江苏省职业学校对口单招数学试卷(含答案).doc
- 格式:doc
- 大小:459.00 KB
- 文档页数:5
江苏省对口单招教学联盟2023~2024学年第一学期单招班期末联合考试二年级·数学(参考答案及评分标准)第Ⅰ卷(共40分)一㊁选择题(本大题共10小题,每小题4分,共40分)题号12345678910答案A D C C D B A A A D第Ⅱ卷(共110分)二㊁填空题(本大题共5小题,每小题4分,共20分)11.0 12.-35 13.π3 14.5 15.34三㊁解答题(本大题共8小题,共90分)16.(本题满分8分)解:(1)ȵ|2a +b |2=4|a |2+4a ㊃b +|b |2=4+4a ㊃b +4=10,2分ʑa ㊃b =12.2分 (2)ȵ|a -2b |2=|a |2-4a ㊃b +4|b |2=1-2+16=15,2分 ʑ|a -2b |=15.2分17.(本题满分10分)解:(1)ȵz 1=m 2-5m -3i ,z 2=(m 2-2m )i -6,ʑz 1+z 2=(m 2-5m -6)+(m 2-2m -3)i .2分 ȵz 1+z 2为纯虚数,ʑm 2-5m -6=0,m 2-2m -3ʂ0{⇒m =6或m =-1,m ʂ3且m ʂ-1,{2分 ʑm =6.1分 (2)ȵz 1+z 2在复平面内的对应点在第二象限,ʑm 2-5m -6<0,m 2-2m -3>0,{2分 ʑ-1<m <6,m >3或m <-1,{ʑ3<m <6.2分 ʑm 的取值范围是(3,6).1分18.(本题满分10分)解:(1)由正弦定理a s i n A =b s i n B ,得b s i n A =a s i n B ,1分 又ȵb s i n A =3c s i n B ,ʑa s i n B =3c s i n B ,ʑa =3c .1分又ȵa =3,ʑc =1.1分由余弦定理b 2=a 2+c 2-2a c c o s B ,c o s B =23,得b 2=9+1-2ˑ3ˑ1ˑ23=6,ʑb =6.2分(2)由c o s B =23,得s i n B =53,ʑs i n 2B =2s i n B c o s B =459,c o s 2B =2c o s 2B -1=-19.2分 ʑs i n 2B -π3æèçöø÷=s i n 2B c o s π3-c o s 2B s i n π3=459ˑ12--19æèçöø÷ˑ32=45+318.3分 19.(本题满分10分)解:(1)ȵ最高点和最低点的纵坐标分别为3和-3,ʑH =3.1分又ȵ最高点和其相邻最低点的横坐标分别为π12,7π12,ʑT 2=7π12-π12=π2,ʑT =π.ʑω=2πT =2.1分 ʑf (x )=3s i n (2x +φ),将点π12,3æèçöø÷代入可得s i n π6+φæèçöø÷=1,ʑπ6+φ=π2+2k π(k ɪZ ),ȵ0<φ<π2,ʑφ=π3,1分 ʑf (x )=3s i n 2x +π3æèçöø÷.1分 (2)由2x +π3=π2+k π(k ɪZ ),1分 得x =π12+k π2(k ɪZ ).ʑf (x )的图像的对称轴方程为x =π12+k π2(k ɪZ ).2分 (3)由-π2+2k πɤ2x +π3ɤπ2+2k π(k ɪZ ),1分得-5π12+k πɤx ɤπ12+k π,ʑf (x )的单调递增区间为-5π12+k π,π12+k πéëêêùûúú(k ɪZ ).2分 20.(本题满分12分)解:(1)f (x )=32s i n 2x +1+c o s 2x 2-12=32s i n 2x +12c o s 2x =s i n 2x +π6æèçöø÷.3分 ȵx ɪ-π3,π3éëêêùûúú,ʑ2x +π6ɪ-π2,5π6éëêêùûúú,1分 ʑ当2x +π6=π2,即x =π6时,f (x )取最大值1.综上可得:当x ɪ-π3,π3éëêêùûúú时,函数f (x )的最大值为1,取最大值时x =π6.2分 (2)ȵf (C )=12,ʑs i n 2C +π6æèçöø÷=12.ȵC ɪ(0,π),ʑ2C +π6ɪπ6,13π6æèçöø÷,ʑ2C +π6=5π6,得C =π3.1分 ȵ向量m =(1,s i n A ),n =(2,s i n B )共线,ʑs i n B =2s i n A ,由正弦定理可得:b =2a .1分 由余弦定理c 2=a 2+b 2-2a b c o s C ,c =3可得3=a 2+4a 2-2a ㊃2a ㊃c o s π3,ʑa =1,1分 ʑb =2.1分ʑS әA B C =12a b s i n C =12ˑ1ˑ2ˑ32=32.综上可得:a 的值为1,әA B C 的面积为32.2分 21.(本题满分12分)解:ȵ双曲线的一个焦点为(0,5),设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),1分 ʑa 2+b 2=5.1分 设直线l 与双曲线的交点为A (x 1,y 1),B (x 2,y 2),则有y 21a 2-x 21b 2=1,y 22a 2-x 22b2=1,ìîíïïïï两式相减整理得(y 1+y 2)(y 1-y 2)a 2=(x 1+x 2)(x 1-x 2)b 2.2分 ʑk A B =y 1-y 2x 1-x 2=a 2(x 1+x 2)b 2(y 1+y 2),①2分 ȵ弦A B 中点的横坐标为35,ʑx 1+x 22=35,y 1+y 22=15,ìîíïïïï2分 代入①式整理得3a 2b 2=2.2分 又由a 2+b 2=5,得a 2=2,b 2=3,{1分 ʑ所求双曲线的标准方程为y 22-x 23=1.1分 22.(本题满分14分)(1)解:由题意得:抛物线的焦点F (1,0),直线l :y =2(x -1).1分 设直线l 与抛物线的交点为A (x 1,y 1),B (x 2,y 2),联立直线与抛物线方程得y =2(x -1),y 2=4x ,{消去y 整理得x 2-3x +1=0,ʑx 1+x 2=3,x 1x 2=1.{2分 法一:|A B |=|A F |+|B F |=x 1+x 2+p =3+2=5.3分 法二:|A B |=1+k 2㊃(x 1+x 2)2-4x 1x 2=5㊃9-4=5.3分 (2)证明:当直线l 的斜率存在时,设直线方程为y =k (x -1),与抛物线的交点为A (x 1,y 1),B (x 2,y 2),联立直线与抛物线方程得y =k (x -1),y 2=4x ,{消去x 整理得k y 2-4y -4k =0,2分 ʑy 1+y 2=4k ,y 1y 2=-4,ìîíïïïʑx 1x 2=y 214㊃y 224=1.2分 ʑO A ң㊃O B ң=x 1x 2+y 1y 2=1-4=-3.2分 当直线l 的斜率不存在时,直线方程为x =1,与抛物线的交点为A (1,2),B (1,-2),此时O A ң㊃O B ң=x 1x 2+y 1y 2=1-4=-3.1分 综上可得,O A ң㊃O B ң为定值.1分23.(本题满分14分)解:(1)由题意可得c a =32,4a =8,ìîíïïïï2分解得a =2,c =3,ʑb 2=a 2-c 2=1,1分 ʑ椭圆C 的标准方程为x 24+y 2=1.1分 (2)①设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2).当k =1时,直线l 的方程为y =x +m .联立直线与椭圆方程得y =x +m ,x 24+y 2=1,ìîíïïï消去y 整理得5x 2+8m x +4m 2-4=0,则x 1+x 2=-85m ,x 1㊃x 2=4m 2-45,2分 由弦长公式得|MN |=1+1㊃6425m 2-16m 2-165=825,解得m =ʃ1,此时Δ>0.ʑ直线l 的方程为y =x ʃ1.2分 ②假设存在直线l ,设MN 的中点为D (x 0,y 0),则由题意可知:E D ʅMN .联立直线与椭圆方程得y =k x +m ,x 24+y 2=1,ìîíïïï消去y 整理得(4k 2+1)x 2+8k m x +4m 2-4=0,则Δ=64k 2m 2-4(4k 2+1)(4m 2-4)>0,即4k 2+1-m 2>0,2分又x 1+x 2=-8k m 4k 2+1,ʑx 0=x 1+x 22=-4k m 4k 2+1,ʑy 0=k x 0+m =m 4k 2+1,ʑk D E =y 0-12x 0=m 4k 2+1-12-4k m 4k 2+1,由E D ʅMN 可得k D E ㊃k =-1,代入化简得m =-4k 2+16,2分 再代入4k 2+1-m 2>0,得(4k 2+1)236<4k 2+1,解得-352<k <352.1分 ʑ存在直线l ,满足|M E |=|N E |,此时斜率的取值范围是-352,352æèçöø÷.1分。
江苏省2024年一般高校单独招生统一考试试卷数 学一、选择题(本大题共12小题,每小题4分,共48分,每小题列出的四个选项中,只有一项是符合要求的。
