2018高考物理一轮复习38原子结构原子核
- 格式:doc
- 大小:243.00 KB
- 文档页数:3
【考点分析】第二节原子结构和原子核【考点一】对原子核式结构的理解【典型例题1】物理学家通过对实验的深入观察和研究,获得正确的科学认知,推动物理学的发展,下列说法符合事实的是()A.赫兹通过一系列实验,证实了麦克斯韦关于光的电磁理论B.查德威克用α粒子轰击147N获得反冲核178O,发现了中子C.贝可勒尔发现的天然放射性现象,说明原子核有复杂结构D.卢瑟福通过对阴极射线的研究,提出了原子核式结构模型【解析】麦克斯韦预言了电磁波的存在,赫兹通过实验证实了麦克斯韦的电磁理论,选项A正确;卢瑟福用α粒子轰击147N,获得反冲核178O,发现了质子,选项B错误;贝可勒尔发现的天然放射性现象,说明原子核具有复杂结构,选项C正确;卢瑟福通过对α粒子散射实验的研究,提出了原子的核式结构模型,选项D错误.【答案】AC【考点二】玻尔理论和能级跃迁【典型例题2】(2022•江苏省南京市盐城市高三(上)一模)如图所示,氢原子的能级图。
一群处于基态的氢原子受到激发后,会辐射出6种不同频率的光。
已知可见光光子的能量范围为1.64eV~3.19eV。
下列说法正确的是()A.6种不同频率的光中包含有γ射线B.基态的氢原子受激后跃迁到n=6的能级C.从n=4能级跃迁到n=2发出的光是可见光D.从n=4能级跃迁到n=3发出的光波长最短【解析】A.γ射线是具有高能量的电磁波,能量高于1.24MeV,故6种不同频率的光中不可能包含有γ射线,A错误;B .一群氢原子从n 级自发向低能级跃迁能辐射出2C n 种不同频率的光,由于一群处于基态的氢原子受到激发后,会辐射出6种不同频率的光, 故基态的氢原子受激后跃迁到n =4的能级,B 错误;C .根据m n E E h ν-=,由n =4能级跃迁到n =2能级产生的光子的能量为42420.85eV ( 3.40eV) 2.55eV E E E =-=---=,在可见光范围内,C 正确;D .从n =4能级跃迁到n =3发出的光频率最小,波长最长,D 错误。
高考物理原子核知识点总结物理是高考中的一门重要科目,而原子核是其中的一个重要知识点。
原子核是物质的基本组成单位之一,研究原子核的性质对于理解物质的本质和原子结构非常重要。
本文将对高考物理中的原子核知识点进行总结,旨在帮助考生提升对这一知识点的理解和掌握。
一、原子核的基本结构原子核由质子和中子组成,质子带正电,中子带中性。
质子和中子的质量几乎相等,质子的质量约为1.67×10^-27千克。
原子核的直径约为10^-15米,相比于整个原子而言非常小。
质子和中子集中在原子核中心,而外部则通过电子云来保持整个原子的稳定。
二、原子核的组成原子核的组成与原子的元素有关。
在同一元素的原子核中,质子的数量是固定的,称为元素的原子序数,决定了一个元素的化学性质。
例如,氢原子核中只有一个质子,氧原子核中有8个质子。
而中子的数量可以有所不同,同一元素的不同核素就是由中子数量不同组成的。
核素的质量数指的是质子和中子的总数,通常用A表示。
例如,氢原子的质量数为1,氢同位素的质量数为2和3,在质量数不同的核素中,化学性质都是相同的。
三、原子核的相对稳定性原子核的相对稳定性与核内质子和中子之间的相互作用有关。
质子的电荷相互排斥,而核力使得质子和中子之间产生吸引力,起到核内结合的作用。
当核内的质子和中子数量接近时,核力可以克服质子之间的相互排斥,维持原子核的相对稳定性。
当核内的质子或中子数量过多或过少时,核力无法平衡相互排斥力,原子核就会发生放射性衰变,变为其他核素。
四、核反应和核能核反应是指原子核发生的变化。
核反应可以分为裂变和聚变两种形式。
核裂变是指重原子核分裂成两个或多个轻原子核,伴随着释放大量能量。
核聚变是指两个轻原子核合并成一个更重的原子核,也伴随着能量的释放。
核能是一种巨大的能量资源,广泛应用于核电站和核武器等领域。
五、放射性衰变放射性衰变是指原子核自发地发出射线,变为其他核素的过程。
放射性衰变可以分为α衰变、β衰变和γ衰变。
高考物理原子物理知识点原子物理是物理学中的重要分支之一,研究物质的最基本单元——原子的性质和行为。
它探索着物质的微观结构和相互作用,为研究和应用现代科学和技术提供了基础。
本文将介绍几个高考物理中的重要原子物理知识点。
