.【解析】 ∵3O A →+4O B →-5O C →=0,∴3O A →+4O B →=5O C →,∴9O A →2+16O B →2+24O A →·O B →=25O C →2.又O A →2=O B →2=O C →2,∴O A →·O B →=0,∴OA⊥OB.又3O A →+4O B →=5O C →,∴点C 在劣弧AB 上,∴∠C=135°.【答案】 135°三、解答题9.已知|a |=1,|b |=2,a 与b 的夹角为θ.(1)若a ∥b 求a ·b ;(2)若a -b 与a 垂直,求θ.【解析】 (1)∵a ∥b ,∴θ=0或π,∴a ·b =|a ||b |cos θ=1×2×cos θ=± 2.(2)∵(a -b )⊥a ,∴a·(a -b )=0,即a 2-a·b =0, ∴1-1×2cos θ=0,∴cos θ=22. ∵θ∈[0,π],∴θ=π4. 10.已知向量O A →=(3,-4),O B →=(6,-3),O C →=(5-m ,-(3+m)).(1)若点A 、B 、C 不能构成三角形,求实数m 应满足的条件;(2)若△ABC 为直角三角形,求实数m 的值.【解析】 (1)已知向量O A →=(3,-4),O B →=(6,-3),O C →=(5-m ,-(3+m)),若点A 、B 、C 不能构成三角形,则这三点共线,∵A B →=(3,1),A C →=(2-m,1-m),故知3(1-m)=2-m ,∴实数m =12时,满足条件. (2)由题意,△ABC 为直角三角形,①若∠A 为直角,则A B →⊥AC →,∴3(2-m)+(1-m)=0,解得m =74. ②若∠B 为直角,B C →=(-1-m ,-m),则A B →⊥B C →,∴3(-1-m)+(-m)=0,解得m =-34③若∠C 为直角,则B C →⊥A C →,∴(2-m)(-1-m)+(1-m)(-m)=0,解得m =1±52. 综上,m =74或m =-34或m =1±52.。
2012届高考数学二轮复习资料 专题四 三角函数(教师版)【考纲解读】1.了解任意角的概念,了解弧度制的概念,能进行弧度与角度的互化;理解任意角的三角函数(正弦、余弦、正切)的定义.2.能利用单位圆中的三角函数线推导出2πα±,πα±的正弦、余弦、正切的诱导公式;理解同角的三角函数的基本关系式:sin 2x+cos 2x=1,sin tan cos xx x=. 3.能画出y=sinx, y=cosx, y=tanx 的图象,了解三角函数的周期性;2.理解正弦函数,余弦函数在区间[0,2π]上的性质(如单调性,最大值和最小值以及与x 轴的交点等),理解正切函数在区间(-2π,2π)内的单调性. 4.了解函数sin()y A x ωϕ=+的物理意义;能画出sin()y A x ωϕ=+的图象,了解,,A ωϕ对函数图象变化的影响.5.会用向量的数量积推导两角差的余弦公式;能利用两角差的余弦公式导出两角和与差的正弦、余弦和正切公式,了解它们的内在联系.6.能利用两角差的余弦公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【考点预测】从近几年高考试题来看,对三角函数的考查:一是以选择填空的形式考查三角函数的性质及公式的应用,一般占两个小题;二是以解答题的形式综合考查三角恒等变换、sin()y A x ωϕ=+的性质、三角函数与向量等其他知识综合及三角函数为背景的实际问题等.预测明年,考查形式不变,选择、填空题以考查三角函数性质及公式应用为主,解答题将会以向量为载体,考查三角函数的图象与性质或者与函数奇偶性、周期性、最值等相结合,以小型综合题形式出现.【要点梳理】1.知识点:弧度制、象限角、终边相同的角、任意角三角函数的定义、同角三角函数基本关系式、诱导公式、三角函数线、三角函数图象和性质;和、差、倍角公式,正、余弦定理及其变形公式.2.三角函数中常用的转化思想及方法技巧:(1)方程思想:sin cos αα+,sin cos αα-,sin cos αα三者中,知一可求二; (2)“1”的替换:22sin cos 1αα+=; (3)切弦互化:弦的齐次式可化为切;(4)角的替换:2()()ααβαβ=++-,()22αβαβααββ+-=+-=+;(5)公式变形:21cos 2cos2αα+=,21cos 2sin 2αα-=, tan tan tan()(1tan tan )αβαβαβ+=+-;(6)构造辅助角(以特殊角为主):sin cos )(tan )ba b aαααϕϕ+=+=.3.