)1、已知集},2|{N n n x x P ∈==,},4|{N n n x x T ∈==,则P T = ( )A. },4|{N n n x x ∈=B. },2|{N n n x x ∈=C. },|{N n n x x ∈=D. },4|{Z n n x x ∈= 2、01=-x 是012=-x 的 ( )A .充要条件 B. 必要而非充分条件C .充分而非必要条件 D. 既非充分也非必要条件3、已知2tan -=α,且0sin >α,则αcos 为( ) A.55- B. 55± C. 55 D. 552 4、若函数a x y +=2及bx y -=4互为反函数,则b a ,的值分别为 ( )A .2,4- B. 2,2- C.21,8-- D. 8,21--5、若数列}{n a 的通项为)1(1+=n n a n ,则其前10项的和10S 等于 ( ) A.109 B.1011 C. 910 D. 1110 6、已知向量)1,1(=a 及)3,2(-=b ,若b a k 2-及a 垂直,则实数k 等于( )A.1-B. 1C.5D.07、已知x a x f =)(,)1,0(log )(≠>=a a x x g a ,若0)21()21(>⋅g f ,则)(x f y =及)(x g y =在同一坐标系内的图象可能是( )A B C D8、过点)4,2(-,且在两坐标轴上的截距之和为0的直线有( )A. 1条B. 2条C. 3条D. 4条9、三个数6.0log ,2,6.026.02的大小关系是 ( )A. 6.0log 26.026.02<<B. 6.02226.06.0log <<C. 26.026.026.0log <<D. 6.02226.0log 6.0<<10、假如事务A 及B 互斥,那么( )A. A 及B 是对立事务B. B A 是必定事务C. B A 是必定事务D. B A 与互不相容11、椭圆159)1(22=+-y x 的左焦点坐标为( )A.)0,3(-B.)0,0(C. )0,2(-D. )0,1(-12、已知函数)(x f 在),(+∞-∞上是偶函数,且)(x f 在)0,(-∞上是减函数,那么)43(-f 及)1(2+-a a f 的大小关系是 ( ) A. >-)43(f )1(2+-a a f B. ≥-)43(f )1(2+-a a f C. <-)43(f )1(2+-a a f D. ≤-)43(f )1(2+-a a f 二、填空题(本大题共6题,每小题4分,共24分,把答案填在题中的横线上。
绝密★启封前 秘密★启用后 2023年江苏省职业学校对口单招联盟一模考试 数学试卷 注意事项 考生在答题前请认真阅读本注意事项及各题答题规定 1.本试卷共4页,包含选择题(第1题~第10题,共10题)、非选择题(第11题~第23题,共13题)。本卷满分为150分,考试时间为120分钟。考试结束后,请将本试卷和答题卡一并交回。 2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、考试证号与您本人是否相符。 4.作答选择题(第1题~第10题),必须用2B铅笔将答题卡上相应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案。作答非选择题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
一、单项选择题(本大题共10小题,每小题4分,共40分。在下列每小题中,选出一个
对的答案,将答题卡上相应选项的方框涂满、涂黑) 1.假如全集}6,5,4,3,2,1{U,集合}5,3,1{A,集合}4,1{B,那么BCAU
( ▲ )
A.}5,3{ B.}6,4,2{ C.}6,4,2,1{ D.}6,5,3,2,1{ 2.若复数i1iz,则|z| ( ▲ )
A.2 B.2 C.21 D.22 3.已知某项工程的网络图如下(单位:天),若规定工期缩短2天,则下列方案可行的是 ( ▲)
13768425B3I0G2J0
H1F2E3A7
C1D
3 A.B、D各缩短1天 B.E、F各缩短1天 C.E、G各缩短1天 D.A、D各缩短1天
4.若在区间]2,2[上随机取一个数x,则xcos的值介于0到21之间的概率为( ▲ )
A.31 B.2 C.21 D.32 5.若135sin)cos(cos)sin(,是第四象限角,则)cos(( ▲ ) A.135 B.135 C.1312 D.1312
江苏省职业学校对口单招联盟二轮模拟考试(数学试卷参考答案及评分标准)一、选择题(本大题共10小题,每小题4分,共40分.)二、填空题(本大题共5小题,每小题4分,共20分)11. 10 12 . 5 13. 2)1()1(22=-+-y x 14. ( 1,-2) 15. 4 三、解答题16.(本题满分8分) 解:由题意可得:22(2)22x xx +--≤………………………………………………2分∴22(2)x x x +≤-- ∴2340x x +-≤即[]4,1x ∈- …… ………………………………………………………………4分又-411111=16=2222x y ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为单调减小函数且,1,162⎡⎤∴∈⎢⎥⎣⎦原函数的值域为y ………………………………………………8分17.(本题满分10分)解:(1)R y x y f x f y x f ∈+=+,),()()()0()0()00(f f f +=+∴ 0)0(=∴f即自变量x 等于0时的函数值为0. …………………………………………2分 (2)R y x y f x f y x f ∈+=+,),()()()1()1()11()2()2()2()22()4(f f f f f f f f +=+=+=+=∴又2)4(=f21)1(,1)2(==∴f f 23)2()1(=+∴f f ………………………………………………………6分(3) 函数)(x f 的定义域为R ,定义域关于原点对称. 又 )()()(y f x f y x f +=+令x y -=,则)()()(x f x f x x f -+=- 即)()()0(x f x f f -+= 又由(1)可知:0)0(=f)()(0)()(x f x f x f x f -=-=-+∴为奇函数函数)(x f ∴ ……………………………………………………………10分18.(本题满分12分)解:(1)由m ∥n ,得B c a C b cos )2(cos -= …………2分 由正弦定理得,B C A C B cos )sin sin 2(cos sin -= …………………………4分 化简得,B A A cos sin 2sin = 因为0sin ≠A ,所以21cos =B …………………………………………………5分 在三角形中︒=60B …………………………………………………6分 (2) 由,,a b c 成等差数列,b=3,得6=+c a …………………………7分 由余弦定理知ac ac c a ac c a 3363)(9222-=-+=-+=得9=ac …………………………………………………10分所以349=∆ABC S …………………………………………………12分 19.(本题满分12分)解:(1)①设事件A={a b ⊥},则181362)(==A P ………4分 ②设事件B={a ≤b },则61366)(==B P ……………………………………8分 (3)设事件C={0<⋅b a },0<⋅b a ,即03<-n m所以,653630)(==C P …………12分20.(本题满分10分)解:(1)w =(x -20)(250-10x +250)=-10x 2+700x -10000…………………………………………………………………………………………3分 (2)w =-10x 2+700x -10000=-10(x -35)2+2250 所以,当x =35时,w 有最大值2250,即销售单价为35元时,该文具每天的销售利润最大 …………………………5分 (3)方案A :由题可得25<x ≤30, 因为a =-10<0,对称轴为x =35,抛物线开口向下,在对称轴左侧,w 随x 的增大而增大, 所以,当x =30时,w 取最大值为2000元, 方案B :由题意得4525010(25)10x x ≥⎧⎨--≥⎩,解得:4549x ≤≤,在对称轴右侧,w 随x 的增大而减小, 所以,当x =45时,w 取最大值为1250元,因为2000元>1250元,所以A 方案的最大利润更高. …………………………………………………………10分 21.(本题满分14分)22222:(1)22,13,3,2132c c a a b cy x y =∴==∴=∴=∴+=解且又椭圆的焦点在轴上,椭圆方程为:…………………………………………………………………………………………4分()222313y ∴∴+-=(2)M(0,1),N(,0),所求的圆方程为x…………………………………………………………………………………………7分MN AB 22211221212K MN AB K MN AB K 2AB 11A ,,740132477187ABNy x y x y y x y x x x x x AB h MN S ∆∴∴+⎧=+⎪+-=⎨+=⎪⎩+=-=-∴===∴=(3)当直线斜率不存在时,与不垂直,不符合题意与垂直,直线的方程为设(,),B(),消去,得……………………………………………………………………………………14分22.(本题满分10分)解:设利用燃料甲x 吨,燃料乙y 吨,燃料甲的价格为2a ,燃料乙的价格为3a ,成本为z 则,minz=2ax+3ay ………………1分⎪⎪⎩⎪⎪⎨⎧≥≥+≥+≥+0,65135639750510y x y x y x y x ………………3分………………………………………………………………………………………………6分 minz=2ax+3ay=a (2x+3y )所以,只要2x+3y 取最小值,则z 取最小值。