第一个知识点是原子的结构。
根据科学家对原子的研究,我们目前通常认为原子由原子核和绕核运动的电子组成。
原子核位于整个原子的中心,其中主要包含质子和中子;而电子则分布在原子核外层的电子壳层中。
质子和中子带有电荷,但电荷相互抵消,使得原子整体呈现中性。
第二个知识点是原子的质量和电荷。
质子和中子的质量很接近,都是大约1.67×10^-27千克。
质子带有正电荷,其电荷量为1.6×10^-19库仑;而中子是中性的,不带电荷。
电子的质量远小于质子和中子,约为9.11×10^-31千克,其带有负电荷,电荷量与质子相等。
第三个知识点是元素的周期法则。
根据原子核中质子的数量不同,每个元素的原子核都有不同的质子数。
这也决定了元素的原子序数,即元素周期表中的元素顺序。
元素的原子核中的中子数量可以有所变化,从而形成同一元素的不同同位素。
元素的原子核外电子的数量与元素的化学性质有关,这决定了元素在化学反应中的行为。
第四个知识点是原子的能级结构。
根据量子力学理论,原子的电子只能处于特定的能级上,每个能级可以容纳一定数量的电子。
这些能级按照从内到外的次序分布在原子的电子壳层中。
当电子吸收或释放能量时,电子可以跃迁到更高或更低的能级。
原子的能级结构解释了许多原子现象,如光的发射和吸收,以及原子的化学反应。
最后一个知识点是原子核的稳定性和放射性。
原子核中质子和中子的数量不同决定了原子核的稳定性。
当原子核中的质子和中子比例合适时,原子核相对稳定;但当比例失衡时,原子核会变得不稳定,可能发生放射性衰变。
放射性衰变可以释放出能量和粒子,包括α粒子、β粒子和γ射线。
放射性是一种重要的物理现象,也在医学、能源等领域中得到了广泛应用。
第2讲光电效应波粒二象性一、普朗克能量子假说黑体与黑体辐射1.黑体与黑体辐射(1)黑体:如果某种物质能够完全吸收入射的各种波长的电磁波而不发生反射,这种物体就是绝对黑体.(2)黑体辐射:辐射电磁波的强度按波长的分布只与黑体的温度有关.2.普朗克能量子假说当带电微粒辐射或吸收能量时,是以最小能量值为单位一份一份地辐射或吸收的,这个最小能量值ε叫做能量子.ε=hν。
二、光电效应及其规律1.光电效应现象在光的照射下,金属中的电子从表面逸出的现象,发射出来的电子叫光电子.2.光电效应的产生条件入射光的频率大于等于金属的极限频率.3.光电效应规律(1)每种金属都有一个极限频率,入射光的频率必须大于等于这个极限频率才能产生光电效应.(2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大.(3)光电效应的发生几乎是瞬时的,一般不超过10-9 s.(4)当入射光的频率大于等于极限频率时,饱和光电流的大小与入射光的强度成正比.4.爱因斯坦光电效应方程(1)光子说:光的能量不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量ε=hν。
(2)逸出功W0:电子从金属中逸出所需做功的最小值.(3)最大初动能:发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值.(4)光电效应方程①表达式:hν=E k+W0或E k=hν-W0。
②物理意义:金属表面的电子吸收一个光子获得的能量是hν,这些能量的一部分用来克服金属的逸出功W0,剩下的表现为逸出后电子的最大初动能.三、光的波粒二象性物质波1.光的波粒二象性(1)波动性:光的干涉、衍射、偏振现象证明光具有波动性.(2)粒子性:光电效应、康普顿效应说明光具有粒子性.(3)光既具有波动性,又具有粒子性,称为光的波粒二象性.2.物质波(1)概率波光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波.(2)物质波任何一个运动着的物体,小到微观粒子大到宏观物体都有一种波与它对应,其波长λ=错误!,p为运动物体的动量,h为普朗克常量.1.判断下列说法是否正确.(1)任何频率的光照射到金属表面都可以发生光电效应.(×)(2)要使某金属发生光电效应,入射光子的能量必须大于金属的逸出功.(√)(3)光电子的最大初动能与入射光子的频率成正比.(×)(4)光的频率越高,光的粒子性越明显,但仍具有波动性.(√)(5)德国物理学家普朗克提出了量子假说,成功地解释了光电效应规律.