x0
2x
x0 2
x 2e
练习
计算(1)2 1 dx
e11 x
2
(2)0 1 x dx
(3) y(x) x5cos t 2dt,求y x4
e x 2
(4) lim
x t 2et2 dt
f (x)dx
b g(x)dx(a b).
a
a
b
b
(2) a f (x)dx a f (x) dx.
(3)若f (x)在[a, b]上连续,f (x) 0,
且 b f (x)dx 0,则在[a, b]上f (x) 0. a
(4)若f (x)在[a, b]上连续,f (x) 0,
且f (x) 0,则 b f (x)dx 0. a
(x)
x
f (t)dt
a
在[a,b]上可导,且(x) d
x
f (t)dt f (x)
(a x b).
dx a
证实: x (a,b),给x以增量x,且使x x (a,b)
则
(x x) (x)
x x
x
f (t)dt f (t)dt
a
a
x x
f
(t)dt
中值定理
f
(
)x(介于x与x
0
0 i1
f
(
i
Y
)
xi
lim
0
n i 1
i2
1 n
n
lim n i1
( i )2 1 nn
lim
n
1 n3
n
i2
i 1
lim
n
1 n3
n(n
1)(2n 6
1)