2023年江苏省徐州市普通高校对口单招数学自考测试卷(含答案)一、单选题(10题)1.函数f(x)=的定义域是( )A.(0,+∞)B.[0,+∞)C.(0,2)D.R2.下列句子不是命题的是A.5+1-3=4B.正数都大于0C.x>5D.3.“对任意X∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0B.对任意x∈R,都有x2<0C.存在x0∈R,使得x02≥0D.不存在x∈R,使得x2<04.下列函数为偶函数的是A.B.C.5.“x=-1”是“x2-1=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.A.2B.3C.4D.57.从1,2,3,4这4个数中任取两个数,则取出的两数都是奇数的概率是()A.2/3B.1/2C.1/6D.1/38.A.B.C.D.9.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数10.直线l:x-2y+2=0过椭圆的左焦点F1和上顶点B,该椭圆的离心率为()A.1/5B.2/5C.D.二、填空题(10题)11.等差数列中,a2=2,a6=18,则S8=_____.12.抛物线y2=2x的焦点坐标是。
13.若=_____.14.函数的最小正周期T=_____.15.已知那么m=_____.16.设{a n}是公比为q的等比数列,且a2=2,a4=4成等差数列,则q= 。
17.18.椭圆9x2+16y2=144的短轴长等于。
19.若事件A与事件ā互为对立事件,且P(ā)=P(A),则P(ā) =。
20.已知(2,0)是双曲线x2-y2/b2=1(b>0)的焦点,则b =______.三、计算题(5题)21.在等差数列{a n}中,前n项和为S n ,且S4 =-62,S6=-75,求等差数列{an}的通项公式a n.22.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.23.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1) 求三种书各自都必须排在一起的排法有多少种?(2) 求英语书不挨着排的概率P。
绝密★启封前 秘密★启用后2018年江苏省职业学校对口单招联盟一模考试数学试卷答案及评分参考一、单项选择题(本大题共10小题,每小题4分,共40分.)1.A 2.D 3.B 4.A 5.C 6.C 7.B 8.B 9.B 10.A二、填空题(本大题共5小题,每小题4分,共20分)11.99 12.1440 13.57 14. 4 15. 1≥m 三、解答题(本大题共8小题,共90分)16.解:(1)由题意可得:142222--+≤x x …………………………………………………1分则 1422-≤-+x x解得13-≤≤x ………………………………………………3分所以定义域为]1,3[- ………………………………………………4分(2))13(1)(2≤≤--=x x x f 对称轴为0=x所以 8)3()(max =-=f x f …………………………………………5分1)0()(min -==f x f …………………………………………7分所以,)(x f 的值域为[]8,1- …………………………………………8分 17.解:(1)因为函数)(x f 为偶函数,∴30b -=, …………………………………2分又(1)0,f -=所以21,()1a f x x =-=-+…………………………………………5分 (2)2()()1g x f x kx x kx =-=--+函数的对称轴是 2k x =-…………………………………………7分 当22k -≤-或22k -≥ 即4k ≥或4k ≤-时,)(x g 是单调函数. …………………………………………10分18.解:(1)x x x f 2cos 2sin 23)(+==22cos 12sin 23x x ++21)62sin(212cos 212sin 23++=++=πx x x …………2分 因为x ⎥⎦⎤⎢⎣⎡-∈4,4ππ,所以]32,3[62πππ-∈+x 所以当3-62ππ=+x ,即4π-=x 时,……………………………4分231取最小值为)(-x f .……………………………6分 (2)因为1)(=C f ,所以121)62sin(=++πC 所以21)62sin(=+πC 因为),0(π∈C ,所以6562ππ=+C ,所以3π=C ……………………………8分 因为m ∥n ,所以A B sin 2sin =,所以a b 2=……………………………10分又由C ab b a c cos 2222-+=得 21443222⨯-+=a a a ,解得1=a .……………………………12分 19.解:(1)①两校各取1名教师的所有可能的结果是:(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F )共9种……………………………4分②选出的2名教师性别相同的结果是:(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F )共6种,所以选出的两名教师性别相同的概率P=3296=;………………8分 (2)从两校报名的教师中任选2名的所有可能是1526=C (种)2名教师来自不同学校的结果是91313=⋅C C (种)所以,2名教师来自不同学校的概率为53159=. ………………12分 20.解:设需截取第一种钢板x 张,第二种钢板y 张,所用钢板总数为z 张,则目标函数min z x y =+ ……………………………1分212354649660,0x y x y x y x y +≥⎧⎪+≥⎪⎨+≥⎪⎪≥≥⎩ ……………………………5分 如图,可行域是阴影部分,平移直线0x y +=,由图可知目标函数在A 点取到最优解解方程组 ⎩⎨⎧=+=+4653122y x y x 得)8,2(A ……………………………9分 所以当截取第一种钢板2张,第二种钢板8张,可以满足要求,且使用钢板张数最少,为10张. ……………………………10分21.解:(1)解:设等比数列的公比为,依题意 . 因为两式相除得 :, 解得 , (舍去).所以. 所以数列的通项公式为 .……………………………4分 (2)解:由已知可得,, 因为为等差数列,O A y所以数列是首项为,公差为的等差数列. 所以. 则. 因此数列的前项和:. ……………………………8分(3)因为111)1(1log )1(12+-=+=+=n n n n a n c n n 所以}{n c 的前k 项的和为11101111113121211=+-=+-++-+-k k k 所以10=k . …………………………12分22.解:(1)据题意得:y=200+20(80-x)=-20x+1800 (60≤x ≤80) ……………………4分(2)w=(x-60)( -20x+1800)=-20x 2+3000x-108000 (60≤x ≤80) …………………8分对称轴为x=75∈[60,80]所以当x=75时,w 取最大值4500.答:当销售单价为75元时,公司在该地区获得的利润最大,最大利润是4500千元. ………………………12分23.解:(1)据题意得⎪⎪⎩⎪⎪⎨⎧=+=12124222b a a 解得a 2=4,b 2=1,∴椭圆方程为1422=+y x ……………………………4分(2)由(1)可知椭圆的左右顶点和上顶点分别为(-2,0),(2,0),(0,1)∵圆M 过这三点,∴设圆M 的方程为x 2+y 2+Dx+Ey+F=0分别将三点的坐标代入方程得⎪⎩⎪⎨⎧=++=++=+-01024024F E F D F D 解得,D=0,E=3,F=-4∴圆M 的方程为x 2+y 2+3y-4=0 ……………………8分(3)点A 为(-a ,0)即为(-2,0)∵直线l 过点A 且与椭圆有两个交点,∴直线l 的斜率一定存在∴设直线l 的方程为y=k (x+2)将直线方程与椭圆方程联立方程组得 ⎩⎨⎧=++=44)2(22y x x k y 化简得(1+4k 2)x 2+16k 2x+16k 2-4=0∴2221222141416,4116kk x x k k x x +-=+-=+ ∴52441414)(1||22212212=+⨯+=-++=k k x x x x k AB 解得k=±1,且此时∆>0∵直线l 的倾斜角为锐角,∴k=1∴直线l 的方程为y=x+2即直线的方程为x-y+2=0 ………………………11分 ∵524=AB 为定值,∴要使ABC ∆的面积最大即要使点C 到直线AB 的距离最大 圆M 的圆心M 到直线的距离4272|223|=+=d ∴点C 到直线AB 的距离的最大值为25427+=+r d ∴ABC ∆的面积的最大值为5257+.……………………………14分。
2013 1、若集合}02|{>+=x x M ,}03|{<-=x x N ,则N M ⋂等于 ( C )A .(-∞,-2)B .(-∞,3)C .(-2,3)D .(3,+∞)2.如果向量)3,2(-=a ,)2,3(=b ,那么 ( B )A .b a //B .b a ⊥C .a 与b 的夹角为060D .1||=a3.在△ABC 中,“21sin =A ”是“030=A ”的 ( B )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.若实数c b a ,,成等比数列,则函数c bx ax y ++=2的图像与x 轴的交点个数是 ( A ) A .0 B .1 C .2 D .1或者25.若0<<b a ,则下列不等式成立的是 ( A ) A .ba33< B .b a 11< C .a a -->43 D .b a )41()41(< 6.若直线l 的倾斜角是直线23+=x y 倾斜角的2倍,且过点(0,5),则直线l 的方程是( B )A .053=+-y xB .053=-+y xC .01533=+-y xD .01533=++y x7.如果53)sin(=-απ,那么α2cos 等于 ( D ) A .2516- B .257- C .2516 D .2578.若抛物线px y 22= )0(>p 的准线与圆16)3(22=+-y x 相切,则p 的值为( C ) A .21B .1C .2D .49.在二项式73)12(xx -的展开式中,常数项等于 ( D )A .-42B .42C .-14D .1410.如果一个圆锥的侧面展开图是半圆,那么其母线与底面所成角的大小是 ( C ) A .030 B .045 C .060 D .075 11.如函数)3sin(2)(π+=wx x f )0(>w 的最小正周期为π,则该函数的图像 ( A )A .关于点)0,3(π对称 B .关于直线4π=x 对称 C .关于点)0,4(π对称 D .关于直线3π=x 对称12.已知点M 的坐标为)2,3(,F 为抛物线x y 22=的焦点,点P 在抛物线上移动。