(×)(6)美国物理学家康普顿发现了康普顿效应,证实了光的粒子性.(√)(7)法国物理学家德布罗意大胆预言了实物粒子具有波动性.(√)2.(多选)如图1所示,用导线把验电器与锌板相连接,当用紫外线照射锌板时,发生的现象是()图1A.有光子从锌板逸出B.有电子从锌板逸出C.验电器指针张开一个角度D.锌板带负电答案BC3.(多选)在光电效应实验中,用频率为ν的光照射光电管阴极,发生了光电效应,下列说法正确的是()A.增大入射光的强度,光电流增大B.减小入射光的强度,光电效应现象消失C.改用频率小于ν的光照射,一定不发生光电效应D.改用频率大于ν的光照射,光电子的最大初动能变大答案AD解析增大入射光强度,单位时间内照射到单位面积的光子数增加,则光电流将增大,故选项A正确;光电效应是否发生取决于入射光的频率,而与入射光强度无关,故选项B错误.用频率为ν的光照射光电管阴极,发生光电效应,用频率较小的光照射时,若光的频率仍大于等于极限频率,则仍会发生光电效应,选项C错误;根据hν-W逸=错误!mv2可知,增加入射光频率,光电子的最大初动能增大,故选项D正确.4.有关光的本性,下列说法正确的是()A.光既具有波动性,又具有粒子性,两种性质是不相容的B.光的波动性类似于机械波,光的粒子性类似于质点C.大量光子才具有波动性,个别光子只具有粒子性D.由于光既具有波动性,又具有粒子性,无法只用其中一种性质去说明光的一切行为,只能认为光具有波粒二象性答案D5.黑体辐射的规律如图2所示,从中可以看出,随着温度的降低,各种波长的辐射强度都________(填“增大”“减小"或“不变),辐射强度的极大值向波长________(填“较长"或“较短”)的方向移动.图2答案减少较长解析由题图可知,随着温度的降低,相同波长的光辐射强度都会减小;同时最大辐射强度向右侧移动,即向波长较长的方向移动。
第十三章近代物理【网络构建】专题13.2 原子结构原子核【网络构建】考点一原子的核式结构玻尔理论1.α粒子散射实验(1)α粒子散射实验装置(2)α粒子散射实验的结果:绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但少数α粒子穿过金箔后发生了大角度偏转,极少数α粒子甚至被“撞了回来”.2.原子的核式结构模型(1)α粒子散射实验结果分析①核外电子不会使α粒子的速度发生明显改变.①汤姆孙模型不能解释α粒子的大角度散射.①绝大多数α粒子沿直线穿过金箔,说明原子中绝大部分是空的;少数α粒子发生较大角度偏转,反映了原子内部集中存在着对α粒子有斥力的正电荷;极少数α粒子甚至被“撞了回来”,反映了个别α粒子正对着质量比α粒子大得多的物体运动时,受到该物体很大的斥力作用.(2)核式结构模型的局限性卢瑟福的原子核式结构模型能够很好地解释α粒子散射实验现象,但不能解释原子光谱是特征光谱和原子的稳定性.3.对氢原子能级图的理解(1)能级图如图所示(2)氢原子的能级和轨道半径①氢原子的能级公式:E n=1n2E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6 eV.①氢原子的半径公式:r n=n2r1(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10 m.(3)能级图中相关量意义的说明.4.两类能级跃迁(1)自发跃迁:高能级→低能级,释放能量,发出光子. 光子的频率ν=ΔE h =E 高-E 低h.(2)受激跃迁:低能级→高能级,吸收能量.①光照(吸收光子):吸收光子的全部能量,光子的能量必须恰等于能级差hν=ΔE .①碰撞、加热等:可以吸收实物粒子的部分能量,只要入射粒子能量大于或等于能级差即可,E 外≥ΔE . ①大于电离能的光子被吸收,将原子电离.考点二 氢原子的能量及变化规律氢原子跃迁时电子动能、电势能与原子能量的变化规律1.原子能量变化规律:E n =E k n +E p n =E 1n 2,随n 增大而增大,随n 的减小而减小,其中E 1=-13.6 eV .2.电子动能变化规律(1)从公式上判断电子绕氢原子核运动时静电力提供向心力即k e 2r 2=m v 2r ,所以E k =ke 22r ,随r 增大而减小.(2)从库仑力做功上判断,当轨道半径增大时,库仑引力做负功,故电子动能减小.反之,当轨道半径减小时,库仑引力做正功,故电子的动能增大. 