函数sin()y A x ωϕ=+的问题: (1)“五点法”画图:分别令0x ωϕ+=、2π、π、32π、2π,求出五个特殊点;(2)给出sin()y A x ωϕ=+的部分图象,求函数表达式时,比较难求的是ϕ,一般从“五点法”中取靠近y 轴较近的已知点代入突破; (3)求对称轴方程:令x ωϕ+=2k ππ+()k Z ∈,求对称中心:令x ωϕ+=k π()k Z ∈; (4)求单调区间:分别令22k x ππωϕ-≤+≤22k ππ+()k Z ∈;22k x ππωϕ+≤+≤322k ππ+()k Z ∈,同时注意A 、ω符号. 4.解三角形:(1)基本公式:正弦、余弦定理及其变形公式;三角形面积公式; (2)判断三角形形状时,注意边角之间的互化. 【考点在线】考点1 三角函数的求值与化简此类题目主要有以下几种题型:⑴考查运用诱导公式和逆用两角和的正弦、余弦公式化简三角函数式能力,以及求三角函数的值的基本方法.⑵考查运用诱导公式、倍角公式,两角和的正弦公式,以及利用三角函数的有界性来求的值故f (x )的定义域为.Z ,2|R ⎭⎬⎫⎩⎨⎧∈-≠∈k k x x ππ(Ⅱ)由已知条件得.54531cos 1sin 22-⎪⎭⎫⎝⎛-=-=a a从而)2sin()42cos(21)(ππ+-+=a a a f =a a a cos 4sin 2sin 4cos cos 21⎪⎭⎫ ⎝⎛++ππ =a a a a a a a cos cos sin 2cos 2cos sin 2cos 12+=++=.514)sin (cos 2=+a a 【名师点睛】本小题主要考查三角函数的定义域和两角差的公式,同角三角函数的关系等基本知识,考查运算和推理能力,以及求角的基本知识..【备考提示】:熟练掌握三角函数公式与性质是解答好本类题的关键. 练习1:(2011年高考某某卷文科9)若α∈(0, 2π),且2sin α+1cos 24α=,则tan α的值等于( ) A.22 B. 33C. 2D. 3【答案】D【解析】因为α∈(0,2π),且2sin α+1cos 24α=,所以2sin α+221cos sin 4αα-=, 即21cos 4α=,所以cos α=12或12-(舍去),所以3πα=,即tan 3α=选D.考点2 考查sin()y A x ωϕ=+的图象与性质考查三角函数的图象和性质的题目,是高考的重点题型.此类题目要求考生在熟练掌握三角函数图象的基础上要对三角函数的性质灵活运用,会用数形结合的思想来解题.【备考提示】:三角函数的图象及性质是高考考查的热点内容之一,熟练其基础知识是解答好本类题的关键.练习2.(2011年高考某某卷9)函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则____)0(=f6【解析】由图象知:函数()sin()f x A wx φ=+的周期为74()123πππ-=,而周期2T wπ=,所以2w =,由五点作图法知:23πφπ⨯+=,解得3πφ=,又A=2,所以函数()2)3f x x π=+,所以(0)f =6232π=考点3 三角函数与向量等知识的综合三角函数与平面向量的综合,解答过程中,向量的运算往往为三角函数提供等量条件. 例3.(2009年高考某某卷第15题)设向量(4cos ,sin ),(sin ,4cos ),(cos ,4sin )a b c ααββββ===-(1)若a 与2b c -垂直,求tan()αβ+的值;(2)求||b c +的最大值;(3)若tan tan 16αβ=,求证:a ∥b .【解析】【名师点睛】本小题主要考查向量的基本概念,同时考查同角三角函数的基本关系式、二倍角的正弦、两角和的正弦与余弦公式,考查运算和证明得基本能力. 【备考提示】:熟练三角公式与平面向量的基础知识是解决此类问题的关键. 练习3.(某某市十二区县重点中学2011年高三联考二理)(本小题满分13分) 已知向量2(3sin,1),(cos ,cos )444x x xm n ==,()f x m n =⋅. (I )若()1f x =,求cos()3x π+值;(II )在ABC ∆中,角,,A B C 的对边分别是,,a b c ,且满足(2)cos cos a c B b C -=, 求函数()f A 的取值X 围.