江苏省历年普通⾼校对⼝单招⽂化统考数学试卷及答案().doc江苏省2012年普通⾼校对⼝单招⽂化统考数学试卷⼀、单项选择题(本⼤题共12⼩题,每⼩题4分,共48分.在下列每⼩题中,选出⼀个正确答案,请在答题卡上将所选的字母标号涂⿊) 1.若集合{1,2}M =, {2,3}N =,则M N U 等于() A . {2} B . {1} C . {1,3} D . {1,2,3}2.若函数()cos()f x x ?=+(π?≤≤0)是R 上的奇函数,则?等于() A .0 B .4π C .2πD .π 3.函数2()f x x mx n =++的图象关于直线1x =对称的充要条件是() A .2m =- B .2m = C . 2n =- D .2n =4.已知向量(1,)a x =r ,(1,)b x =-r .若a b ⊥r r ,则||a r等于()A . 1BC .2D .45.若复数z 满⾜(1)1i z i +=-,则z 等于() A .1i + B .1i - C .i D .i -6.若直线l 过点(1,2)-且与直线2310x y -+=平⾏,则l 的⽅程是() A .3280x y ++= B .2380x y -+= C .2380x y --= D .3280x y +-=7.若实数x 满⾜2680x x -+≤,则2log x 的取值范围是()A . [1,2]B . (1,2)C . (,1]-∞D . [2,)+∞8.设甲将⼀颗骰⼦抛掷⼀次,所得向上的点数为a ,则⽅程012=++ax x 有两个不相等实根的概率为() A .32 B .31 C .21 D . 1259.设双曲线22221x y a b-=(0,0)a b >>的虚轴长为2,焦距为⽅程为()A .y =B .2y x =±C .2y x =±D .12y x =± 10.若偶函数()y f x =在(,1]-∞-上是增函数,则下列关系式中成⽴的是()A .3()2f -< (1)f -< (2)f B .(1)f - <3()2f - <(2)f C .(2)f < (1)f -< 3()2f - D .(2)f <3()2f - <(1)f -11.若圆锥的表⾯积为S ,且它的侧⾯展开图是⼀个半圆,则这个圆锥的底⾯直径为()A B . C D .12.若过点(3,0)A 的直线l 与圆C :22(1)1x y -+=有公共点,则直线l 斜率的取值范围为()A . (B .[C .(33-D . [33-⼆、填空题(本⼤题共6⼩题,每⼩题4分,共24分)13.sin150?= . 14.已知函数()f x 11x =+,则[(1)]f f = . 15.⽤数字0,3,5,7,9可以组成个没有重复数字的五位数(⽤数字作答). 16.在ABC ?中,====B A b a 2cos ,23sin ,20,30则. 17.设斜率为2的直线l 过抛物线22y px = (0)p >的焦点F ,且与y 轴交于点A .若OAF ?(O 为坐标原点)的⾯积为4,则此抛物线的⽅程为.18.若实数x 、y 满⾜220x y +-=,则39xy+的最⼩值为.三、解答题(本⼤题7⼩题,共78分)19.(6分)设关于x 的不等式||x a -<1 的解集为(,3)b ,求a b +的值. 20.(10分)已知函数x x x f cos )tan 31()(+=.(1)求函数()f x 的最⼩正周期;(2)若21)(=αf ,)3,6(ππα-∈,求αsin 的值。
江苏省2020年对口单招数学试卷与答案机密★启用前江苏省2020年普通高校对口单招文化统考数学试卷一、草项选择题(本大题共10小题,毎小题4分,共40分.在下列毎小題中,选出一个正确答案,将答題卡上对应选项的方框涂满、涂黑)1.已知集合M = {1,4>? N = {l?2,3>?则MU N 導于A?{l}B?{2,3} C.{2,3,4} D.{l?2,3?4}2.若复数Z满足z(2-i)=l÷3i.则Z的模等于A.√2B,√3 C.2 D.33.若数组fl = (2,-3.1)和b = (lγ,4)満足条件α?h=0,则工的值是A. -1B.0C. 1D.24.在逻辑运算中,“A + B=0”是“A?B=0”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.从5名男医生、4名女医生中任选5人组成一个医疗小分队?要求其中男医生、女医生均不少于2人,则所冇不同的组队方案种数是A. 80B. 100C. 240D. 3006?过抛物线(y - D1 -4(x + 2)的頂点?且与-直线x-2>÷3-≡0垂直的直线方程是A. 2jr+y-3=0B. 2?r+y + 3= 0C.R — 2y + 4= 0D. X — 2,y — 4 = 0数学试卷第1页(共4页)数学试卷第2页(共4页〉7?在正方体ABCD-A I B l C l D l 中(题7图)?界面直线A”与BlC 之间的夹角是A. 30'B.45°C. 60eD. 9O e&題8图足某项工程的网络图《单位:天)?则该工程的关键路径是A-AfBfQfEf e / B? AfBfDfEfKfMC. A→B→ D →F→ H →JD.A→B→D→G→ Z→ J9.若函数/(jr)-sinωx(ω > 0)在区间[0.|]上单调递增?在区何[今诗]上单调递减?则3等于A.∣?B.2C.?∣?D.3(2. X ∈ [OU]10.C 知旳数/(工)= W r十则tt∕(∕(χ))=2成立的实数工的集合为Uf X G [oa] A. U I O ≤ X ≤ 1 或z =2} B. {x I O ≤ j? ≤ 1 或工=3}C. {x I 1 ≤x≤2} DjXIO ≤x≤ 2}二、填空逸(本大題共5小通,毎小题4分,共20分)11?题11图是一个程序能图?执行该程序權图?则输出的T 值是_▲ _?H = 6 + 3V2cos^?a H S12?与曲线(&为参数)和克线z÷>-2= O都相切■且半轻最小的凤的标准y s≡ 6 + 3j2sinθ9β方程是▲.13.已知{-}是等比数列?血=2> α5≡i>则α∣= ▲?4 ------------14.已知α W α,2∕r), tana = —则COS(2JΓ-a)= ▲?4 ------------15.已知顒数y(z)≡f x 1, J 2 (a > 0且a≠l)的最大值为3.则实数a 的取值范围(4 + IOdr ?工 > 2是一▲—?三、解答題(本大题共8小题,共90分)16.(8 分)若西数/(x) ≡ J2 + (a:— 5a + 3)工 + 4 在(一∞?-∣-]上单调递减.(1)求实数a的取值范围,(2)解关于H的不等式1。
2022-2023学年江苏省苏州市普通高校对口单招数学自考测试卷(含答案) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(20题)1.已知a是第四象限角,sin(5π/2+α)=1/5,那么tanα等于()A.B.C.D.2.A.第一象限角B.第二象限角C.第三象限角D.第四象限角3.椭圆x2/2+y2=1的焦距为()A.1B.2C.3D.4.A.(6,7)B.(2,-1)C.(-2,1)D.(7,6)5.在等差数列{a n}中,若a3+a17=10,则S19等于( )A.65B.75C.85D.956.己知,则这样的集合P有()个数A.3B.2C.4D.57.已知向量a=(1,3)与b=(x,9)共线,则实数x=()A.2B.-2C.-3D.38.下列函数是奇函数且在区间(0, 1)内是单调递增的是( )A.y = xB.y = lgxC.y = e xD.y = cosx9.函数y=log2x的图象大致是()A.B.C.D.10.设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6B.5C.4D.311.设m>n>1且0< a < 1,则下列不等式成立的是( )A.a m<a nB.a n<a mC.a-m<a-nD.m a<n a12.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1B.C.D.213.A.B.C.D.14.A.7B.8C.6D.515.△ABC的内角A,B,C的对边分别为a,b,c已知a=,c=2,cosA=2/3,则b=()A.B.C.2D.316.已知全集U={2,4,6,8},A={2,4},B={4,8},则,等于()A.{4}B.{2,4,8}C.{6}D.{2,8}17.从1,2,3,4这4个数中任取两个数,则取出的两数之和是奇数的概率是()A.1/5B.1/5C.2/5D.2/318.为了了解全校240名学生的身高情况,从中抽取240名学生进行测量,下列说法正确的是()A.总体是240B.个体是每-个学生C.样本是40名学生D.样本容量是4019.下列命题是真命题的是A.B.C.D.20.已知b>0,㏒5b=a,㏒b=c,5d=10,则下列等式一定成立的是()A.d=acB.a=cdC.c=adD.d=a+c二、填空题(10题)21.22.已知_____.23.24.如图是一个算法流程图,则输出S的值是____.25.26.若事件A与事件互为对立事件,则_____.27.以点(1,2)为圆心,2为半径的圆的方程为_______.28.29.若直线的斜率k=1,且过点(0,1),则直线的方程为。