3.原子的电势能的变化规律(1)通过库仑力做功判断,当轨道半径增大时,库仑引力做负功,原子的电势能增大.反之,当轨道半径减小时,库仑引力做正功,原子的电势能减小.(2)利用原子能量公式E n =E k n +E p n 判断,当轨道半径增大时,原子能量增大,电子动能减小,故原子的电势能增大.反之,当轨道半径减小时,原子能量减小,电子动能增大,故原子的电势能减小.考点三 原子核的衰变、半衰期1.衰变规律及实质 (1)α衰变和β衰变的比较电荷数守恒、质量数守恒2.三种射线的成分和性质 半衰期的公式:N 余=N 原⎝⎛⎭⎫12t /τ,m 余=m 原⎝⎛⎭⎫12t /τ.式中N 原、m 原表示衰变前的放射性元素的原子数和质量,N 余、m 余表示衰变后尚未发生衰变的放射性元素的原子数和质量,t 表示衰变时间,τ表示半衰期.考点四 核反应类型与核反应方程1.核反应的四种类型2.核反应方程式的书写(1)熟记常见基本粒子的符号,是正确书写核反应方程的基础.如质子(11H)、中子(10n)、α粒子(42He)、β粒子(0-1e)、正电子(01e)、氘核(21H)、氚核(31H)等.(2)掌握核反应方程遵守的规律,是正确书写核反应方程或判断某个核反应方程是否正确的依据,由于核反应不可逆,所以书写核反应方程式时只能用“→”表示反应方向.(3)核反应过程中质量数守恒,电荷数守恒.考点五核能的计算1.应用质能方程解题的流程图(1)根据ΔE=Δmc2计算,计算时Δm的单位是“kg”,c的单位是“m/s”,ΔE的单位是“J”.(2)根据ΔE=Δm×931.5 MeV计算.因1原子质量单位(u)相当于931.5 MeV的能量,所以计算时Δm的单位是“u”,ΔE的单位是“MeV”.2.根据核子比结合能来计算核能:原子核的结合能=核子的比结合能×核子数.3.核能释放的两种途径的理解(1)使较重的核分裂成中等大小的核.(2)较小的核结合成中等大小的核,核子的比结合能都会增加,都可以释放能量.高频考点一原子的核式结构玻尔理论例1、如图是氢原子的能级示意图.当氢原子从n=4的能级跃迁到n=3的能级时,辐射出光子a;从n=3的能级跃迁到n=2的能级时,辐射出光子b.以下判断正确的是()A.在真空中光子a的波长大于光子b的波长B.光子b可使氢原子从基态跃迁到激发态C.光子a可能使处于n=4能级的氢原子电离D.大量处于n=3能级的氢原子向低能级跃迁时最多辐射2种不同谱线【变式训练】如图所示为卢瑟福α粒子散射实验装置的示意图,图中的显微镜可在圆周轨道上转动,通过显微镜前相连的荧光屏可观察α粒子在各个角度的散射情况.下列说法正确的是()A.在图中的A、B两位置分别进行观察,相同时间内观察到屏上的闪光次数一样多B.在图中的B位置进行观察,屏上观察不到任何闪光C.卢瑟福选用不同金属箔片作为α粒子散射的靶,观察到的实验结果基本相似D.α粒子发生散射的主要原因是α粒子撞击到金原子后产生的反弹高频考点二氢原子的能量及变化规律例2、如图所示为氢原子的能级图,图中a、b、c、d对应氢原子的四次跃迁,已知可见光光子的能量范围为1.61~3.10 eV,关于四次跃迁,下列说法正确的是()A.经历a跃迁,氢原子吸收的光子能量为0.66 eVB.经历b跃迁,氢原子的轨道半径增大,原子核外电子的动能增大C.经历c跃迁,氢原子放出的光子是可见光光子D.经历d跃迁后,再用可见光照射跃迁后的氢原子,可使氢原子发生电离【变式训练】氢原子辐射出一个光子后,根据玻尔理论,下述说明正确的是()A .电子旋转半径减小B .氢原子能量增大C .氢原子电势能增大D .核外电子速率增大高频考点三 原子核的衰变、半衰期例3、国产科幻大片《流浪地球》讲述了太阳即将在未来出现“核燃烧”现象,从而导致人类无法生存,决定移民到半人马座比邻星的故事.据科学家论证,太阳向外辐射的能量来自其内部发生的各种热核反应,当太阳内部达到一定温度时,会发生“核燃烧”,其中“核燃烧”的核反应方程为42He +X→84Be +ν,方程中X 表示某种粒子,84Be 是不稳定的粒子,其半衰期为T ,则下列说法正确的是( ) A .X 粒子是42HeB .若使84Be 的温度降低,其半衰期会减小C .经过2T ,一定质量的84Be 占开始时的18 D .