【解析】(I )()f x m n =⋅=23cos cos 444x x x +----------------1分=311cos 2222x x ++----------------3分 =1sin()262x π++----------------4分∵()1f x =∴1sin()262x π+=∴2cos()12sin ()326x x ππ+=-+=12-------6分 (II )∵(2)cos cos a c B b C -=,由正弦定理得(2sin sin )cos sin cos A C B B C -=-----------------8分 ∴2sin sin cos sin cos AcosB C B B C -= ∴2sin cos sin()A B B C =+-----------------9分∵A B C π++=∴sin()sin B C A +=,且sin 0A ≠∴1cos ,2B =∵0B <<π∴3B π=----------------10分∴203A π<<----------------11分∴1,sin()16262226A A ππππ<+<<+<----------------12分∴131sin()2622A π<++<∴()f A =1sin()262A π++3(1,)2∈---13分考点4. 解三角形解决此类问题,要根据已知条件,灵活运用正弦定理或余弦定理,求边角或将边角互化. 例4. (2011年高考某某卷文科16)在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,3212cos()0B C ++=,求边BC 上的高. 【解析】∵A +B +C =180°,所以B +C =A , 又12cos()0B C ++=,∴12cos(180)0A +-=, 即12cos 0A -=,1cos 2A =,又0°<A<180°,所以A =60°. 在△ABC 中,由正弦定理sin sin a b A B=得sin 22sin 23b A B a ===, 又∵b a <,所以B <A ,B =45°,C =75°, ∴BC 边上的高AD =AC ·sinC 2752sin(4530)=+2(sin 45cos30cos 45sin 30)=+2321312()22222=⨯+=. 【名师点睛】本题考察两角和的正弦公式,同角三角函数的基本关系,利用内角和定理、正弦定理、余弦定理以及三角形边与角之间的大小对应关系解三角形的能力,考察综合运算求解能力.【备考提示】:解三角形问题所必备的知识点是三大定理“内角和定理、正弦定理、余弦定理”具体的思路是化统一的思想“统一成纯边或纯角问题”即可.练习4.(2011年高考某某卷文科17)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cosC 2c-a=cos B b. (I ) 求sin sin CA的值;(II ) 若cosB=14,5b ABC 的周长为,求的长.【解析】(1)由正弦定理得2sin ,a R A =2sin ,b R B =2sin ,c R C =所以cos A-2cosC 2c-a =cos B b=2sin sin sin C AB -,即sin cos 2sin cos 2sin cos sin cos B A BC C B A B -=-,即有sin()2sin()A B B C +=+,即sin 2sin C A =,所以sin sin CA=2. (2)由(1)知sin sin CA=2,所以有2c a =,即c=2a,又因为ABC ∆的周长为5,所以b=5-3a,由余弦定理得:2222cos b c a ac B =+-,即22221(53)(2)44a a a a -=+-⨯,解得a=1,所以b=2.【易错专区】问题:三角函数的图象变换例.(2011年高考全国卷理科5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于( ) (A )13(B )3 (C )6 (D )9【答案】C 【解析】()cos[()]cos 33f x x x ππωω-=-=即cos()cos 3x x ωπωω-=, 22()663k k Z k ωπππω∴-=+∈⇒=--z 则1k =-时min 6ω=故选C.【名师点睛】本题考查三角函数的图象平移,在平移时,应注意x 的系数. 【备考提示】:三角函数的图象变换是高考的热点,必须熟练此类问题的解法. 【考题回放】1. (2011年高考某某卷理科3)若点(a,9)在函数3xy =的图象上,则tan=6a π的值为( )(A ) 【答案】D【解析】由题意知:9=3a,解得a =2,所以2tantan tan 663a πππ===故选D. 2. (2011年高考某某卷理科6)若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在【答案】C.【解析】若()()6f x f π≤对x R ∈恒成立,则()sin()163f ππϕ=+=,所以,32k k Z ππϕπ+=+∈,,6k k Z πϕπ=+∈.