第六章非平稳时间序列模型2
- 格式:ppt
- 大小:207.50 KB
- 文档页数:63
非平稳时间序列建模步骤介绍非平稳时间序列是指其统计特性在时间上发生变化的序列。
在实际应用中,我们经常面临非平稳时间序列的建模问题,如股票价格、气温变化等。
本文将探讨非平稳时间序列建模的步骤和方法。
为什么要建立模型非平稳时间序列在其统计特性的变化中存在一定的规律性,因此建立模型可以帮助我们理解和预测序列的行为。
模型可以从数据中提取有用的信息,揭示序列的规律和动态特征。
步骤一:观察时间序列的特性在建立模型之前,我们首先需要观察时间序列的特性,包括趋势、周期性、季节性和随机性等。
这些特性是决定时间序列模型选择的重要因素。
步骤二:平稳化处理由于非平稳时间序列的统计特性随时间变化,不利于建模和分析。
因此,我们需要对时间序列进行平稳化处理。
常用的平稳化方法包括差分法和变换法。
2.1 差分法差分法是通过计算相邻两个观测值的差异来实现序列的平稳化。
一阶差分是指相邻观测值之间的差异,二阶差分是指一阶差分的差异,以此类推。
差分法可以有效地去除序列的趋势和季节性,使序列平稳。
2.2 变换法变换法是通过对时间序列进行数学变换,将非平稳序列转化为平稳序列。
常用的变换方法包括对数变换、平方根变换和 Box-Cox 变换等。
变换法可以改变序列的分布特性,使序列满足平稳性的要求。
步骤三:选择模型平稳化处理后,我们需要选择合适的模型进行建模。
常用的时间序列模型包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)、季节性自回归移动平均模型(SARIMA)和指数平滑模型等。
3.1 自回归移动平均模型(ARMA)ARMA 模型是描述时间序列随机变动的经典模型,其包括自回归和移动平均两个部分。
自回归部分考虑了序列的历史值对当前值的影响,移动平均部分考虑了序列的误差对当前值的影响。
ARMA 模型适用于没有趋势和季节性的平稳序列。
3.2 自回归积分移动平均模型(ARIMA)ARIMA 模型是在 ARMA 模型基础上引入了积分项,用于处理非平稳序列。
时间序列、动态计量与非平稳性时间序列分析是一种研究时间上观测到的数据的方法,它通常用来预测未来的数据走势,或者揭示数据背后的规律和模式。
时间序列分析的基本假设是数据是按照时间顺序收集和记录的,因此数据中的观测值之间存在一定的内在关联。
动态计量是时间序列分析的一种方法,它关注变量之间的相互影响和动态调整过程。
动态计量的核心思想是当前时刻的变量取值受到过去时刻的变量取值的影响,而且这种影响是不断调整和改变的。
动态计量模型通常使用回归分析、向量自回归(VAR)模型、脉冲响应分析等方法,来研究变量之间的时序关系和相互作用。
然而,时间序列和动态计量在实际应用中都面临一个重要的问题,那就是非平稳性。
非平稳性是指时间序列数据在整个时间范围内存在明显的长期趋势、季节性变化、周期性波动等,这会导致时间序列的统计性质发生变化,使得传统的时间序列模型无法有效地拟合和预测数据。
非平稳性在金融、经济学、气象学等领域中普遍存在,因此如何处理非平稳性是时间序列分析的重要课题。
为了处理非平稳性,可以使用一系列的技术,如差分、变换、季节调整和模型拟合等。
其中,差分是最常见的一种方法,它通过计算相邻时刻的观测值之间的差异,来消除数据中的趋势和季节性变化。
变换则是将原始数据进行数学变换,如对数变换、平方根变换等,以改变数据的统计性质。
季节调整是将季节性因素从数据中剔除,以便更好地研究数据的长期趋势。
而模型拟合则是利用时间序列模型来拟合和预测非平稳数据,如自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等。
非平稳性的处理不仅能够改善模型的拟合效果,还能够提高模型的预测准确性和可解释性。
通过去除非平稳性的影响,我们可以更好地理解数据的本质和规律,更准确地进行预测和决策。
对于金融市场而言,处理非平稳性可以帮助投资者更好地判断市场趋势和价值,从而制定更科学和有效的投资策略。
总之,时间序列、动态计量和非平稳性是现代统计学中重要的研究领域。
非平稳时间序列模型非平稳时间序列模型是用来描述时间序列数据中存在趋势、季节性或其他波动的模型。
这些模型通常用于预测未来的数值或分析数据中的特征。
其中一个常见的非平稳时间序列模型是趋势模型。
趋势模型用来描述数据中存在的长期趋势。
例如,如果一个公司的销售额在过去几年里呈现稳定的增长趋势,那么趋势模型可以帮助预测未来几年的销售额。
另一个常见的非平稳时间序列模型是季节性模型。
季节性模型用来描述数据中存在的周期性变动。
例如,如果一个餐厅的每周客流量在周末较高,在工作日较低,那么季节性模型可以用来预测未来每周的客流量。
此外,还有其他非平稳时间序列模型,如自回归移动平均模型(ARMA)、自回归综合滑动平均模型(ARIMA)等。