“核燃烧”的核反应是裂变反应【变式训练】如图,匀强磁场中的O 点有一静止的原子核234 90Th 发生了某种衰变,衰变方程为234 90Th→A Z Y +0-1e ,反应生成的粒子 0-1e 的速度方向垂直于磁场方向.关于该衰变,下列说法正确的是( )A.234 90Th 发生的是α衰变 B.234 90Th 发生的是β衰变 C .A =234,Z =91D .新核A Z Y 和粒子 0-1e 在磁场中的轨迹外切于O 点高频考点四 核反应类型与核反应方程例4、1956年,李政道和杨振宁提出在弱相互作用中宇称不守恒,并由吴健雄用半衰期为5.27年的6027Co 放射源进行了实验验证,次年李、杨二人获得诺贝尔物理学奖.6027Co 的衰变方程式是:6027Co→A Z Ni + 0-1e +νe (其中νe 是反中微子,它的电荷为零,静止质量可认为是零),衰变前6027Co 核静止,根据云室照片可以看到衰变产物A Z Ni 和 0-1e 不在同一条直线上的事实.根据这些信息可以判断( ) A.A Z Ni 的核子数A 是60,核电荷数Z 是28 B. 此核反应为α衰变C.A Z Ni 与 0-1e 的动量之和不可能等于零 D .衰变过程动量不守恒【变式训练】下列核反应属于人工转变的是( )A.234 90Th→234 91Pa + 0-1eB.42He +94Be→12 6C +10nC.235 92U +10n→136 54Xe +9038Sr +1010nD.21H +31H→42He +10n高频考点五 核能的计算例5、两个氘核以相等的动能E k 对心碰撞发生核聚变,核反应方程为21H +21H→32He +10n ,其中氘核的质量为m 1,氦核的质量为m 2,中子的质量为m 3.假设核反应释放的核能E 全部转化为动能,下列说法正确的是( )A .核反应后氮核与中子的动量相同B .该核反应释放的能量为E =(2m 1-m 2-m 3)c 2C .核反应后氮核的动能为E +2E k4D .核反应后中子的动能为E +E k4【变式训练】轻核聚变的一个核反应方程为:21H +31H→42He +X.若已知21H 的质量为m 1,31H 的质量为m 2,42He 的质量为m 3,X 的质量为m 4,则下列说法中正确的是( )A.21H 和31H 在常温下就能够发生聚变B .X 是质子C .这个反应释放的核能为ΔE =(m 1+m 2-m 3-m 4)c 2D .我国大亚湾核电站是利用轻核的聚变释放的能量来发电的第十三章近代物理【网络构建】专题13.2 原子结构原子核【网络构建】考点一原子的核式结构玻尔理论1.α粒子散射实验(1)α粒子散射实验装置(2)α粒子散射实验的结果:绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但少数α粒子穿过金箔后发生了大角度偏转,极少数α粒子甚至被“撞了回来”.2.原子的核式结构模型(1)α粒子散射实验结果分析①核外电子不会使α粒子的速度发生明显改变.①汤姆孙模型不能解释α粒子的大角度散射.①绝大多数α粒子沿直线穿过金箔,说明原子中绝大部分是空的;少数α粒子发生较大角度偏转,反映了原子内部集中存在着对α粒子有斥力的正电荷;极少数α粒子甚至被“撞了回来”,反映了个别α粒子正对着质量比α粒子大得多的物体运动时,受到该物体很大的斥力作用.(2)核式结构模型的局限性卢瑟福的原子核式结构模型能够很好地解释α粒子散射实验现象,但不能解释原子光谱是特征光谱和原子的稳定性.3.对氢原子能级图的理解(1)能级图如图所示(2)氢原子的能级和轨道半径①氢原子的能级公式:E n=1n2E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6eV.①氢原子的半径公式:r n=n2r1(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10 m.(3)能级图中相关量意义的说明.(1)自发跃迁:高能级→低能级,释放能量,发出光子. 光子的频率ν=ΔE h =E 高-E 低h.(2)受激跃迁:低能级→高能级,吸收能量.①光照(吸收光子):吸收光子的全部能量,光子的能量必须恰等于能级差hν=ΔE .①碰撞、加热等:可以吸收实物粒子的部分能量,只要入射粒子能量大于或等于能级差即可,E 外≥ΔE .①大于电离能的光子被吸收,将原子电离.