数学试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上.. 1.若集合{}1,0,1A =-,{}21,B x x m m ==+∈R ,则B A = ▲ .2.设i 是虚数单位,复数1i3ia +-为纯虚数,则实数a 的值为 ▲ . 3.已知样本7,8,9,,x y 的平均数是8,且60xy =,则此样本的标准差是 ▲ .4.在集合{|,1,2,,10}6n M x x n π===中任取一个元素,所取元素恰好满足方程1cos 2x = 的概率是 ▲ . 5.已知双曲线与椭圆2212xy +=有相同的焦点,且它们的 离心率互为倒数,则该双曲线的方程为 ▲ . 6.已知某算法的伪代码如右,根据伪代码,若函数7.()()g x f x m =-在R 上有且只有两个零点,则实数m 的取值范围是 ▲ .7.已知32cos()23απ+=-,则cos2α= ▲ .8.有一个正四面体的棱长为3,现用一张圆形的包装纸将其完全包住(不能裁剪纸,但可以折叠),那么包装纸的最小半径为 ▲ .9.过点(1,1)P 的直线将圆224x y +=分成两段圆弧,要使这两段弧长之差最大,则该直线的方程为 ▲ .10.已知数列{}n a 的前n 项和21()2n S n kn k *=-+∈N ,且n S 的最大值为8,则=2a▲ .11.已知中心为O 的正方形ABCD 的边长为2,点,M N 分别为线段,BC CD 上的两个不同点,且1MN =,则OM ON 的取值范围是 ▲ .12.在数列{}n a 中,已知13a =,22a =,当2n ≥时,1n a +是1n n a a -⋅的个位数,则2013a = ▲ .13.已知2()log (1)f x x =-,若实数n m ,满足()()2f m f n +=,则mn 的最小值是▲ .Read xIf x ≤1- Thenf (x )←x +2Else If 1-<x ≤1 Then f (x )←x 2Elsef (x )←x -+2End If End IfPrint f (x )(第6题图)14.设曲线()1e x y ax =-在点()01,A x y 处的切线为1l ,曲线()1e x y x -=-在点()02,A x y 处的切线为2l .若存在030,2x ⎡⎤∈⎢⎥⎣⎦,使得12l l ⊥,则实数a 的取值范围是 ▲ .二、解答题: 本大题共6小题,共计90分.请在答题卡指定的区域........内作答,解答时应写出文字说明、求证过程或演算步骤. 15.(本小题满分14分)设ABC △的内角,,A B C 所对的边分别为,,a b c .已知1a =,2b =,12CA CB =. ⑴求边c 的长; ⑵求()C A -cos 的值.16.(本小题满分14分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 是平行四边形,且AC CD ⊥,PA AD =,M ,Q 分别是PD ,BC 的中点.(1)求证:MQ平面PAB ;(2)若AN PC ⊥,垂足为N ,求证:MN PD ⊥.17.(本小题满分14分)某人2002年底花100万元买了一套住房,其中首付30万元,70万元采用商业贷款.贷款的月利率为5‰,按复利计算,每月等额还贷一次,10年还清,并从贷款后的次月开始还贷.⑴这个人每月应还贷多少元?PABDCMNQ(第16题图)⑵为了抑制高房价,国家出台“国五条”,要求卖房时按照差额的20%缴税.如果这个人现在将住房150万元卖出,并且差额税由卖房人承担,问:卖房人将获利约多少元? (参考数据:120(10.005) 1.8≈+)18.(本小题满分16分)已知椭圆E :()222210x y a b a b =>>+的离心率为12,右焦点为F ,且椭圆E 上的点到点F 距离的最小值为2.⑴求椭圆E 的方程;⑵设椭圆E 的左、右顶点分别为,A B ,过点A 的直线l 与椭圆E 及直线8x =分别相交于点,M N .(ⅰ)当过,,A F N 三点的圆半径最小时,求这个圆的方程;(ⅱ)若cos AMB ∠=,求ABM △的面积.19.(本小题满分16分)已知数列{}n a ,其前n 项和为n S .⑴若对任意的n *∈N ,2-12+12,,n n n a a a 组成公差为4的等差数列,且1=1a ,220132nS n=,求n 的值; ⑵若数列{+}nnS a a 是公比为(1)q q ≠-的等比数列,a 为常数,求证:数列{}n a 为等比数列的充要条件为1=1+q a.20.(本小题满分16分)已知函数()ln a f x x x =+,21()222g x bx x =-+,,a b ∈R . ⑴求函数()f x 的单调区间;⑵记函数()()()h x f x g x =+,当0a =时,()h x 在(0,1)上有且只有一个极值点,求实数b 的取值范围;⑶记函数()()F x f x =,证明:存在一条过原点的直线l 与()y F x =的图象有两个切点.参考答案一、填空题:1.{1} 2.3 34.0.2 5.22221x y -= 6.(,0){1}-∞ 7.7981-8. 9.20x y +-= 10.5211.[2 12.6 13.9 14.31,2⎡⎤⎢⎥⎣⎦二、解答题: 15.⑴由12CA CB =,得1cos 2ab C =.………………………………………………2分 因为1a =,2b =,所以1cos 4C =,…………………………………………………4分所以2222cos 1414c a b ab C =-=-=++,所以2c =.…………………………………………………………………………… 7分⑵因为1cos 4C =,(0,)C π∈,所以sin C =,…………………………………9分所以sin 4sin 2a C A c ===,……………………………………………………11分 因为a c <,所以A C <,故A 为锐角,所以7cos 8A ,所以7111cos()cos cos sin sin 8416A C A C A C -==⨯=+. …………14分16.(1)取PA 的中点E ,连结ME ,BE ,因为M 是PD 的中点,所以ME AD ,12ME AD =,又因为Q 是BC 中点,所以12BQ BC =,因为四边形ABCD 是平行四边形;所以BC AD ∥,所以BQ ME ∥,所以四边形MQBE 是平行四边形,…………4分所以MQ BE .因为BE ⊂平面PAB , MQ ⊄平面PAB ,所以MQ 平面PAB .……………………6分 (2)因为PA ⊥平面ABCD ,CD ⊂平面ABCD , 所以PA CD ⊥,又因为AC CD ⊥,PA AC A =,PABDCM N QE (第16题图)PA ⊂平面PAC ,AC ⊂平面PAC ,所以CD ⊥平面PAC ,又AN ⊂平面PAC , 所以AN CD ⊥. ……………………………9分又AN PC ⊥,PC CD C =,PC ⊂平面PCD ,CD ⊂平面PCD ,所以AN ⊥平面PCD ,又PD ⊂平面PCD ,所以AN PD ⊥,……………………12分 又PA AD =,M 是PD 中点,所以AM PD ⊥,……………………………………13分 又AM AN A =,AM ⊂平面AMN ,AN ⊂平面AMN ,所以PD ⊥平面AMN ,又MN ⊂平面AMN ,所以MN PD ⊥.……………………………………………………14分17.⑴设每月应还贷x 元,共付款1210120⨯=次,则有2119120[1(10.005)(10.005)(10.005)]700000(10.005)x =++++++++,…………4分所以1201207000000.005(10.005)7875(10.005)1x ⨯⨯==-++(元).………………………………6分答:每月应还贷7875元.………………………………………………………………7分 ⑵卖房人共付给银行7875120945000⨯=元, 利息945000700000245000-=(元),………………………………………………10分 缴纳差额税(15000001000000)0.2100000-⨯=(元),………………………………12分500000(245000100000)155000-=+(元). 答:卖房人将获利约155000元.………………………………………………………14分18.⑴由已知,12c a =,且2a c -=,所以4a =,2c =,所以22212b a c =-=,所以椭圆E 的方程为2211612x y =+.………………………………………………………3分⑵(ⅰ)由⑴,(4,0)A -,(2,0)F ,设(8,)N t .设圆的方程为220x y dx ey f =++++,将点,,A F N 的坐标代入,得21640,420,6480,d f d f t d et f ⎧-=⎪=⎨⎪=⎩+++++++解得2,72,8,d e t t f =⎧⎪⎪=--⎨⎪=-⎪⎩……………………………………………6分 所以圆的方程为22722()80x y x t y t--=+++, 即222172172(1)[()]9()24x y t t t t-=+++++,因为2272()t t +≥,当且仅当72t t=±+故所求圆的方程为22280x y x ±-=++.………………………………………9分 (ⅱ)由对称性不妨设直线l 的方程为(4)(0)y k x k =>+.