由()()2f f ππ>,(k Z ∈),可知sin()sin(2)πϕπϕ+>+,即sin 0ϕ<,所以72,6k k Z πϕπ=+∈,代入()sin(2)f x x ϕ=+,得7()sin(2)6f x x π=+,由7222262k x k πππππ-++,得563k x k ππππ--,故选C.4.(2011年高考某某卷理科4)△ABC 的三个内角A 、B 、C 所对的边分别为a ,b ,c ,asin AsinB+bcos 22a 则ba=( ) (A) 23 (B) 22 (C) 3 2【答案】 D【解析】由正弦定理得,sin 2AsinB+sinBcos 22sinA ,即sinB (sin 2A+cos 2A )2sinA , 故2sinA ,所以2ba= 5.(2011年高考某某卷理科7)设sin1+=43πθ(),则sin 2θ=( ) (A) 79- (B) 19- (C) 19 (D)79【答案】A【解析】217sin 2cos 22sin 121.2499ππθθθ⎛⎫⎛⎫=-+=+-=⨯-=- ⎪ ⎪⎝⎭⎝⎭ 6.(2011年高考某某卷理科6)若02πα<<,02πβ-<<,1cos()43πα+=,cos()423πβ-=,则cos()2βα+=( )(A )3 (B )3- (C )9 (D )9-【答案】 C 【解析】()()2442βππβαα+=+--cos()cos[()()]2442βππβαα∴+=+--sin()sin()442ππβα+++1333399=⨯+==, 故选C. 7. (2011年高考全国新课标卷理科5)已知角θ的顶点与原点重合,始边与横轴的正半轴重合,终边在直线x y 2=上,则,=θ2cos ( ) A 54-B 53-C 32D 43【答案】B【解析】因为该直线的斜率是θtan 2==k ,所以,53tan 1tan 1cos 22-=+-=θθθ. 8. (2011年高考全国新课标卷理科11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( ) (A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 【答案】A【解析】函数解析式可化为)4sin(2)(πϕω++=x x f ,2,2=∴=ωπωπT又因为该函数是偶函数,所以,x x f 2cos 2)(4=∴=πϕ,所以,该函数在⎪⎭⎫⎝⎛2,0π上是减函数。
2012 年高考数学分类汇编三角函数一、选择题1 .( 2012 年高考(浙江文理) )把函数 y=cos2x+1 的图象上全部点的横坐标伸长到本来的 2 倍( 纵坐标不变 ), 而后向左平移 1 个单位长度 , 再向下平移 1 个单位长度 , 获得的图像是2 .( 2012 年高考(天津文) )将函数 f ( x)sin x(0) 的图像向右平移个单位长度 ,所得图像经过点 (34,0),则 的最小值是()4A .1B . 1C .5D . 2333 .( 2012 年高考(四川文) )如图 , 正方形 ABCD 的边长为 1, 延伸 BA 至 E , 使 AE1, 连结EC 、 ED 则 sin CED( ) CA .3 10B .105 5DC .D .101010154 .( 2012 年高考(山东文) )函数 y 2sinx (0 x 9) 的最大值与最小B6E A3值之和为()A .2 3B . 0C . -1D .1 35 .( 2012 年高考(辽宁文) )已知 sincos2 ,(0, π ), 则 sin 2= ()A . 1B .2C .2D . 1226 .( 2012 年高考(课标文))已知>0,, 直 线 x =5 是 函 数和 x =44f ( x) sin( x) 图像的两条相邻的对称轴, 则 =()π ππ3πA . 4B . 3C . 2D . 47.( 2012 年高考(福建文) )函数 f (x)sin( x) 的图像的一条对称轴是 ()4A . x4B . x2C . x4 D . x28 .( 2012年高考(纲领文))若函数f ( ) sinx(0,2 )是偶函数,则x3()A .B .2C .3D .523239.( 2012 年高考(安徽文) )要获得函数 ycos(2 x 1) 的图象 , 只需将函数 ycos2x 的图象()A .向左平移 1 个单位B .向右平移 1 个单位C .向左平移 1个单位D .向右平移 1个单位2210 .( 2012 年高考(新课标理))已知0 , 函数 f ( x)sin( x) 在 ( , ) 上单一递减 .4 2则的取值范围是()A . [ 1 , 5 ]B . [ 1 , 3 ]C . (0, 1 ]D . (0, 2]2 42 42二、解答题11.