考点二 氢原子的能量及变化规律氢原子跃迁时电子动能、电势能与原子能量的变化规律1.原子能量变化规律:E n =E k n +E p n =E 1n 2,随n 增大而增大,随n 的减小而减小,其中E 1=-13.6 eV.2.电子动能变化规律(1)从公式上判断电子绕氢原子核运动时静电力提供向心力即k e 2r 2=m v 2r ,所以E k =ke 22r ,随r增大而减小.(2)从库仑力做功上判断,当轨道半径增大时,库仑引力做负功,故电子动能减小.反之,当轨道半径减小时,库仑引力做正功,故电子的动能增大. 3.原子的电势能的变化规律(1)通过库仑力做功判断,当轨道半径增大时,库仑引力做负功,原子的电势能增大.反之,当轨道半径减小时,库仑引力做正功,原子的电势能减小.(2)利用原子能量公式E n =E k n +E p n 判断,当轨道半径增大时,原子能量增大,电子动能减小,故原子的电势能增大.反之,当轨道半径减小时,原子能量减小,电子动能增大,故原子的电势能减小.考点三 原子核的衰变、半衰期1.衰变规律及实质 (1)α衰变和β衰变的比较电荷数守恒、质量数守恒2.三种射线的成分和性质 半衰期的公式:N 余=N 原⎝⎛⎭⎫12t /τ,m 余=m 原⎝⎛⎭⎫12t /τ.式中N 原、m 原表示衰变前的放射性元素的原子数和质量,N 余、m 余表示衰变后尚未发生衰变的放射性元素的原子数和质量,t 表示衰变时间,τ表示半衰期.考点四 核反应类型与核反应方程1.核反应的四种类型(1)熟记常见基本粒子的符号,是正确书写核反应方程的基础.如质子(11H)、中子(10n)、α粒子(42He)、β粒子(0-1e)、正电子(01e)、氘核(21H)、氚核(31H)等.(2)掌握核反应方程遵守的规律,是正确书写核反应方程或判断某个核反应方程是否正确的依据,由于核反应不可逆,所以书写核反应方程式时只能用“→”表示反应方向.(3)核反应过程中质量数守恒,电荷数守恒.考点五核能的计算1.应用质能方程解题的流程图(1)根据ΔE=Δmc2计算,计算时Δm的单位是“kg”,c的单位是“m/s”,ΔE的单位是“J”.(2)根据ΔE=Δm×931.5 MeV计算.因1原子质量单位(u)相当于931.5 MeV的能量,所以计算时Δm的单位是“u”,ΔE的单位是“MeV”.2.根据核子比结合能来计算核能:原子核的结合能=核子的比结合能×核子数.3.核能释放的两种途径的理解(1)使较重的核分裂成中等大小的核.(2)较小的核结合成中等大小的核,核子的比结合能都会增加,都可以释放能量.高频考点一原子的核式结构玻尔理论例1、如图是氢原子的能级示意图.当氢原子从n=4的能级跃迁到n=3的能级时,辐射出光子a;从n=3的能级跃迁到n=2的能级时,辐射出光子b.以下判断正确的是()B.在真空中光子a的波长大于光子b的波长B.光子b可使氢原子从基态跃迁到激发态C.光子a可能使处于n=4能级的氢原子电离D.大量处于n=3能级的氢原子向低能级跃迁时最多辐射2种不同谱线答案:A解析:氢原子从n=4的能级跃迁到n=3的能级的能级差小于从n=3的能级跃迁到n=2的能级时的能级差,根据E m-E n=hν知,光子a的能量小于光子b的能量,所以a光的频率小于b光的频率,光子a的波长大于光子b的波长,故A正确;光子b的能量小于基态与任一激发态的能级差,所以不能被基态的原子吸收,故B错误;根据E m-E n=hν可求光子a的能量小于n=4能级的电离能,所以不能使处于n=4能级的氢原子电离,C错误;大量处于n=3能级的氢原子向低能级跃迁时最多辐射3种不同谱线,故D错误.【变式训练】如图所示为卢瑟福α粒子散射实验装置的示意图,图中的显微镜可在圆周轨道上转动,通过显微镜前相连的荧光屏可观察α粒子在各个角度的散射情况.下列说法正确的是()A.在图中的A、B两位置分别进行观察,相同时间内观察到屏上的闪光次数一样多B.在图中的B位置进行观察,屏上观察不到任何闪光C.卢瑟福选用不同金属箔片作为α粒子散射的靶,观察到的实验结果基本相似D.α粒子发生散射的主要原因是α粒子撞击到金原子后产生的反弹答案:C解析::.放在A位置时,相同时间内观察到屏上的闪光次数应最多,说明大多数射线基本不偏折,可知金箔原子内部很空旷,故A错误;放在B位置时,相同时间内观察到屏上的闪光次数较少,说明较少射线发生偏折,可知原子内部带正电的体积小,故B错误;选用不同金属箔片作为α粒子散射的靶,观察到的实验结果基本相似,故C正确;α粒子发生散射的主要原因是α粒子受到金原子库仑力作用,且金原子质量较大,从而出现的反弹,故D 错误.