图7-46-8
与平面ABCD所成的角,由已知得∠MBA=45°,则MA=MB,此时O为AB的中点.
连接OC,由∠BAD=∠ADC=90°,AB=AD=2DC,得四边形AOCD为矩形,所以
OC⊥AB,所以CO⊥平面MAB,又MA⊂平面MAB,所以OC⊥MA.
图7-46-8
[总结反思] (1)求解二面角的大小问题,关键是要合理作出它的平面角,当找到 二面角棱的一个垂面时,即可确定平面角,作二面角的平面角最常用的方法是 利用三垂线定理(或三垂线定理的逆定理). (2)对于建立空间直角坐标系比较简便的几何体,我们可以直接利用向量求出 两个平面的法向量,并转化为求两个法向量的夹角来完成.
.
题组二 常错题 ◆索引:二面角取值范围出错;线面角范围出错;不能正确构建线面垂直及斜线 段在底面上的射影.
6.在一个二面角的两个半平面内都和二面角的棱垂直的两个向量分别为
(0,-1,3),(2,2,4),则这个二面角的余弦值为
.
7.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为 45° .
图7-46-8
图7-46-8
方法二:二面角D-MA-C的大小即为二面角B-MA-D的大小与二面角B-MA-C大
小的差,由(1)可知二面角B-MA-D的大小为90°,
所以二面角D-MA-C的正弦值即为二面角B-MA-C的余弦值.
过M作MO⊥AB于O(图略),因为平面MAB⊥平面ABCD,平面 MAB∩平面ABCD=AB,所以MO⊥平面ABCD,∠MBO即为MB
A
证明:连接AC(图略),由题知△ACD为等边三角形,因为M为AD的中点,所以 CM⊥AD,又AD∥BC,所以CM⊥BC,因为平面ABCD⊥平面PBC,且平面 ABCD∩平面PBC=BC,CM⊂平面ABCD,所以CM⊥平面PBC,故CM⊥PB.