第四章(无限自由度系统的振动)解析
- 格式:ppt
- 大小:2.25 MB
- 文档页数:56
汽车振动分析编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(汽车振动分析)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为汽车振动分析的全部内容。
研究生试卷2013 年—2014年度第 2 学期评分:______________________课程名称:振动理论专业:车辆工程年级: 2013级任课教师:李伟研究生姓名:王荣学号: 2130940008注意事项1.答题必须写清题号;2.字迹要清楚,保持卷面清洁;3.试题随试卷交回;4.考试课按百分制评分,考查课可按五级分制评分;5.阅完卷后,授课教师一周内将成绩在网上登记并打印签名后,送研究生部备案;6.试题、试卷请授课教师保留三年被查。
《汽车振动分析》总结王荣(重庆交通大学机电与汽车工程学院重庆 400074)摘要:本课程由浅入深、循序渐进,从单自由度系统的简单问题逐渐加深到多自由度的分析,甚至是无限自由度系统,并从简单激励的振系逐渐推广到随机激振振系。
作为汽车理论及汽车设计等课程的基础,其对于分析汽车的行驶平顺性、乘坐舒适性、发动机的减振和隔离等具有良好的参考价值。
关键词:单自由度;多自由度;简单激振;随机激振The Conclusion of “Automotive VibrationAnalysis”Abstract: The course progressively, step by step, gradually discusses from the simple question of a single degree of freedom system to the analysis of a multi—degree of freedom system, even to the analysis of the infinite degree of freedom system. In addition, the course extends from simple energized vibration system to random energized vibration system. As the basis of Vehicle Theory and Vehicle Design, this course has direct reference value for the analysis of vehicle ride, comfort of passenger, engine vibration damping and isolation.Keywords:Single-Degree—of-Freedom; Multi—Degree—of—Freedom; Simple Energized Vibration System ;Random Energized Vibration System0 引言随着科学技术的日新月异和人民生活水平的日益提高,人们对汽车的动态性能,例如:汽车行驶的舒适性,操纵的稳定性,车内噪声水平及音质等等——提出了愈来愈高的要求。
第四章两自由度系统的振动当振动系统需要两个独立坐标描述其运动时,称为两自由度振动系统。
两自由度系统是最简单的多自由度系统,因此研究两自由度系统是分析和掌握多自由度系统的基础。
两自由度系统具有两个固有频率,两自由度系统以固有频率进行的振动与单自由度系统不同,它以固有频率进行的振动是指整个系统在运动过程中莫一位移形状,称为固有振型,因此两自由度具有两个与固有频率对应的两个固有振型。
在任意初始条件下的自由振动响应一般由两个固有振型的叠加得到。
受迫简谐振动的频率与激励频率相同。
两自由度系统的振动微分方程一般由两个联立的微分方程组成。
如果恰当地选取坐标,可使两个微分方程解除耦合,这种坐标称为主坐标或固有坐标。
用固有坐标建立的系统振动微分方程为两个独立的单自由度系统的微分方程。
4.1系统的自由振动如图所示的无阻尼两质量-弹簧系统,可沿光滑水平面滑动的两个质量与分别用弹簧与连至定点,并用弹簧相互连接。
三个弹簧的轴线沿同一水平线,质量与只限于沿着该直线进行往复运动。
这样与的任一瞬时的位置只需用坐标与就可以完全确定,因此该系统具有两个自由度。
图两自由度系统的振动取与的静平衡位置为坐标原点。
在振动过程中任一瞬时t,与的位置分别为与,作用于与的重力于光滑水平面的法向反力相平衡,在质量的水平方向作用有弹性恢复力和,质量的水平方向则受到和作用,方向如图所示。
取加速度和力的正方向与坐标正方向一致,根据牛顿运动定律有移项得方程()就是图所示的两自由度系统自由振动的微分方程,为二阶常系数线性齐次常微分方程组。
方程()可以使用矩阵形式来表示,写成由系数矩阵组成的常数矩阵m和k分别称为质量矩阵和刚度矩阵,向量x 称为位移向量。
因此设分别为刚度矩阵k中的元素,因而方程()可以写成方程()为系统自由振动的微分方程。
方程()是齐次的,如果和位方程()的一个解,那么与其相差一个因子的和也将是一个解。
通常感兴趣的是一种特殊形式的解,也就是和同步运动的解。