这些模型结合了自身过去时刻的观测值和过去时刻的误差,用来预测未来的数值。
非平稳时间序列模型的建立和拟合通常包括多个步骤。
首先,需要对原始数据进行处理,例如去除趋势和季节性。
然后,选择适当的模型来拟合剩余数据。
最后,根据模型来预测未来的数值,并进行评估模型的准确性和可靠性。
总之,非平稳时间序列模型是一种描述和分析时间序列数据中存在趋势、季节性或其他波动的模型。
这些模型可以帮助我们理解数据的特征,并预测未来的趋势和变化。
非平稳时间序列模型是用来描述和分析时间序列数据中存在趋势、季节性或其他波动的模型。
这些模型通常用于预测未来的数值或分析数据中的特征。
非平稳时间序列模型在许多领域中都有广泛的应用,包括经济学、金融学、气象学等。
在经济学中,非平稳时间序列模型被广泛应用于经济预测和决策制定。
例如,GDP增长率是一个典型的非平稳时间序列数据,它受到许多因素的影响,如技术进步、政府政策等。
通过建立一个趋势模型,可以预测未来的经济增长趋势,从而提供政府和企业的决策参考。
在金融学中,非平稳时间序列模型被广泛应用于股票价格预测和风险管理。
股票价格是一个非平稳时间序列,它受到市场供需关系、公司盈利情况等多个因素的影响。
时间序列分析模型时间序列分析是一种广泛应用于统计学和经济学领域的建模方法,用于研究随时间变化的数据。
它的目的是揭示和预测数据中隐含的模式和关系,以便更好地理解和解释现象,并做出相应的决策。
时间序列分析模型可以分为统计模型和机器学习模型两类。
一、统计模型1.平稳时间序列模型:平稳时间序列是指在统计学意义上均值和方差都是稳定的序列。
常用的平稳时间序列模型包括:自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)和季节性自回归整合移动平均模型(SARIMA)等。
-自回归移动平均模型(ARMA)是根据时间序列数据的自相关和移动平均性质建立的模型。
它将序列的当前值作为过去值的线性组合来预测未来值。
ARMA(p,q)模型中,p表示自回归项的阶数,q表示移动平均项的阶数。
-自回归整合移动平均模型(ARIMA)在ARMA模型基础上引入差分操作,用于处理非平稳时间序列。
ARIMA(p,d,q)模型中,d表示差分的次数。
-季节性自回归整合移动平均模型(SARIMA)是ARIMA模型的扩展,在存在季节性变化的时间序列数据中应用。
SARIMA(p,d,q)(P,D,Q)s模型中,s表示季节周期。
2.非平稳时间序列模型:非平稳时间序列是指均值和/或方差随时间变化的序列。
常用的非平稳时间序列模型包括:趋势模型、季节性调整模型、自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)等。
- 趋势模型用于描述数据中的趋势变化,例如线性趋势模型(y = ax + b)和指数趋势模型(y = ab^x)等。
-季节性调整模型用于调整季节性变化对数据的影响,常见的方法有季节指数调整和X-12-ARIMA方法。
-自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)在非平稳时间序列中引入差分操作进行模型建立。
二、机器学习模型机器学习模型在时间序列分析中发挥了重要作用,主要应用于非线性和高维数据的建模和预测。
时间序列分析中的平稳性与非平稳性时间序列分析是一种用来研究时间数据的统计方法,它可以揭示出时间序列数据的模式和趋势,并预测未来的发展。
在进行时间序列分析时,我们经常会遇到平稳性和非平稳性的问题,本文将重点讨论这两个概念及其在时间序列分析中的重要性。
1. 什么是平稳性?平稳性是指时间序列在统计特性上具有不变性,即其均值和方差不随时间的推移而发生改变。
具体而言,平稳时间序列的均值在时间维度上是稳定的,方差也不会随时间变化而增加或减小。
此外,平稳时间序列的自协方差只与时间间隔有关,而与特定时间点无关。
2. 平稳性的判断方法为了判断一个时间序列是否具有平稳性,我们可以使用一些统计检验方法。
常见的方法有ADF检验(Augmented Dickey-Fuller test)、KPSS检验(Kwiatkowski-Phillips-Schmidt-Shin test)等。
ADF检验通常用于检验平稳性,其原假设是时间序列具有单位根(非平稳),如果检验结果拒绝了原假设,则可以得出时间序列是平稳的结论。
3. 非平稳性的表现形式非平稳性的时间序列可能会呈现出明显的趋势、季节性或周期性变化。
趋势是时间序列长期的、持续的上升或下降,季节性是指时间序列在特定时间点上出现的周期性波动,周期性是指时间序列存在长期的、不规则的上升或下降。
4. 非平稳性的处理方法如果时间序列是非平稳的,我们需要对其进行处理,以使其具备平稳性。
