连续系统振动(a)-杆的纵向振动
- 格式:ppt
- 大小:2.49 MB
- 文档页数:45
第四章连续体的振动§4.2 杆的纵向振动例:有一根 x =0 端为自由、x =l 端处为固定的杆,固定端承受支撑运动 td t u g ωsin )(=d 为振动的幅值试求杆的稳态响应。
l x 0)(t u g §4.2 杆的纵向振动解: l x 0t d t u g ωsin )(=方程建立 dx u dx x u u u g ∂-∂+)(22xu Sdx ∂∂ρdx x F F ∂∂+F 微段分析应变: xu u dx u dx x u u u g g ∂-∂=-∂-∂+=)(])([ε内力: xu u ES ES F g ∂-∂==)(ε达朗贝尔原理: F dx F F u Sdx -∂+=∂)(2ρ),(t x u 杆上距原点 x 处截面在时刻 t 的纵向位移 22)(u u ES u S g -∂=∂ρl x 0td t u g ωsin )(=令: 代入方程: 2222)(x u u ES t u S g ∂-∂=∂∂ρg u u u -=*g u u u +=*即: **''g Su ESu Su ρρ-=-2sin Sd tρωω=-设解为: ∑∞==1*)()(i i i t q x u φ)(x i φ为归一化的正则模态 ,...5,3,1,2cos 2)(==i x li l x i πφ代入方程,得: tSd ESq q S i i i i i ωωρφφρsin )(2,...5,3,1''=-∑∞=l x0t d t u g ωsin )(=2222)(x u u ES t u S g ∂-∂=∂∂ρgu u u -=*∑∞==1*)()(i i i t q x u φ,...5,3,1,2cos 2)(==i x l i l x i πφtSd ESq q S i i i i i ωωρφφρsin )(2,...5,3,1''=-∑∞= )(x j φ用 乘上式,并沿杆长积分:⎰∑⎰⎰=-∞=lj i l j i i l j i idx t Sd dx ES q dx S q 0210''0sin )(φωωρφφφφρ 利用正交性: t d i l l q q i i i i ωωπωsin )1(2222/)1(2--=+l x 0td t u g ωsin )(=2222)(x u u ES t u S g ∂-∂=∂∂ρg u u u -=*∑∞==1*)()(i i i t q x u φ,...5,3,1,2cos 2)(==i x li l x i πφt d i l l q q i i i i ωωπωsin )1(2222/)1(2--=+ 模态稳态解: t d i l l q i i i i ωπηωωsin )1(222/)1(22--=2)/(11i i ωωη-=t lx i d i E l u i i i ωπηπωρsin 2cos )1(16,...5,3,132/)1(322*∑∞=--=l x 0td t u g ωsin )(=2222)(x u u ES t u S g ∂-∂=∂∂ρg u u u -=*2)/(11i i ωωη-=t lx i d i E l u i i i ωπηπωρsin 2cos )1(16,...5,3,132/)1(322*∑∞=--=t d l x i i E l u u u i i i gωπηπωρsin 2cos )1(161 ,...5,3,12/)1(3322*⎥⎦⎤⎢⎣⎡-+=+=∑∞=-小结1. 建立动力学方程2. 根据边界条件求解固有频率和模态3. 变量分离4. 代入动力学方程,并利用正交性条件得到模态空间方程5. 物理空间初始条件转到模态空间6. 模态空间方程求解7. 返回物理空间,得解)()(),(1t q x t x u i i i φ∞=∑=)(2t Q q q j j j j =+ω )(,x i i φω)0(),0(j j q q )(t q j )()(),(1t q x t x u i i i φ∞=∑=物理空间问题 模态空间问题 )()(),(1t q x t x u i i i φ∞=∑=模态叠加法§4.3圆轴的扭转振动取圆轴的轴心线作为x 轴,图示轴任一 x 截面处的转角表示为θ(x ,t ) 。
