平稳时间序列ARMA预测法PPT演示文稿
- 格式:pptx
- 大小:3.41 MB
- 文档页数:57
第三章 平稳ARMA 过程一元ARMA 模型是描述时间序列动态性质的基本模型。
通过介绍ARMA 模型,可以了解一些重要的时间序列的基本概念。
§3.1 预期、平稳性和遍历性 3.1.1 预期和随机过程假设可以观察到一个样本容量为T 的随机变量t Y 的样本:},,,{21T y y y这意味着这些随机变量之间的是相互独立且同分布的。
例3.1 假设T 个随机变量的集合为:},,,{21T εεε ,),0(~2σεN i 且相互独立,我们称其为高斯白噪声过程产生的样本。
对于一个随机变量t Y 而言,它是t 时刻的随机变量,因此即使在t 时刻实验,它也可以具有不同的取值,假设进行多次试验,其方式可能是进行多次整个时间序列的试验,获得I 个时间序列:+∞=-∞=t t t y }{)1(,+∞=-∞=t t t y }{)2(,…,+∞=-∞=t t I t y }{)(将其中仅仅是t 时刻的观测值抽取出来,得到序列:},,,{)()2()1(I t t t y y y ,这个序列便是对随机变量t Y 在t 时刻的I 次观测值,也是一种简单随机子样。
定义3.1 假设随机变量t Y 是定义在相同概率空间},,{P Ω上的随机变量,则称随机变量集合},2,1,0,{ ±±=t Y t 为随机过程。
例3.2 假设随机变量t Y 的概率密度函数为: ]21exp[21)(22t t Y y y f t σσπ=此时称此时密度为该过程的无条件密度,此过程也称为高斯过程或者正态过程。
定义3.2 可以利用各阶矩描述随机过程的数值特征: (1) 随机变量t Y 的数学期望定义为(假设积分收敛):⎰==+∞∞-tt Y t t t dy y f y Y E t )()(μ 此时它是随机样本的概率极限:∑==∞→I i i t I t y I P Y E 1)(1lim )((2) 随机变量t Y 的方差定义为(假设积分收敛):20)(t t t Y E μγ-=例3.3 (1) 假设},,{21 εε是一个高斯白噪声过程,随机过程t Y 为常数加上高斯白噪声过程:t t Y εμ+=,则它的均值和方差分别为:μεμμ=+==)()(t t t E Y E 2220)()(σεμγ==-=t t t t E Y E(2) 随机过程t Y 为时间的线性趋势加上高斯白噪声过程:t t t Y εβ+=,则它的均值和方差分别为:t E t Y E t t t βεβμ=+==)()( 2220)()(σεμγ==-=t t t t E Y E3.1.2 随机过程的自协方差将j 个时间间隔的随机变量构成一个随机向量),,(1'=--j t t t t Y Y Y X ,通过随机试验可以获得该随机向量的简单随机样本。