S=
1
(x
0
x2 )dx
(1 2
x2
1 3
x3)
1 0
1. 6
答案: 1
6
【解题策略】 求不分割图形面积的一般方法
【补偿训练】 如图所示,f(x)=1+sin x,则阴影部分的面积是________.
【解析】所求面积为
0
(1 sin
x)dx
(x
cos
x)
0
2.
答案:π+2
类型二 分割型图形面积的求解(直观想象、数学运算) 【典例】计算由直线y=x-4,曲线y= 2x 以及x轴所围图形的面积S. 【思路导引】根据已知方程画出所围图形,选择恰当的分割线,分别计算面积.
的面积为 S 2 1( 3 x x3)dx 0
2( 3 4
4
x3
1 4
x4)
1 0
1.
(4)√.利用定积分可得,阴影部分的面积S=
(ex
ex
)
1 0
e
1 e
2.
1(ex ex )dx 0
2.如图,阴影区域是由函数y=cos x的一段图象与x轴围成的封闭图形,那么这 个阴影区域的面积是 ( )
A.1
B. 2
C.2
D.2 2
2.如图所示,求曲线y=x2和直线x=0,x=1及y= 1 所围成的图形(阴影部分)的面
4
积.
【解析】1.选D.由图形以及定积分的意义,得到所求阴影部分面积等价于
5
5
4
(sin
x
cos
x)dx
(cos
x
sin
x)
4
2
2.
4