1. 各力学课程之间的区别和联系,重点的理论力学\材料力学\结构力学重点内容要清楚.理论力学:理论力学是研究物体的机械运动的。
它主要研究的是质点,质点系,刚体,并且以牛顿定律为主导思想来研究物体。
质点和刚体都是理想化的模型,没有变形,真实世界中不可能存在,适用于研究宏观低速的物质世界。
它主要分为三大部分,静力学(研究物体在保持平衡时应该满足的条件),运动学(从几何方面研究物体的运动,包括轨迹、速度、加速度和运动方程)和动力学(研究物体的受到的力与运动之间的关系)。
材料力学:研究构件在荷载作用下是否满足强度、刚度和稳定性。
材料力学主要研究的对象是构件,构件是可以变形的。
材料力学主要是从理论力学的静力学发展而来,因为刚体是不会变形的,所以在理论力学中是不可能解释变形体的问题的,但实际上物体没有不发生形变的,材料力学就是研究物体在发生形变以后的一些问题。
理论力学无法解答超静定问题,但是在材料力学中可以根据变形协调方程或者一些边界约束条件可以解答超静定问题。
而且材料力学在解释实际生活中的问题时时把问题工程化。
材料力学的假设:1,连续性假设;2均匀性假设;3各项同性假设。
拉、压、剪、扭、弯(纯弯和恒力弯曲)强度理论:最大拉应力强度理论最大伸长线应变理论最大切应力理论畸变能密度理论莫尔强度理论组合变形(拉弯,弯扭)压杆稳定莫尔积分结构力学:研究工程结构受力和传力的规律,以及如何进行结构优化的学科。
在材料力学的基础上面发展起来的,一些基本的工具和思想都是差不多的。
在结构力学里面有一些更先进的解决问题的方法,例如力法、位移法、矩阵位移法(划行划列法,主1付0法,付大值法)、力矩分配法(逐渐趋近的方法接近真实值)。
结构力学里面还包括结构动力学力法:变形协调方程,以多余的未知力为基本未知量位移法:平衡方程,以某些结点位移和转角为基本未知量力矩分配法:以位移法为基础,无限趋近的方式逐渐逼近真实解矩阵位移法:位移法和计算机想结合的产物。
连续体系●系统具有连续分布的质量和弹性●物体内材料均匀,各向同性,弹性极限内服从胡克定律●弹性体具有无限多的自由度⏹需要无限多的坐标指定弹性体中任一点的位置●弹性体自由振动可以看成主振型或者正则振型的叠加●对于正则振型的振动,每个颗粒都做简谐振动⏹其频率是相应频率方程的根⏹各颗粒同时经过各自的平衡位置⏹如果物体的运动起始时的弹性曲线精确与每个主振型一致,物体将仅作主振动⏹爆炸或者外力的突然移除导致的弹性曲线,通常与主振动不一致,因而会激起所有振型的振动●在很多情况下,可以通过适当的初始条件激起某个特定的主振型●对于连续质量分布的系统的受迫振动,通过振型叠加法,可以使其转变为有限自由度的系统进行分析●常常把约束作为结构的附加支承来处理⏹会改变系统的主振型●用于表征系统变形的振型不需要一定是正交的●存在使用非正交函数的系统合成⏹例如在进行颤振计算时,为了避免质量变化引起正交振型改变时导致气动力的重新计算,可采用非正交振型,在每次计算中,保持振型不变,而重新计算非对角形式的广义质量矩阵弦的振动●一个柔软的弦,单位长度的质量为,在拉力作用下被张紧●假定其横向挠度很小,挠度引起的张力变化也很小,可以忽略不计●考虑单元长度为的一段弦的受力●挠度和斜率均很小●向的运动方程为●弦的斜率⏹波的扩展速度●一般解可以表示成如下的形式⏹和为任意函数●不管函数的类型如何,对变量微分将得到●如果做变量代换●注意到●简化后●积分两次⏹分量波以速度沿着轴方向移动⏹分量表示波以速度沿着轴方向移动⏹看成是波扩展的速度.●这一方法称为行波法10分离变量法●假定解具有分离变量的形式●代入微分方程后可得●方程左边各项与无关,方程右边各项与无关,因此两边必须是常数●令这个常数为, 得到两个常微分方程●其通解为⏹其中的待定常数, , , 由边界条件和初始条件确定●例题两端固定的张紧的弦,长度为 边界条件为●由●由为波长; 为振动频率的每个值代表一个主振动模态 固有频率为●振型为如下的正弦函数●由任意方式激起的更一般情况的自由振动, 解包括多个振动模态, 位移方程可以写为●应用初始条件and, 可以计算出和●如果把弦拉成任意形状后释放,初始条件可以表示为●每个方程都乘以并从到积分, 方程右边各项除外均为零。