常见的处理方法有差分法、对数变换等。
差分法可以通过计算相邻时间点的差值来消除趋势和季节性,对数变换则可以通过对时间序列取对数来减少其波动性。
5. 平稳性的重要性平稳性在时间序列分析中非常重要,具有以下几个方面的意义: - 简化模型:平稳时间序列的统计特性稳定,可以简化模型的建立和预测。
- 降低误差:平稳时间序列的随机误差具有恒定的方差,使得模型的预测更准确。
- 提高可靠性:基于平稳时间序列建立的模型具有更好的可靠性和稳定性,可以更好地应对未来的变化。
平稳时间序列与非平稳时间序列的区别时间序列是统计学中一种重要的数据形式,用于研究随时间变化的现象。
在时间序列分析中,平稳性是一个关键概念。
平稳时间序列与非平稳时间序列在特征和性质上存在着显著的区别。
本文将讨论平稳时间序列与非平稳时间序列的定义、特征和分析方法。
一、平稳时间序列的定义及特征平稳时间序列是指其概率分布不随时间推移而发生改变的时间序列。
具体来说,对于平稳时间序列,它的均值、方差和自相关函数等统计特征在不同时刻保持不变。
平稳时间序列的特征可以总结为以下几点:1. 均值稳定性:平稳时间序列的均值在时间上保持不变。
2. 方差稳定性:平稳时间序列的方差在时间上保持不变。
3. 自相关性:平稳时间序列的自相关函数只依赖于时间的间隔,而不依赖于具体的时间点。
二、非平稳时间序列的定义及特征非平稳时间序列是指其概率分布随时间推移而发生改变的时间序列。
具体来说,非平稳时间序列的均值、方差和自相关函数等统计特征会随时间发生变化。
非平稳时间序列的特征可以总结为以下几点:1. 趋势性:非平稳时间序列存在明显的增长或下降趋势。
2. 季节性:非平稳时间序列可能会呈现出周期性的变动,如一年内的季节变化。
3. 自相关性的变化:非平稳时间序列的自相关函数不仅依赖于时间的间隔,还依赖于具体的时间点。
三、分析方法的区别针对平稳时间序列和非平稳时间序列,我们在分析方法上有不同的选择。
对于平稳时间序列,我们可以使用经典的时间序列分析方法,如自回归移动平均模型(ARMA)、自回归模型(AR)和移动平均模型(MA)等。
这些方法基于平稳性的假设,能够准确地对平稳时间序列进行建模和预测。
对于非平稳时间序列,由于其不具备平稳性,我们需要采取一些转换方法来处理。
常见的方法包括一阶差分、对数转换和季节性调整等。
此外,我们还可以使用更加复杂的模型,如自回归积分移动平均模型(ARIMA)、差分自回归移动平均模型(DARIMA)和趋势-季节性分解模型等。
时间序列的平稳、非平稳、协整、格兰杰因果关系步骤:先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。
若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。
如果有,则可以构造VEC模型或者进行Granger因果检验,检验变量之间“谁引起谁变化”,即因果关系。
1.单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。
常用的ADF检验包括三个模型方程。
在李子奈的《高级计量经济学》上有该方法的全部步骤,即从含趋势项、截距项的方程开始,若接受原假设,则对模型中的趋势项参数进行t 检验,若接受则进行对只含截距项的方程进行检验,若接受,则对一阶滞后项的系数参数进行t检验,若接受,则进行差分后再ADF检验;若拒绝,则序列为平稳序列。
2.当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。
3.当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提),想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验:(1)EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性;(2)JJ检验是基于回归系数的检验,前提是建立VAR模型(即模型符合ADL模式)。
4.当变量之间存在协整关系时,可以建立ECM进一步考察短期关系,Eviews这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验,请注意识别。
5.格兰杰检验只能用于平稳序列!这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。
实验:非平稳时间序列的确定性模型的识别(设计性实验)实验题目:爱荷华州1948—1979年非农产品季度收入数据如下所示。