( 2012 年高考(重庆文) ) ( 本小题满分 12 分,(Ⅰ)小问 5分,( Ⅱ) 小问 7 分)设函数f ( x)A sin( x)(此中 A 0,0, ) 在 x处获得最大值 2, 其图6象与轴的相邻两个交点的距离为(I) 求 f (x) 的 解 析 式 ;(II) 求 函 数2g ( x) 6cos 4 x sin 2x1的值域 .f ( x )612.( 2012 年高考(陕西文))函数 f (x)A sin(x ) 1( A 0, 0 ) 的最大值为 3,其6图像相邻两条对称轴之间的距离为,2(1) 求函数 f ( x) 的分析式 ; (2) 设(0, ) , 则 f ( ) 2 , 求的值 .2 2参照答案一、选择题 1.【答案】 A【命题企图】本题主要考察了三角函数中图像的性质, 详细考察了在 x 轴上的伸缩变换 ,在 x 轴、 y 轴上的平移变化 , 利用特别点法判断图像的而变换 .【分析】由题意 ,y=cos2x+1 的图象上全部点的横坐标伸长到本来的 2 倍 ( 纵坐标不变 ),即 解 析 式 为 y=cosx+1, 向 左 平 移 一 个 单 位 为 y=cos(x-1)+1, 向下平移一个单位为y=cos(x-1), 利用特别点,0 变成 2 1,0 ,选 A.22.【分析】函数向右平移获得函数 g ( x) f ( x) sin ( x ) sin( x) ,(34(34( 34 4由于此时函数过点,0) , 因此 sin) 0 , 即 ) k , 因此4444422k , k Z , 因此的最小值为 2, 选 D.3. [答案 ]B分析,正方形的边长也为22[ ] AE1EDAEAD21EC ( EA225AB )CBCD12EC 223 10cos CEDED- CD2 ED EC10sinCED1 cos 2CED1010[ 评论 ] 注意恒等式 sin 2α +cos 2α =1 的使用 , 需要用 α 的的范围决定其正余弦值的正负状况.4. 分析:由0x 9 可知 x73, 可知3 6 6sin( x ) [3,1]6 32x [ 3,2] ,, 则 y 2sin63则最大值与最小值之和为2 3,答案应选 A.5.【答案】 A【分析】sin cos 2, (sincos )22, sin 2 1, 应选 A【评论】本题主要考察三角函数中的倍角公式以及转变思想和运算求解能力 , 属于简单题.6.【命题企图】本题主要考察三角函数的图像与性质, 是中档题 . 【分析】由题设知 , =5,∴ =1,∴= k ( k Z ),4 4 4 2∴ = k( k Z ), ∵ 0,∴ = ,应选 A.447. 【答案】 C【分析】把 x代入后获得 f ( x)1, 因此对称轴为 x, 答案 C 正确 .44【考点定位】本题主要考察三角函数的图像和性质, 代值逆推是主要解法.8. 答案 C【命题企图】本试题主要考察了偶函数的观点与三角函数图像性质 ,.【分析】由 f (x)sinx( 0, 2 ) 为偶函数可知 , y 轴是函数 f (x) 图像的对称轴 ,3而三角函数的对称轴是在该函数获得最值时获得, 故f (0) sin1k3 0,2 , 故 k33k ( k Z) , 而3223 时,, 应选答案 C.29. 【分析】选 C ycos2xycos(2 x 1) 左+1, 平移110、【分析】选 A22( x) 59 ] 不合题意清除 (D)[,4 441( x) [3,5] 合题意 清除 (B)(C)444, 3] 另: () 2 , ( x) [ , ] [24 2442 2得:,3154422422二、11. 【答案】 : ( Ⅰ)( Ⅱ)[1, 7) (7, 5]64 423cos 2x 1(cos 2x1) 因 cos 2x [0,1] , 且 cos 2 x 1 222故 g ( x) 的值域为 [1, 7 ) (7, 5]44 212. 分析 :(1)∵函数 f ( x) 的最大值为 3, ∴ A 1 3,即A 2∵函数图像的相邻两条对称轴之间的距离为, ∴最小正周期为 T2∴2, 故函数 f (x) 的分析式为 y sin(2 x) 16(2) ∵ f () 2sin() 1 221 6即 sin()26∵ 02, ∴636∴6, 故36。