由22(4),1,1612y k x x y =⎧⎪⎨=⎪⎩++得222121624(,)3434k k M k k -++,……………………………………………11分所以222424(,)3434kMA k k --=++,2223224(,)3434k k MB k k -=++,所以cos 24MA MB AMB MA MB∠===, 化简,得42164090k k --=,…………………………………………………………14分解得214k =,或294k =,即12k =,或32k =, 此时总有3M y =,所以ABM △的面积为183122⨯⨯=.…………………………16分19.⑴因为21212,,n n n a a a -+成公差为4的等差数列,所以21212214,8)n n n n a a a a n *+---==+∈N (,……………………………………………2分 所以1352121,,,,,n n a a a a a -+是公差为4的等差数列,且2462135218n n a a a a a a a a n -++++=+++++, ……………………………4分又因为11a =,所以()21352128n n S a a a a n-=+++++2(1)2[4]8462(23)2n n n n n n n n -=⨯==++++,所以22320132n Sn n ==+,所以1005n =.……………………………………………6分⑵因为1(1)n n n Sa a q a -+=+,所以1(1)n n n n S a q a aa -=+-, ①所以111(1)n n n n S a q a aa +++=+-, ②②-①,得11(1)(1)[(1)]n n n n a q a a a q a -++-=-+, ③ ……………………………8分(ⅰ)充分性:因为11q a=+,所以0,1,1a q a aq ≠≠+=,代入③式,得 1(1)(1)n n n n q q a q a +-=-,因为1q ≠-,又1q ≠,所以11n n a a q+=,*n ∈N ,所以{}n a 为等比数列,……………………………………12分(ⅱ)必要性:设{}n a 的公比为0q ,则由③得10(1)(1)(1)n n a q q a a q -+-=-+,整理得()()00111()n a q a a q q q+-=+-,……………………………………………14分此式为关于n 的恒等式,若1q =,则左边0=,右边1=-,矛盾;1q ≠±若,当且仅当00(1,1(1(1)a q a a q a q+=⎧⎪⎨+=+⎪⎩))时成立,所以11q a =+.由(ⅰ)、(ⅱ)可知,数列{}n a 为等比数列的充要条件为1=1+q a.…………………16分20.(1)因为221()a x af x x x x-'=-+=,①若0a ≤,则()0f x '≥,()f x 在(0,)+∞上为增函数,…………………………2分 ②若0a >,令()0f x '=,得x a =,当0x a <<时,()0f x '<;当x a >时,()0f x '>.所以(0,)a 为单调减区间,(,)a +∞为单调增区间. 综上可得,当0a ≤时,(0,)+∞为单调增区间,当0a >时,(0,)a 为单调减区间, (,)a +∞为单调增区间. ……………4分(2)0a =时,21()()()22ln 2h x f x g x bx x x =+=-++,2121()2bx x h x bx x x-+'=-+=, ……………………………………………………5分 ()h x 在(0,1)上有且只有一个极值点,即()0h x '=在(0,1)上有且只有一个根且不为重根,由()0h x '=得2210bx x -+=, ………………………………………………………6分(i )0b =,12x =,满足题意;…………………………………………………………7分 (ii )0b >时,212110b ⋅-⋅+<,即01b <<;………………………………………8分 (iii )0b <时,212110b ⋅-⋅+<,得1b <,故0b <;综上得:()h x 在(0,1)上有且只有一个极值点时,1b <. ……………………………9分 注:本题也可分离变量求得. (3)证明:由(1)可知:(i )若0a ≤,则()0f x '≥,()f x 在(0,)+∞上为单调增函数,所以直线l 与()y F x = 的图象不可能有两个切点,不合题意.……………………10分 (ⅱ)若0a >,()f x 在x a =处取得极值()1ln f a a =+.若1ln 0a +≥,1ea ≥时,由图象知不可能有两个切点.…………………………11分故10ea <<,设()f x 图象与x 轴的两个交点的横坐标为,s t (不妨设s t <), 则直线l 与()y F x =的图象有两个切点即为直线l 与1ln ,(,)ay x x s t x=--∈和2ln ,(,)ay x x t x=+∈+∞的切点.1221a a x y x x x -'=-=,2221a x a y x x x-'=-+=, 设切点分别为1122(,),(,)A x y B x y ,则120x x <<,且 111122111ln a x y x a x x x x -==--,222222222ln x a y x a x x x x -==+,122212a x x ax x --=, 即1121ln ax x =-, ① 2221ln ax x =-, ② 12122212()x x x x a x x +=+,③①-②得:11212222ln ln ln x a ax x x x x -=-+=-,由③中的a 代入上式可得:121212212122()22()ln x x x x x x x x x x +-=-+, 即22121221222()ln x x x x x x -=+, ……………………………………………………………14分令12(01)x k k x =<<,则22(1)ln 22k k k +=-,令22()(1)ln 22(01)G k k k k k =+-+<<,因为213()10e e G =->,2414()0e eG =-<,故存在0(0,1)k ∈,使得()00G k =,即存在一条过原点的直线l 与()y F x =的图象有两个切点.………………16分。
2019年苏南五市职业学校对口单招第二次调研性统测数学 试卷本试卷分第Ⅰ卷(客观题)和第Ⅱ卷(主观题)两部分. 第Ⅰ卷1页至2页,第Ⅱ卷3页至5页.两卷满分150分.考试时间120分钟 .注意事项:1. 答卷前,考生务必按规定要求填涂答题卡上的姓名、考试证号、考试科目等项目.2. 用2B 铅笔把答题卡上相应题号中正确答案的标号涂黑.用黑色水笔在答题卡规定的答题区域书写答案.答案不涂写在答题卡上无效.第Ⅰ卷(共40分)一、单项选择题(本大题共10小题,每小题4分,共40分.在下列每小题中,选出一个正确答案,将答题卡上相应题号中正确答案的字母标号涂黑) 1. 已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合AB 的子集个数为( )A. 8B. 4C. 3D. 22. 1=m 是复数22(1)(2)m m m i -++-()m R ∈为实数的 ( ) A .充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件3. 已知直线1l 过点(2,)A m -和点(,4)B m ,直线2l :210x y +-=,直线3l :10x ny ++=,若1212,l l l l ⊥,则实数m n +的值为 ( )A .8B .0C .2-D .10-4. 已知函数()f x 的定义域为(1,2)-,则函数(2)f x +的定义域为 ( ) A .()1,4B .()4,0-C .()0,3D .()3,0-5. 将一个半径为10的半圆卷成圆锥,则该圆锥的体积为 ( )A .5πB .53πC .1253πD .12533π 6. 某工程的工作明细表如表1,若要求工期为12天,则下列说法错误的是 ( ) A .将工作A 缩短为2天 B .将工作G 缩短为1天 C .将工作C 和E 同时缩短为1天 D .将工作C 和D 同时缩短1天 7. 某程序框图如题7图所示,若输出的57S =,则判断框内为 ( ) A .4k > B .5k >C .6k >D. 7k >8. 将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数 ( ) A .在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减 B. 在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增 C. 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 D. 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增 9. 用数字0,1,2,3,4可以组成没有重复数字,并且比2000大的四位偶数共有 ( ) A .78个B. 54个C. 42个D. 36个10. 已知函数()g x 满足(2)(2)g x g x -=+,函数()(2)f x g x =+且在区间[)0,+∞上单调递增,若实数a 满足122()()2(1)log log f a f a f +≤,则实数a 的取值范围为( )A .[]1,2 B. 10,2⎛⎤ ⎥⎝⎦ C. 1,22⎡⎤⎢⎥⎣⎦D. (]0,2 工作代码紧前工作 工期/天 A无 4 B 无3 C A2 D ,B C 4 E ,B C2 F D1 G,E F3表1 (题7图)第II 卷(共110分)二、填空题(本大题共5小题,每小题4分,共20分) 11.十进制数10(100)转换成二进制数为 .12.