601 604 620 626 641 642 645 655 682 678 692 707736 753 763 775 775 783 794 813 823 826 829 831830 838 854 872 882 903 919 937 927 962 975 9951001 1013 1021 1028 1027 1048 1070 1095 1113 1143 1154 11731178 1183 1205 1208 1209 1223 1238 1245 1258 1278 1294 13141323 1336 1355 1377 1416 1430 1455 1480 1514 1545 1589 16341669 1715 1760 1812 1809 1828 1871 1892 1946 1983 2013 20452048 2097 2140 2171 2208 2272 2311 2349 2362 2442 2479 25282571 2634 2684 2790 2890 2964 3085 3159 3237 3358 3489 35883624 3719 3821 3934 4028 4129 4205 4349 4463 4598 4725 48274939 5067 5231 5408 5492 5653 5828 5965通过分析数据,选择适当模型拟合该序列长期趋势。
实验内容:给出实际问题的非平稳时间序列,要求利用R统计软件,对该序列进行分析,掌握非平稳时间序列的确定性部分的分离方法,建立合适的某一类确定性模型(趋势分析方法、季节效应分析、既有趋势分析方法又有季节效应分析的综合分析方法)。
实验要求:处理数据,掌握非平稳时间序列的确定性模型的识别的方法,并根据具体的实验题目要求完成实验报告,并及时上传到给定的FTP和课程网站。
非平稳时序数据时间序列分析方法研究时间序列分析是一种重要的数据分析方法,它可以对时间序列数据进行建模、预测和分析。
然而在实际应用中,我们往往会遇到非平稳的时间序列数据。
非平稳时间序列数据的特点是其均值、方差等统计特征会随时间变化而变化,这给分析和预测带来了一定的困难。
本文将介绍非平稳时间序列数据的常见特征、分析方法和预测方法。
一、非平稳时间序列数据的常见特征1. 长期趋势:非平稳时间序列数据在较长时间范围内往往具有明显的上升或下降趋势。
2. 季节性变化:非平稳时间序列数据往往具有周期性的季节性变化,如气温、雨量等。
3. 波动性变化:非平稳时间序列数据在短期内往往呈现出较大的波动性,如股票价格、汇率等。
二、非平稳时间序列数据的分析方法1. 差分法:差分法是最常用的处理非平稳时间序列数据的方法,其思想在于将时间序列数据的差分转换为平稳时间序列数据再进行建模和分析。
差分法有一阶差分法、二阶差分法等多种,根据具体问题选择不同的差分方法。
2. 增长率法:增长率法是将时间序列数据的增长率序列作为新的时间序列数据来建模和分析,常用于处理长期趋势明显的非平稳时间序列数据。
3. 滑动平均法:滑动平均法是通过计算一定时间范围内数据的平均值来平滑时间序列数据并去除噪声干扰,常用于处理周期性和波动性明显的非平稳时间序列数据。
三、非平稳时间序列数据的预测方法1. ARIMA模型:ARIMA模型是传统的时间序列建模技术之一,其通过差分法将非平稳时间序列数据转化为平稳时间序列数据后建立自回归模型、移动平均模型和差分模型,用于进行预测。
2. GARCH模型:GARCH模型是通过对时间序列数据的方差进行建模并考虑异方差性差异来进行预测的一种方法,常用于处理波动性明显的非平稳时间序列数据。
3. ARCH模型:ARCH模型是GARCH模型的前身,其只考虑时间序列数据的方差进行建模,适用于处理时间序列数据的波动性变化。
总而言之,非平稳时间序列数据分析方法和预测方法的选择需要根据具体问题来确定。
经济统计学中的非平稳数据分析引言:经济统计学是研究经济现象的数量化方法和技术的学科。
在经济统计学中,数据分析是非常重要的一环。
然而,经济数据往往呈现出非平稳的特征,这给数据分析带来了一定的困难。
本文将探讨经济统计学中非平稳数据的分析方法和技巧。
一、什么是非平稳数据非平稳数据是指在时间序列中,数据的均值和方差不随时间保持恒定,呈现出明显的趋势或波动性。
与平稳数据相比,非平稳数据更具有挑战性,因为它们不符合许多经典统计方法的假设。
二、非平稳数据的特征1. 趋势性:非平稳数据往往呈现出明显的趋势,可以是上升趋势、下降趋势或周期性趋势。
2. 季节性:非平稳数据可能存在季节性的波动,如销售额在节假日期间的增加或减少。
3. 突变性:非平稳数据可能会受到外部因素的干扰,导致突变,如经济危机或政策调整。
三、非平稳数据的分析方法1. 差分法:差分法是一种常用的非平稳数据分析方法。
通过对数据进行一阶或多阶差分,可以将非平稳数据转化为平稳数据。
差分法的基本思想是通过消除趋势性和季节性,使数据更符合平稳性的假设。
2. 移动平均法:移动平均法是一种平滑时间序列数据的方法。