高频考点二氢原子的能量及变化规律例2、如图所示为氢原子的能级图,图中a、b、c、d对应氢原子的四次跃迁,已知可见光光子的能量范围为1.61~3.10 eV,关于四次跃迁,下列说法正确的是()A .经历a 跃迁,氢原子吸收的光子能量为0.66 eVB .经历b 跃迁,氢原子的轨道半径增大,原子核外电子的动能增大C .经历c 跃迁,氢原子放出的光子是可见光光子D .经历d 跃迁后,再用可见光照射跃迁后的氢原子,可使氢原子发生电离 答案: D解析: 经历a 跃迁,氢原子从高能级向低能级跃迁时辐射出的光子的能量为0.66 eV ,选项A 错误;经历b 跃迁,氢原子吸收能量,轨道半径增大,但核外电子的动能会减小,选项B 错误;经历c 跃迁,氢原子辐射出的光子的能量为0.97 eV ,则该光子不是可见光光子,选项C 错误;经历d 跃迁后,跃迁后的氢原子的电离能为1.51 eV ,因此用可见光光子照射可使其电离,选项D 正确。
原子结构知识集结知识元原子的核式结构知识讲解1.α粒子散射实验1909年-1911年,英国物理学家卢瑟福及其学生进行了α粒子散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但少数α粒子发生了较大角度的偏转,并且有极少数α粒子的偏转超过了900,有的甚至几乎达到18002.卢瑟福的核式结构模型在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部的质量都集中在原子核里,带负电的电子在核外空间绕核旋转.例题精讲原子的核式结构例1.在对α粒子散射实验的现象分析时,我们并没有考虑α粒子跟电子碰撞,这是因为()A.电子体积非常小,以至于α粒子碰不到它B.α粒子跟电子碰撞时,损失的能量很小,可以忽略C.α粒子跟各个电子碰撞的效果相互抵消D.α粒子跟电子碰撞时,动量几乎不改变例2.根据卢瑟福提出的原子核式结构模型解释α粒子散射实验,使少数α粒子发生大角度偏转的作用力是金原子核对α粒子的()A.库仑斥力B.库仑引力C.万有引力D.核力例3.氢氘氚是同位素,它们的原子核内具有相同的()A.电子数B.质子数C.中子数D.核子数例4.下列关于物质结构的叙述不正确的是()A.质子的发现表明了原子核是由质子和中子组成的B.天然放射性现象的发现表明了原子核内部是有复杂结构的C.电子的发现表明了原子内部是有复杂结构的D.α粒子散射实验是原子核式结构模型的实验基础例5.在α粒子散射实验中,α粒子的偏转是由于受到原子内正电荷的库仑力作用而发生的,其中有极少数α粒子发生了大角度偏转,甚至被反向弹回。
假定一个速度为v的高速α粒子(He)与金原子核(Au)发生弹性正碰(碰撞前金原子核可认为是静止的),则()A.α粒子在靠近金原子核的过程中电势能逐渐减小B.α粒子散射实验说明原子核是由质子和中子组成的C.α粒子散射实验说明带正电的物质均匀分布在原子内部D.当它们的距离最小时,α粒子与金原子核的动量大小之比为4:197 玻尔模型知识讲解1.光谱2.氢原子光谱氢原子特征谱线氢原子的光谱线系巴耳末公式:=R(-)(n=3,4,5,…)它确定的这一组谱线称为巴耳末系.氢原子的其他光谱线系:赖曼系(紫外区)=R(-)(n=2,3,4,…)帕邢系(近红外区)=R(-)(n=4,5,6,…)布拉开系(红外区)=R(-)(n=5,6,7,…)3.玻尔的原子理论量子化假设:电子的轨道是量子化的;原子的能量是量子化的.频率条件:当电子从能量较高的定态轨道(E m)跃迁到能量较低的定态轨道(E n)时,会放出能量为hν=E m-E n.4.能级原子由一个能量状态变为另一个能量状态的过程叫跃迁.辐射与激发:释放的能量hν=E初-E终;吸收的能量ΔE=E终-E初.例题精讲玻尔模型例1.氢原子能级示意图如图所示。
高考物理知识点之原子结构与原子核考试要点基本概念一、原子模型1.J .J 汤姆生模型(枣糕模型)——1897年发现电子,认识到原子有复杂结构。
2.卢瑟福的核式结构模型(行星式模型)α粒子散射实验是用α粒子轰击金箔,结果:绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转。