2012届高考数学二轮复习资料 专题四 三角函数(教师版)【考纲解读】1.了解任意角的概念,了解弧度制的概念,能进行弧度与角度的互化;理解任意角的三角函数(正弦、余弦、正切)的定义.2.能利用单位圆中的三角函数线推导出2πα±,πα±的正弦、余弦、正切的诱导公式;理解同角的三角函数的基本关系式:sin 2x+cos 2x=1,sin tan cos xx x=. 3.能画出y=sinx, y=cosx, y=tanx 的图象,了解三角函数的周期性;2.理解正弦函数,余弦函数在区间[0,2π]上的性质(如单调性,最大值和最小值以及与x 轴的交点等),理解正切函数在区间(-2π,2π)内的单调性. 4.了解函数sin()y A x ωϕ=+的物理意义;能画出sin()y A x ωϕ=+的图象,了解,,A ωϕ对函数图象变化的影响.5.会用向量的数量积推导两角差的余弦公式;能利用两角差的余弦公式导出两角和与差的正弦、余弦和正切公式,了解它们的内在联系.6.能利用两角差的余弦公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【考点预测】从近几年高考试题来看,对三角函数的考查:一是以选择填空的形式考查三角函数的性质及公式的应用,一般占两个小题;二是以解答题的形式综合考查三角恒等变换、sin()y A x ωϕ=+的性质、三角函数与向量等其他知识综合及三角函数为背景的实际问题等.预测明年,考查形式不变,选择、填空题以考查三角函数性质及公式应用为主,解答题将会以向量为载体,考查三角函数的图象与性质或者与函数奇偶性、周期性、最值等相结合,以小型综合题形式出现.【要点梳理】1.知识点:弧度制、象限角、终边相同的角、任意角三角函数的定义、同角三角函数基本关系式、诱导公式、三角函数线、三角函数图象和性质;和、差、倍角公式,正、余弦定理及其变形公式.2.三角函数中常用的转化思想及方法技巧:(1)方程思想:sin cos αα+, sin cos αα-,sin cos αα三者中,知一可求二; (2)“1”的替换: 22sin cos 1αα+=; (3)切弦互化:弦的齐次式可化为切;(4)角的替换:2()()ααβαβ=++-,()22αβαβααββ+-=+-=+;(5)公式变形:21cos 2cos 2αα+=, 21cos 2sin 2αα-=, tan tan tan()(1tan tan )αβαβαβ+=+-;(6)构造辅助角(以特殊角为主):sin cos )(tan )ba b aαααϕϕ+=+=.3.函数sin()y A x ωϕ=+的问题: (1)“五点法”画图:分别令0x ωϕ+=、2π、π、32π、2π,求出五个特殊点;(2)给出sin()y A x ωϕ=+的部分图象,求函数表达式时,比较难求的是ϕ,一般从“五点法”中取靠近y 轴较近的已知点代入突破; (3)求对称轴方程:令x ωϕ+=2k ππ+()k Z ∈,求对称中心: 令x ωϕ+=k π()k Z ∈; (4)求单调区间:分别令22k x ππωϕ-≤+≤22k ππ+()k Z ∈;22k x ππωϕ+≤+≤322k ππ+()k Z ∈,同时注意A 、ω符号. 4.解三角形:(1)基本公式:正弦、余弦定理及其变形公式;三角形面积公式; (2)判断三角形形状时,注意边角之间的互化. 【考点在线】考点1 三角函数的求值与化简此类题目主要有以下几种题型:⑴考查运用诱导公式和逆用两角和的正弦、余弦公式化简三角函数式能力,以及求三角函数的值的基本方法.⑵考查运用诱导公式、倍角公式,两角和的正弦公式,以及利用三角函数的有界性来求的值故f (x )的定义域为.Z ,2|R ⎭⎬⎫⎩⎨⎧∈-≠∈k k x x ππ(Ⅱ)由已知条件得.54531cos 1sin 22-⎪⎭⎫⎝⎛-=-=a a从而)2sin()42cos(21)(ππ+-+=a a a f =aa a cos 4sin 2sin 4cos cos 21⎪⎭⎫ ⎝⎛++ππ =a a a a a a a cos cos sin 2cos 2cos sin 2cos 12+=++ =.514)sin (cos 2=+a a【名师点睛】本小题主要考查三角函数的定义域和两角差的公式,同角三角函数的关系等基本知识,考查运算和推理能力,以及求角的基本知识..【备考提示】:熟练掌握三角函数公式与性质是解答好本类题的关键. 练习1: (2011年高考福建卷文科9)若α∈(0, 2π),且2sin α+1cos 24α=,则tan α的值等于( )A.2B. 3C.D. 【答案】D【解析】因为α∈(0,2π),且2sin α+1cos 24α=,所以2sin α+221cos sin 4αα-=, 即21cos 4α=,所以cos α=12或12-(舍去),所以3πα=,即tan α=选D.考点2 考查sin()y A x ωϕ=+的图象与性质考查三角函数的图象和性质的题目,是高考的重点题型.此类题目要求考生在熟练掌握三角函数图象的基础上要对三角函数的性质灵活运用,会用数形结合的思想来解题.