通过计算一段时间内的平均值,可以减少数据的波动性,使其更具平稳性。
移动平均法常用于消除季节性和趋势性的影响。
3. 时间序列模型:时间序列模型是一种用来描述和预测时间序列数据的方法。
常用的时间序列模型包括ARIMA模型、ARCH模型和GARCH模型等。
这些模型可以对非平稳数据进行建模,从而提供预测和分析的依据。
四、非平稳数据的应用1. 宏观经济分析:非平稳数据在宏观经济分析中有着广泛的应用。
例如,GDP、通货膨胀率和失业率等经济指标往往呈现出非平稳的特征,通过对这些数据进行分析,可以了解经济的发展趋势和变化。
2. 金融市场分析:金融市场中的股票价格、汇率和利率等数据通常也是非平稳的。
通过对这些数据的分析,可以帮助投资者和决策者做出更准确的预测和决策。
3. 企业经营分析:企业经营数据中的销售额、利润和市场份额等指标也常常是非平稳的。
时间序列的平稳、非平稳、协整、格兰杰因果关系步骤:先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。
若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。
如果有,则可以构造VEC模型或者进行Granger因果检验,检验变量之间“谁引起谁变化”,即因果关系。
1.单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。
常用的ADF检验包括三个模型方程。
在李子奈的《高级计量经济学》上有该方法的全部步骤,即从含趋势项、截距项的方程开始,若接受原假设,则对模型中的趋势项参数进行t 检验,若接受则进行对只含截距项的方程进行检验,若接受,则对一阶滞后项的系数参数进行t检验,若接受,则进行差分后再ADF检验;若拒绝,则序列为平稳序列。
2.当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。
3.当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提),想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验:(1)EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性;(2)JJ检验是基于回归系数的检验,前提是建立VAR模型(即模型符合ADL模式)。
4.当变量之间存在协整关系时,可以建立ECM进一步考察短期关系,Eviews这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验,请注意识别。
5.格兰杰检验只能用于平稳序列!这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。
第2章时间序列模型时间序列分析方法由Box-Jenkins (1976) 年提出。
它适用于各种领域的时间序列分析。
时间序列模型不同于经济计量模型的两个特点是:⑴ 这种建模方法不以经济理论为依据,而是依据变量自身的变化规律,利用外推机制描述时间序列的变化。
⑵ 明确考虑时间序列的非平稳性。
如果时间序列非平稳,建立模型之前应先通过差分把它变换成平稳的时间序列,再考虑建模问题。
时间序列模型的应用:(1)研究时间序列本身的变化规律(建立何种结构模型,有无确定性趋势,有无单位根,有无季节性成分,估计参数)。
(2)在回归模型中的应用(预测回归模型中解释变量的值)。
(3)时间序列模型是非经典计量经济学的基础之一(不懂时间序列模型学不好非经典计量经济学)。
分节如下:1.随机过程、时间序列定义2.时间序列模型的分类3.自相关函数与偏自相关函数4.建模步骤(识别、参数估计、诊断检验、案例分析)5.回归与时间序列组合模型6.季节时间序列模型(案例分析)2.1 随机过程、时间序列为什么在研究时间序列之前先要介绍随机过程?就是要把时间序列的研究提高到理论高度来认识。
时间序列不是无源之水。
它是由相应随机过程产生的。
只有从随机过程的高度认识了它的一般规律。
对时间序列的研究才会有指导意义。
对时间序列的认识才会更深刻。
自然界中事物变化的过程可以分成两类。
一类是确定型过程,一类是非确定型过程。
确定型过程即可以用关于时间t的函数描述的过程。
例如,真空中的自由落体运动过程,电容器通过电阻的放电过程,行星的运动过程等。
非确定型过程即不能用一个(或几个)关于时间t的确定性函数描述的过程。
换句话说,对同一事物的变化过程独立、重复地进行多次观测而得到的结果是不相同的。
例如,对河流水位的测量。
其中每一时刻的水位值都是一个随机变量。
如果以一年的水位纪录作为实验结果,便得到一个水位关于时间的函数xt。
这个水位函数是预先不可确知的。
只有通过测量才能得到。