这说明原子的正电荷和质量一定集中在一个很小的核上。
卢瑟福由α粒子散射实验提出模型:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。
由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15m 。
3.玻尔模型(引入量子理论) (1)玻尔的三条假设(量子化)①轨道量子化:原子只能处于不连续的可能轨道中,即原子的可能轨道是不连续的②能量量子化:一个轨道对应一个能级,轨道不连续,所以能量值也是不连续的,这些不连续的能量值叫做能级。
在这些能量状态是稳定的,并不向外界辐射能量,叫定态 ③原子可以从一个能级跃迁到另一个能级。
原子由高能级α粒子散射实验卢瑟福玻尔结构α粒子氢原子的能级图n E /eV∞ 0 1 -13.62 -3.43 4 -0.853 E 1E 2E 3向低能级跃迁时,放出光子,在吸收一个光子或通过其他途径获得能量时,则由低能级向高能级跃迁。
原子在两个能级间跃迁时辐射或吸收光子的能量12E E h -=γ(量子化就是不连续性,n 叫量子数。
)(2)从高能级向低能级跃迁时放出光子;从低能级向高能级跃迁时可能是吸收光子,也可能是由于碰撞(用加热的方法,使分子热运动加剧,分子间的相互碰撞可以传递能量)。
原子从低能级向高能级跃迁时只能吸收一定频率的光子;而从某一能级到被电离可以吸收能量大于或等于电离能的任何频率的光子。
(如在基态,可以吸收E ≥13.6eV 的任何光子,所吸收的能量除用于电离外,都转化为电离出去的电子的动能)。
38原子结构 原子核
粒子经历金箔散射过程的径迹,其中正确的是( )
.太阳内部持续不断地发生着4个质子(11
H)聚变为1个氦核(42
He)的热核反应,核反应
2X ,这个核反应释放出大量核能.已知质子、氦核、X 的质量分别为,真空中的光速为c.下列说法中正确的是( )
附近放一张薄纸,则图乙中四个示意图正确的是( )
静止的氡核222 86
Rn 放出α粒子变成钋核218 84P 0
时,α粒子的动能是E 0,原子核因反冲而运动,它的动能是( )
B.⎝ ⎛⎭⎪⎫42182
E 0 D.4224
E 0 .对于以下反应方程,说法正确的是( ) 121
B.反应前后质量数不变,因而质量不变
C.由核子组成原子核一定向外释放能量
D.光子所具有的能量为Δmc2,Δm为反应中的质量亏损,c为光速
8.“轨道电子俘获”是放射性同位素衰变的一种形式,即原子核俘获一个核外电子,核内一个质子变为中子,原子核衰变成一个新核,并且放出一个中微子(其质量小于电子质量且不带电).若一个静止的原子核发生“轨道电子俘获”(电子的初动量可不计),则( ) A.生成的新核与衰变前的原子核质量数相同
B.生成新核的核电荷数增加
C.生成的新核与衰变前的原子核互为同位素
D.生成的新核与中微子的动量大小相等
9.重核裂变和轻核聚变是人类获得核能的两种主要途径,下面关于裂变和聚变的说法正确的是( )
A.裂变和聚变过程中都有质量亏损
B.裂变过程中有质量亏损,聚变过程中质量有所增加
C.要使铀235裂变反应不断地进行下去,铀块的体积必须大于或等于临界体积
D.要使聚变发生,必须使原子核接近到核力能够发生作用的范围,即10-15m
10.下列几幅图的有关说法中正确的是( )
A.原子中的电子绕原子核高速运转时,运行轨道的半径不是任意的
B.光电效应实验和康普顿效应实验说明了光具有粒子性
C.射线甲由α粒子组成,每个粒子带两个单位正电荷
D.链式反应属于重核的裂变
二、非选择题
11.假设高速运动的α粒子与一个静止于磁感应强度为B的匀强磁场中某点的氮核(147 N)发生正碰.碰后产生两个新核,在磁场中形成如图所示的两条半径分别为R和r(R>r)的圆形径迹,其中R是质量较小的核的径迹,r是质量较大的核的径迹.
(1)请写出该核反应方程;
(2)求碰撞前α粒子的速度大小(质子质量为m,电荷量为e).
12.一个静止的氡核222 86Rn放出一个α粒子后衰变为钋核218 84Po,同时放出能量为E=0.09 MeV的光子.假设放出的核能完全转变为钋核与α粒子的动能,不计光子的动量.已知M氡=222.086 63 u、mα=4.002 6 u、M钋=218.076 6 u,1 u相当于931.5 MeV的能量.
(1)写出上述核反应方程;。