连续系统振动(a)-杆的纵向振动
- 格式:ppt
- 大小:2.49 MB
- 文档页数:45
第四章连续体的振动§4.2 杆的纵向振动例:有一根 x =0 端为自由、x =l 端处为固定的杆,固定端承受支撑运动 td t u g ωsin )(=d 为振动的幅值试求杆的稳态响应。
l x 0)(t u g §4.2 杆的纵向振动解: l x 0t d t u g ωsin )(=方程建立 dx u dx x u u u g ∂-∂+)(22xu Sdx ∂∂ρdx x F F ∂∂+F 微段分析应变: xu u dx u dx x u u u g g ∂-∂=-∂-∂+=)(])([ε内力: xu u ES ES F g ∂-∂==)(ε达朗贝尔原理: F dx F F u Sdx -∂+=∂)(2ρ),(t x u 杆上距原点 x 处截面在时刻 t 的纵向位移 22)(u u ES u S g -∂=∂ρl x 0td t u g ωsin )(=令: 代入方程: 2222)(x u u ES t u S g ∂-∂=∂∂ρg u u u -=*g u u u +=*即: **''g Su ESu Su ρρ-=-2sin Sd tρωω=-设解为: ∑∞==1*)()(i i i t q x u φ)(x i φ为归一化的正则模态 ,...5,3,1,2cos 2)(==i x li l x i πφ代入方程,得: tSd ESq q S i i i i i ωωρφφρsin )(2,...5,3,1''=-∑∞=l x0t d t u g ωsin )(=2222)(x u u ES t u S g ∂-∂=∂∂ρgu u u -=*∑∞==1*)()(i i i t q x u φ,...5,3,1,2cos 2)(==i x l i l x i πφtSd ESq q S i i i i i ωωρφφρsin )(2,...5,3,1''=-∑∞= )(x j φ用 乘上式,并沿杆长积分:⎰∑⎰⎰=-∞=lj i l j i i l j i idx t Sd dx ES q dx S q 0210''0sin )(φωωρφφφφρ 利用正交性: t d i l l q q i i i i ωωπωsin )1(2222/)1(2--=+l x 0td t u g ωsin )(=2222)(x u u ES t u S g ∂-∂=∂∂ρg u u u -=*∑∞==1*)()(i i i t q x u φ,...5,3,1,2cos 2)(==i x li l x i πφt d i l l q q i i i i ωωπωsin )1(2222/)1(2--=+ 模态稳态解: t d i l l q i i i i ωπηωωsin )1(222/)1(22--=2)/(11i i ωωη-=t lx i d i E l u i i i ωπηπωρsin 2cos )1(16,...5,3,132/)1(322*∑∞=--=l x 0td t u g ωsin )(=2222)(x u u ES t u S g ∂-∂=∂∂ρg u u u -=*2)/(11i i ωωη-=t lx i d i E l u i i i ωπηπωρsin 2cos )1(16,...5,3,132/)1(322*∑∞=--=t d l x i i E l u u u i i i gωπηπωρsin 2cos )1(161 ,...5,3,12/)1(3322*⎥⎦⎤⎢⎣⎡-+=+=∑∞=-小结1. 建立动力学方程2. 根据边界条件求解固有频率和模态3. 变量分离4. 代入动力学方程,并利用正交性条件得到模态空间方程5. 物理空间初始条件转到模态空间6. 模态空间方程求解7. 返回物理空间,得解)()(),(1t q x t x u i i i φ∞=∑=)(2t Q q q j j j j =+ω )(,x i i φω)0(),0(j j q q )(t q j )()(),(1t q x t x u i i i φ∞=∑=物理空间问题 模态空间问题 )()(),(1t q x t x u i i i φ∞=∑=模态叠加法§4.3圆轴的扭转振动取圆轴的轴心线作为x 轴,图示轴任一 x 截面处的转角表示为θ(x ,t ) 。
1. 各力学课程之间的区别和联系,重点的理论力学\材料力学\结构力学重点内容要清楚.理论力学:理论力学是研究物体的机械运动的。
它主要研究的是质点,质点系,刚体,并且以牛顿定律为主导思想来研究物体。
质点和刚体都是理想化的模型,没有变形,真实世界中不可能存在,适用于研究宏观低速的物质世界。
它主要分为三大部分,静力学(研究物体在保持平衡时应该满足的条件),运动学(从几何方面研究物体的运动,包括轨迹、速度、加速度和运动方程)和动力学(研究物体的受到的力与运动之间的关系)。
材料力学:研究构件在荷载作用下是否满足强度、刚度和稳定性。
材料力学主要研究的对象是构件,构件是可以变形的。
材料力学主要是从理论力学的静力学发展而来,因为刚体是不会变形的,所以在理论力学中是不可能解释变形体的问题的,但实际上物体没有不发生形变的,材料力学就是研究物体在发生形变以后的一些问题。
理论力学无法解答超静定问题,但是在材料力学中可以根据变形协调方程或者一些边界约束条件可以解答超静定问题。
而且材料力学在解释实际生活中的问题时时把问题工程化。
材料力学的假设:1,连续性假设;2均匀性假设;3各项同性假设。
拉、压、剪、扭、弯(纯弯和恒力弯曲)强度理论:最大拉应力强度理论最大伸长线应变理论最大切应力理论畸变能密度理论莫尔强度理论组合变形(拉弯,弯扭)压杆稳定莫尔积分结构力学:研究工程结构受力和传力的规律,以及如何进行结构优化的学科。
在材料力学的基础上面发展起来的,一些基本的工具和思想都是差不多的。
在结构力学里面有一些更先进的解决问题的方法,例如力法、位移法、矩阵位移法(划行划列法,主1付0法,付大值法)、力矩分配法(逐渐趋近的方法接近真实值)。
结构力学里面还包括结构动力学力法:变形协调方程,以多余的未知力为基本未知量位移法:平衡方程,以某些结点位移和转角为基本未知量力矩分配法:以位移法为基础,无限趋近的方式逐渐逼近真实解矩阵位移法:位移法和计算机想结合的产物。