【备考提示】:三角函数的图象及性质是高考考查的热点内容之一,熟练其基础知识是解答好本类题的关键.练习2.(2011年高考江苏卷9)函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则____)0(=f【解析】由图象知:函数()sin()f x A wx φ=+的周期为74()123πππ-=,而周期2T wπ=,所以2w =,由五点作图法知:23πφπ⨯+=,解得3πφ=,又A=,所以函数()sin(2)3f x x π=+,所以(0)f =3π=考点3 三角函数与向量等知识的综合三角函数与平面向量的综合,解答过程中,向量的运算往往为三角函数提供等量条件. 例3.(2009年高考江苏卷第15题)设向量(4cos ,sin ),(sin ,4cos ),(cos ,4sin )a b c ααββββ===-(1)若a 与2b c -垂直,求tan()αβ+的值;(2)求||b c +的最大值;(3)若tan tan 16αβ=,求证:a ∥b.【解析】【名师点睛】本小题主要考查向量的基本概念,同时考查同角三角函数的基本关系式、二倍角的正弦、两角和的正弦与余弦公式,考查运算和证明得基本能力. 【备考提示】:熟练三角公式与平面向量的基础知识是解决此类问题的关键. 练习3.(天津市十二区县重点中学2011年高三联考二理)(本小题满分13分)已知向量2,1),(cos ,cos )444x x x m n == ,()f x m n =⋅ .(I )若()1f x =,求cos()3x π+值;(II )在ABC ∆中,角,,A B C 的对边分别是,,a b c ,且满足(2)cos cos a c B b C -=, 求函数()f A 的取值范围.【解析】(I )()f x m n =⋅= 2cos cos 444x x x + ----------------1分=11cos 22222x x ++ ----------------3分 =1sin()262x π++----------------4分∵()1f x = ∴1sin()262x π+=∴2cos()12sin ()326x x ππ+=-+=12-------6分 (II )∵(2)cos cos a c B b C -=,由正弦定理得(2sin sin )cos sin cos A C B B C -= -----------------8分 ∴2sin sin cos sin cos AcosB C B B C -=∴2sin cos sin()A B B C =+- ----------------9分 ∵A B C π++=∴sin()sin B C A +=,且sin 0A ≠∴1cos ,2B =∵0B <<π∴3B π= ----------------10分∴203A π<< ----------------11分∴1,sin()16262226A A ππππ<+<<+< ----------------12分∴131sin()2622A π<++< ∴()f A =1sin()262A π++3(1,)2∈---13分考点4. 解三角形解决此类问题,要根据已知条件,灵活运用正弦定理或余弦定理,求边角或将边角互化. 例4. (2011年高考安徽卷文科16) 在 ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,12cos()0B C ++=,求边BC 上的高. 【解析】∵A +B +C =180°,所以B +C =A ,又12cos()0B C ++=,∴12cos(180)0A +-= , 即12cos 0A -=,1cos 2A =,又0°<A<180°,所以A =60°.在△ABC 中,由正弦定理sin sin a b A B=得sin sin 2b A B a === , 又∵b a <,所以B <A ,B =45°,C =75°,∴BC 边上的高AD =AC ·sinC 30)+45cos30cos45sin30)=+ 1)222=+=.【名师点睛】本题考察两角和的正弦公式,同角三角函数的基本关系,利用内角和定理、正弦定理、余弦定理以及三角形边与角之间的大小对应关系解三角形的能力,考察综合运算求解能力.【备考提示】:解三角形问题所必备的知识点是三大定理“内角和定理、正弦定理、余弦定理”具体的思路是化统一的思想“统一成纯边或纯角问题”即可.练习4. (2011年高考山东卷文科17)在 ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cos C 2c-a=cos B b.