某人去超市购买了三种物品,表示三种物品件数的数组是a (3,2,5)=,表示三种物品单价的数组是b (12,8,13)=,则该人需付的费用为 . 13.已知24cos 25α=,则sin(2)2πα+= . 14.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于,A B 两点, O 为坐标原点. 若双曲线的离心率为2, AOB ∆则p = .15.已知函数221,0()2,0xx f x x x x ⎧->⎪=⎨--≤⎪⎩,若方程()10f x m --=有三个不同的实数根,则实数m 的取值范围为 .三、解答题(本大题共8小题,共90分)16.(本题满分8分)已知全集U R =,不等式24120.30.3x x --<的解集为P ,不等式02≥+-b ax x 的解集为P C U ,求a b +的值.17.(本题满分10分)已知函数()(1)(0x x f x a k a a -=-->且1)a ≠是定义在R 上的奇函 数,且是单调减函数. (1)求实数k 的值;(2)若不等式2()(4)0f x tx f x ++-<恒成立,求实数t 的取值范围.18.(本题满分12分)已知在ABC ∆中,角,,A B C 的对边分别是,,a b c ,且向量(sin ,sin ),(cos ,cos ),sin 2m A B n B A m n C ==⋅=.(1)求角C 的大小;(2)若sin sin 2sin A B C +=,且()18CA AB AC ⋅-=,求边c 的长和ABC ∆的面积.19.(本题满分10分)某厂家拟在2019年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)m 万件与年促销费用0x x ≥()万元满足31km x =-+(k 为常数), 如果不搞促销活动,则该产品的年销售量是1万件. 已知2019年生产该产品的固定投 入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定 为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括 促销费用). (1)求实数k 的值;(2)将2019年该产品的利润y (万元)表示为年促销费用x (万元)的函数; (3)该厂家2019年的促销费用投入多少万元时,厂家的利润最大?20.(本题满分12分)从某校高三年级800名男生中随机抽取50名学生测量其身高,据 测量被测学生的身高全部在155cm 到195cm 之间.将测量结果按如下方式分成八组:第一组[)155,160,第二组[)160,165,……,第八组[]190,195,如题20图是按上述分组得到的频率分布直方图的一部分.已知:第一组与第八组的人数相同,第六组、第七组和第八组的人数依次成等差数列.(1)估计这所学校高三年级全体男生身高在180cm 以上(含180cm )的人数; (2)分别求出第六组、第七组的频率;(3)若从身高属于第六组和第八组的男生中随机抽取两名男生,记他们的身高分别为,,x y 求满足5x y -≤的事件的概率.21.(本题满分14分)已知数列{}n a 的前n 项和为2n n n S =+.数列{}n b 满足123(21)n n b b n b a +++-=.(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}1nn b a +的前n 项和. (题20图)22.(本题满分10分)要将两种大小不同的钢板截成,,A B C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如表2所示.每张钢板的面积,第一种为21m ,第二种为22m .今需要,,A B C 三种规格的成品各12,15,27块,问各截这两种钢板多少张,可得所需三种规格成品,且使所用钢板面积最小? 表223.(本题满分14分)如题23图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,椭圆1C 的长轴是圆22cos :2sin x C y θθ=⎧⎨=⎩(θ为参数)的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于,A B 两点,2l 交椭圆1C 于另一点D . (1)求椭圆1C 的方程;(2)求DAB ∆面积取最大值时直线1l 的方程.(题23图)2019年苏南五市职业学校对口单招第二次调研性统测数学试卷 答案及评分参考一、单项选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共5小题,每小题4分,共20分) 11.2(1100100) 12. 117 13.725- 14. 2 15.()1,0-三、解答题(本大题共8小题,共90分) 16.(本题满分8分)解:(1)由题意得 2412x x ->-2230x x ∴--<, 13x -<<∴ 解集(1,3)P =- ……………4分∴ U C P = (,1][3,)-∞-⋃+∞ ……………5分20x ax b ∴-+=的两根分别为1-和3122,a x x ∴+==123,b x x ⋅==- ……………7分1a b ∴+=- ……………8分17.(本题满分10分)解:(1)由题意得(0)0f =,1(1)0,2k k ∴--== ……………3分(2)2()(4)0f x tx f x ++-<恒成立2()(4)f x tx f x ∴+<--恒成立2()(4)f x tx f x ∴+<-恒成立……………5分()f x 是定义在R 上的单调减函数24x tx x ∴+>-恒成立 ……………6分 2(1)40x t x ∴+-+>恒成立0∴∆<,2(1)160t ∴--<……………8分解得35t -<<, t ∴的取值范围为()3,5- ……………10分 18.(本题满分12分) 解:(1)sin 2m n C ⋅=sin cos sin cos sin 2A B B A C ∴⋅+⋅=sin()sin 2A B C += ……………2分 sin()sin 2C C π-=sin 2sin cos C C C =⋅1cos 2C =C 是ABC ∆的内角3C π∴=……………4分(2)sin sin 2sin A B C +=2a b c ∴+= ……………5分()18CA AB AC ⋅-=18CA CB ∴⋅=cos 18CA CB C ∴⋅⋅=cos 18b a C ∴⋅⋅= 18,362abab ∴== ……………7分11sin 3622ABC S ab C ∆∴==⨯= ……………9分 2222cos c a b ab C =+-⋅ 2()22cos a b ab ab C =+--⋅21(2)2362362c =-⨯-⨯⨯236,6c c ∴== ……………12分19.(本题满分10分) 解:(1)由题意可知,当0x =时,1m =,∴13k =-即2=k , ……………3分(2)231m x =-+,每件产品的销售价格为8161.5mm +⨯元 ∴816[1.5](816)my m m x m+=⨯-++24848(3)1m x x x =+-=+--+1628(0)1x x x =--≥+……………6分 (3) 16[(1)]291y x x =-++++∵0x ≥时,16(1)81x x ∴++≥=+. ∴82921y ≤-+= ……………8分当且仅当1611x x =++,即3x =时,max 21y =.答:该厂家2019年的促销费用投入3万元时,厂家的利润最大. ……………10分20. (本题满分12分) 解:(1)由题意得,后三组的频率为1(0.0080.0160.040.040.06)510.820.18-++++⨯=-= ………2分∴这所学校高三年级全体男生身高在180cm 以上(含180cm )的人数为8000.18144⨯=………4分 (2)由频率分布直方图得第八组的频率为0.00850.04⨯=,人数为0.04502⨯= 又后三组的人数为0.18509⨯=,设第六组的人数为m ,则第七组的人数为927m m --=-,第六组、第七组和第八组的人数依次成等差数列22(7),4m m m ∴+=-= ………6分∴第六组的人数为4,第七组的人数为3∴第六组的频率为0.08,第七组的频率为0.06 ………8分(3)5x y -≤,即两人在同一组, 第六组4人,第八组2人224226715C C P C +∴== ………12分 21.(本题满分14分) 解:(1)2n n n S =+1n ∴=时,112a S == ………1分2n ≥时,1n n n a S S -=-22()[(1)(1)]2n n n n n =+--+-= ………3分12a =满足上式,2n na =∴………4分123(21)n n b b n b a +++-= 123(21)2n b b n b n ∴+++-=,①故当2n ≥时,1213(23)2(1)n b b n b n -+++-=-② ………6分①-②得 (21)2n n b -=,2(2)21n b n n ∴=≥- ………7分 又112b a ==,∴{}n b 的通项公式为221n b n =- ………8分(2)记{}1nn b a +的前n 项和为n T 由(1)知2111(21)(21)2121n n b a n n n n ==-+-+-+ ………10分则11111111335572121n T n n =-+-+-++--+1212121nn n =-=++ ………14分22. (本题满分10分)解:设需截第一种钢板x 张,第二种钢板y 张,所用钢板总面积为2zm . ………1分 则目标函数为min 2z x y =+ ………2分 又约束条件为 作出可行域(如图)12215327,0x y x y x y x y +≥⎧⎪+≥⎪⎨+≥⎪⎪≥⎩,x y N ∈ ………6分 9129152(,)32715222x x y A x y y ⎧=⎪+=⎧⎪⇒⇒⎨⎨+=⎩⎪=⎪⎩由于点A 不是可行域内的整数点,因此将直线20x y +=平移至过点(4,8)和(6,7)时,能使z 最小,且最小值为:42862720+⨯=+⨯=. ………9分 答:截第一种钢板4张,第二张钢板8张或者第一种钢板6张,第二张钢板7张时,可得所需三种规格成品,且使所用钢板面积最小 ………10分23.