连续系统振动(a)-杆的纵向振动
- 格式:ppt
- 大小:2.48 MB
- 文档页数:45
兰州理工大学李有堂编著机械系统动力学第7章连续系统的振动7.1 引言实际的物理系统都是由弹性体组成的系统,通常为连续系统。
离散系统是连续系统的近似模型,当其近似程度不能满足实际要求时,必须增加模型的自由度,或者采用连续模型。
连续模型是离散模型自由度无限增加时的极限。
连续系统是具有无限多个自由度的系统。
主要讨论可以获得精确解的问题。
弦的横向振动、杆的纵向振动和扭转振动、梁的弯曲振动7.2 弦的横向振动⏹弦:只能承受拉力,而抵抗弯曲及压缩的能力很弱。
⏹钢索、电线、电缆和皮带等柔性体构件⏹假设:材料是均匀连续和各向同性的;材料变形在弹性范围,服从虎克定律;运动是微幅的如图所示为一段长度为l 、两端固定的弦的横向振动的模型,f (x ,t )是作用在弦上的载荷密度,弦的线密度为ρ。
T ——弦上的张力,近似为常量;——时刻t 张力T 与x 轴的夹角 ——时刻t 弦上x 处的横向位移量(,)x t (,)y x t沿y 方向的运动微分方程为22(,)sin (,)sin (,)y x t T x dx t T x t dx t θθρ∂+-=∂对于微幅振动sin tan yxθθθ∂≈≈≈∂(,)(,)x dx t x t dxxθθθ∂+=+∂2222(,)(,)y x t y x t T x tρ∂∂=∂∂T αρ=22222(,)(,)y x t y x t x tα∂∂=∂∂弦的振动微分方程◆ 是一个偏微分方程◆ 对离散系统,运动是一种“同步运动”◆ 弹性体系统即连续系统也应为同步运动,同时达到极大值,同时过零点,因而整个弦的形状在振动中保持不变◆ 弦上各点随时间变化的位移可以分解为两部分的乘积22222(,)(,)y x t y x t x tα∂∂=∂∂(,)()()y x t Y x t Φ=分离变量确定整条弦线在空间的形状,与时间无关,弦的振型函数确定弦上各点位移随时间的变化规律,与空间坐标无关,弦的振动方式✓当 达到极值时,弦上各点位移同时达到极值 ✓当 为零时,弦上各点同时回到平衡位置()t Φ()t Φ(,)()()y x t Y x t Φ=x x Y t Φx t x y ∂∂=∂∂)()(),(2222)()(),(xx Y t Φx t x y ∂∂=∂∂t t Φx Y t t x y ∂∂=∂∂)()(),(2222)()(),(tt Φx Y t t x y ∂∂=∂∂方程左边仅为空间坐标的函数,右边仅为时间的函数,左右两边要保持相等,只有一种可能,就是两边均等于一个常数22222()1()()()Y x t Y x x t tαΦΦ∂∂=∂∂22222(,)(,)y x t y x t x tα∂∂=∂∂222222)()(1)()(n tt Φt Φx x Y x Y ωα-=∂∂=∂∂222()()0n t t tΦωΦ∂+=∂2222()()0n Y x Y x x ωα∂+=∂()sin()n t C t Φωϕ=+()sin cos n nY x A x B xωωαα=+弦的主振型是谐波曲线 (,)()()y x t Y x t Φ=()sin()n t C t Φωϕ=+()sin cos n nY x A x B xωωαα=+12(,)(sin cos )sin()n n n y x t C x C x t ωωωϕαα=++弦的运动规律是正弦曲线C 1、C 2、ωn 、为待定系数 ωn 、C 2——两个端点的边界条件确定、C 1——振动的初始条件确定 )sin(cos sin ),(ϕωαωαω+⎪⎭⎫ ⎝⎛+=t x B x A C t x y n n n ϕϕ弦的两端固定,其边界条件为(0,)(,)0y t y l t ==弦的两端固定,其边界条件为12(,)(sin cos )sin()n nn y x t C x C x t ωωωϕαα=++210, sin 0n lC C ωα==sin 0n l ωα=n lk ωπα=弦振动的特征方程,即频率方程nk k k Tl lαππωρ==第k 阶固有频率✓连续系统固有频率的取值和离散系统固有频率的取值一样,只取某几个特定的数值。