(I ) 求sin sin CA的值;(II ) 若cosB=14,5b ABC 的周长为,求的长.【解析】(1)由正弦定理得2sin ,a R A =2sin ,b R B =2sin ,c R C =所以cos A-2cos C 2c-a =cos B b=2sin sin sin C AB -,即sin cos 2sin cos 2sin cos sin cos B A B C C B A B -=-,即有sin()2sin()A B B C +=+,即sin 2sin C A =,所以sin sin CA=2. (2)由(1)知sin sin CA=2,所以有2c a =,即c=2a,又因为ABC ∆的周长为5,所以b=5-3a,由余弦定理得:2222cos b c a ac B =+-,即22221(53)(2)44a a a a -=+-⨯,解得a=1,所以b=2.【易错专区】问题:三角函数的图象变换例. (2011年高考全国卷理科5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于( ) (A )13(B )3 (C )6 (D )9【答案】C 【解析】()cos[()]cos 33f x x x ππωω-=-=即cos()cos 3x x ωπωω-=, 22()663k k Z k ωπππω∴-=+∈⇒=--z 则1k =-时min 6ω=故选C.【名师点睛】本题考查三角函数的图象平移,在平移时,应注意x 的系数. 【备考提示】:三角函数的图象变换是高考的热点,必须熟练此类问题的解法. 【考题回放】1. (2011年高考山东卷理科3)若点(a,9)在函数3xy =的图象上,则tan=6a π的值为( )(A )【答案】D【解析】由题意知:9=3a,解得a =2,所以2tantan tan 663a πππ===故选D. 2. (2011年高考山东卷理科6)若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在【答案】C.【解析】若()()6f x f π≤对x R ∈恒成立,则()sin()163f ππϕ=+=,所以,32k k Z ππϕπ+=+∈,,6k k Z πϕπ=+∈.由()()2f f ππ>,(k Z ∈),可知sin()sin(2)πϕπϕ+>+,即s i n ϕ<,所以72,6k k Z πϕπ=+∈,代入()sin(2)f x x ϕ=+,得7()s i n (2)6f x x π=+,由7222262k x k πππππ-++剟,得563k x k ππππ--剟,故选C.4.(2011年高考辽宁卷理科4)△ABC 的三个内角A 、B 、C 所对的边分别为a ,b ,c ,asinAsinB+bcos 2则ba=( )(A) (B) (C) 【答案】 D【解析】由正弦定理得,sin 2AsinB+sinBcos 2,即sinB (sin 2A+cos 2A ),故,所以ba= 5.(2011年高考辽宁卷理科7)设sin1+=43πθ(),则sin 2θ=( ) (A) 79- (B) 19- (C) 19 (D)79【答案】A【解析】217sin 2cos 22sin 121.2499ππθθθ⎛⎫⎛⎫=-+=+-=⨯-=- ⎪ ⎪⎝⎭⎝⎭ 6.(2011年高考浙江卷理科6)若02πα<<,02πβ-<<,1cos()43πα+=,cos()423πβ-=cos()2βα+=( )(A (B )(C (D )【答案】 C 【解析】()()2442βππβαα+=+-- cos()cos[()()]2442βππβαα∴+=+--sin()sin()442ππβα+++ 133=+==, 故选C. 7. (2011年高考全国新课标卷理科5)已知角θ的顶点与原点重合,始边与横轴的正半轴重合,终边在直线x y 2=上,则,=θ2cos ( ) A 54-B 53-C 32D 43 【答案】B【解析】因为该直线的斜率是θtan 2==k ,所以,53tan 1tan 1cos 22-=+-=θθθ. 8. (2011年高考全国新课标卷理科11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( ) (A )()f x 在0,2π⎛⎫⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 【答案】A【解析】函数解析式可化为)4sin(2)(πϕω++=x x f ,2,2=∴=ωπωπT又因为该函数是偶函数,所以,x x f 2cos 2)(4=∴=πϕ,所以,该函数在⎪⎭⎫⎝⎛2,0π上是减函数。