(本题满分14分)解:(1)由题意得1b =,且24,2a a =∴=,∴椭圆的方程是2214x y += ………4分 (2)设直线1:110l y kx kx y =-∴--=,12l l ⊥,∴21:10l y x x ky k k=--∴++=, 又圆22cos :2sin x C y θθ=⎧⎨=⎩(θ为参数) 224y x ∴+=《数学》试卷 第11页(共11页) ∴圆心(0,0)到直线1l的距离为d = ∴直线1l 被圆2C所截的弦AB ===………7分 由222211(4)8014y x k k x kx x y ⎧=--⎪⎪∴++=⎨⎪+=⎪⎩, 264k ∆= ………9分||DP ∴==, ………11分11||||22DAB S AB DP ∆∴====2323213==≤=++ ………12分2522k k =∴=∴=±时等号成立, ………13分 由图知0k >,此时直线1:1l y x =- ………14分。
2019 年江苏高职单招数学真题卷参考公式:锥体的体积公式V= h,其中 S 是锥体的底面积,h 是锥体的高一、选择题 (本大题共 10 小题,每小题 4 分共 40 分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合 A={1,3} ,B={l,3},若 AUB={1,2,3} ,则实数 m=A.2B.3C. 6D.92.盒中装有大小、形状都相同的 6 个小球,分别标以号码1,2,3,4,5,6,从中随机取出一个小球,其号码为奇数的概率是A.B C D.3.已知函数 f(x)=)(a>0) 的最小正周期为,则的值为_____A.1 B .2 C .D⋯24。
如图,在△ ABC 中,=a ,=b 。
若点 D 满足=2,则= A. a+ b B.. a- b C. . a+ b D. . a- b5。
如图是一个算法流程图,若输入x 的值为 3,则输出s 的值为A.2B.4C.8D.166。
若变量x, y 满足,则=y-2x 的最大值为A.-1B. 0 C .1 D.27.在平面直角坐标系中,已知第一象限的点(a,b)在直线 x+2y-1=0上,则+ 的最小值为_______A.11B.9C.8D.68.已知f(1-x)=2x-1 ,且f(m)=6则实数m的值为_______A. B. - C. -1 D. -9。
已知等差数列{an}的前 n 项和为 Sn,若=1 ,=15 ,则=___ A.55 B.45 C.35 D.2510。
已知圆 C 与圆+=1 关于直线x+y=0 对称,则圆 C 的标准方程为A +=1 B. +=1C. + =1D. + =1二、填空题 (本大题共 5 小题,每小题 4 分,共 20 分)11.若复数 z 满足 z(1+i)=4-2i(i为虚数单位),则=______________12.设平面向量a=(2 ,y),b=(1,2) ,若 a∥b,则=________________13.如图,已知三棱锥 P-ABC 中, PA⊥底面 ABC,PA=3 ,底面 ABC 是边长为 2 的正三角形,三棱锥 P-ABC 的体积为 _______________14.容量为 20 的样本数据,分组后的频数如下表,则样本数据落在区间[30,60) 的频率为 ____________分组[10,20] [20,30 )[30,40 )[40,50 )[50,60 ) [60,70]频数 5 4 3 2 1 215。
绝密★启用前
江苏省2014年职业学校对口单招文化统考
数 学 试 卷
注意事项
考生在答题前请认真新闻记者本注意事项及各题答要求
1.本试卷共4页,包含选择题(第1题~第10题,共10题)、非选择题(第11题~第23
题,共13题)两部分.本卷满分为150分,考试时间为120分钟.考试结束后,请将本试
卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答
题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、考试证号与您本人是否相符.
4.作答选择题(第1题~第10题),必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;
如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用0.5毫米黑色墨水
的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、单项选择题(本大题共10小题,每小题4分,共40分.在下列每小题中,选出一个正
确答案,请将答题卡上对应选项的方框涂满、涂黑)
1.已知集合{1,2}M,{2,3}xN,若{1}MN,则实数x的值为( )
A.1 B.0 C.1 D.2
2.若向量(1,3),(,3),abx且//ab,则||b等于( )
A.2 B.3 C.5 D.10
3.若3tan4,且为第二象限角,则cos的值为( )
A.45 B.35 C.35 D.45
4.由1,2,3,4,5这五个数字排成无重复数字的四位数,其中偶数的个数是( )
A.24 B.36 C.48 D.60
5.若函数2log,0()3,0xxxfxx,则((0))ff等于( )
A.3 B.0 C.1 D.3
6.若,ab是实数,且4ab,则33ab的最小值是( )
A.9 B.12 C.15 D.18
7.若点(2,1)P是圆22(1)25xy的弦MN所在直线的方程是( )
A.30xy B.230xy C.10xy D.20xy
8.若函数()()fxxR的图象过点(1,1),则函数(3)fx的图象必过点( )
A.(4,1) B.(1,4) C.(2,1) D.(1,2)
9.在正方体1111ABCDABCD中,异面直线AC与1BC所成角的大小为( )
A.30 B.45 C.60 D.90
10.函数sin3|sin|(02)yxxx的图象与直线3y的交点个数是( )
A.1 B.2 C.3 D.4
二、填空题(本大题共5小题,每小题4分,共20分)
11.将十进制数51换算成二进制数,即10(51)________
12.题12图是一个程序框图,运行输出的结果y________
13.某班三名学生小李、小王、小线参加了2014年对口单招数学模拟考试,三次成绩如题
13表:
题13表 单位:分
次序
学生
第一次 第二次 第三次
小李
84 82 90
小王
88 83 89
小张
86 85 87
按照第一次占20%,第二次占30%,第三次占50%的不同比例分别计算三位同学的总评成
绩,其中最高分数是____________.
14.题14题是某项工程的网络图(单位:天),则该项工程总工期的天数为_____
15.已知两点(3,4)M,(5,2)N,则以线段MN为直径的圆的方程是______
三、解答题(本大题共8小题,共90分)
16.(8分)求不等式2228xx的解集.
17.(12分)在△ABC中,角,,ABC的对边分别是,,abc,且cos,cos,coscAbBaC成
等差数列.
(1)求角B的大小;
(2)若10ac,2b,求△ABC的面积.
18.(10分)设复数z满足关系式||84zzi,又是实系数一元二次方程
2
0xmxn
的一个根.
(1)求复数z;
(2)求m,n的值.
19.(12分)袋中装有质地均匀,大小相同的4个白球和3个黄球,现从中随机两个数,求
下列事件的概率:
(1)A{恰有一个白球和一个黄球};
(2)B{两球颜色相同};
(3)C{至少有一个黄球}.
20.(10分)设二次函数21()2fxxm图象的顶点为C,与x轴的交点分别为,AB.若
△ABC中的面积为82.
(1)求m的值;
(2)求函数()fx在区间[1,2]上的最大值和最小值.
21.(14分)已知等比数列{}na的前n项和为2nnSAB,其中,AB是常数,且13a.
(1)求数列{}na的公比q;
(2)求,AB的值及数列{}na的通项公式;
(3)求数列{}nS的前n项和nT.
22.(10分)某公司生产甲、乙两种产品.已知生产每吨甲产品需用A原料3吨、B原料2
吨;生产每吨乙产品需用A原料1吨、B原料3吨,销售每吨甲产品可获利5万元,销售
每吨乙产品可获利3万元,该公司在一个生产周期内消耗A原料不超过13吨、B原料不超
过18吨.问:该公司在本生产周期内生产甲、乙两种产品各多少吨时,可获得最大利润?
并求最大利润(单位:万元).
23.(14分)已知曲线C的参数方程为2cos,sinxy(为参数).
(1)求曲线C的普通方程;
(2)设点(,)Mxy是曲线C上的任一点,求22xy的最大值;
(3)过点(2,0)N的直线l与曲线C交于,PQ两点,且满足OPOQ(O为坐标原点),
求直线l的方程.
答案
选择
BDACB DACCB
填空
110011 4 87 10 2)3()4(22yx
简答
16、(-1,3)
17、60 3
18、3+4i m=-6 n=25
19、74、73、75
20、(1)m=4 (2)【2,4】
21、(1)2q (2)3A 3B 12*3nna (3)nTnn3)12(6
22、001831323yxyxyx 利润yxp35 最大值27
23、(1)1222yx (2) )4sin(22sin2cos222yx 最大值22 (3)55