可降阶的高阶方程
- 格式:pptx
- 大小:254.64 KB
- 文档页数:20
可降阶的高阶微分方程高阶微分方程在数学中有着广泛的应用,例如在物理学、工程学和经济学等学科中。
但是,高阶微分方程一般而言难以解析求解,因此研究可降阶的高阶微分方程具有重要的理论和实际意义。
一、什么是可降阶的高阶微分方程可降阶的高阶微分方程是指高于二阶的微分方程可以通过一定的代数变换转化为至多二阶的微分方程。
这种转化通常使用代数变换法、非线性变换、Laplace变换等方法实现,具体方法依据问题不同而异。
例如,对于形如$f(y'', y', y, x) = 0$的四阶微分方程,通过令$y'= v$,$y'' = v'$,可以将该微分方程转化为关于$v$和$x$的一阶微分方程$f(v', v, x) = 0$,进一步可以使用一阶微分方程的解法进行求解。
二、为什么要研究可降阶的高阶微分方程对于高阶微分方程,直接求解通常是非常困难的,因此找到一些可降阶方法可以降低计算的难度。
这对于实际应用中的问题求解非常有帮助,也可以进一步推动微分方程理论的发展。
此外,由于可降阶的高阶微分方程可以转化为至多二阶微分方程,因此在不同的数学领域中有着广泛的应用。
三、可降阶方法举例(1)代数变换法代数变换法是一种直接的可降阶方法,通过对微分方程中的项进行代数运算,将高阶项消去,转化为无常系数二阶微分方程。
例如,对于形如$y'''' - 3y'' + 2y = 0$的四阶微分方程,通过令$y' = v$,$y'' = v'$,可以得到$v'''' - 3v'' + 2v = 0$。
此时,在微分方程的两侧同时乘以$v'$,然后再次对$v$求导,可以得到$v'''(v''')^2 -3v''(v'')^2 + 2v'(v')^2 = 0$,这是个可以简化的式子。
二、 高阶微分方程1.高阶微分方程的定义:'''()(,,,,)0n F x y y y =2.可降阶的高阶微分方程类型及解法 可降阶的高阶微分方程有三种类型: (1)()()n y f x = 解法:逐次积分(2)),(y x f y '='' 特点:不显含y 的方程解法:设p y =',则p y '='',代入方程中得),(p x f p ='。
已降为一阶。
(2)),(y y f y '='' 特点:显含x 的方程 解法:设p y =',则dydp p dx dy dy dp y =⋅='' 代入方程中得),(p y f dydpp=,已降为一阶。
【例1】求微分方程(1)ln (1)x y y x '''++=+的通解.解:由于不显含y ,令()y p x '=,则y p '''=,代入原方程得(1)ln(1)x p p x '++=+ 即 l n (1)11p x p x x+'+=++ 为一阶线性微分方程 利用公式得11ln(1)ln(1)111111ln(1)ln(1)()()111(ln(1))ln(1)111dxdx x x x x x x p e e dx C e e dx C x x C x dx C x x x--++++++⎰⎰=+=+++=++=+-+++⎰⎰⎰即 1l n (1)11Cy x x'=+-++ 积分得 12()ln(1)2y x C x x C =++-+ 【例2】求微分方程2()0y y y '''-=满足初始条件0011,2x x y y =='==的特解。
解:由于不显含x ,令()y p y '=,所以y pp '''=,代入原方程得 20y p pp '+=所以 0p = 或 0y pp '+= 当0yp p '+=时,此方程为可分离变量的方程,分离变量得dp dy p y=-积分得 1l n ||l n ||l n p y C =-+,所以, 1C p y =, 即 1Cy y'= 将0011,2x x y y =='==代入得112C =,从而 12y y'= 分离变量得 22y x C =+,将01x y ==代入得21C = 所求方程的特解为 21y x =+当0p =时,即0y '=,积分得y C =,特解为1y =,含在21y x =+内。
可降阶的高阶微分方程和二阶常系数微分方程可降阶的高阶微分方程和二阶常系数微分方程一、可降阶的高阶微分方程在数学中,可降阶的高阶微分方程指的是一个高阶微分方程可以通过一系列变量代换和降阶操作化简为低阶的微分方程。
这种化简的方法在求解高阶微分方程时非常有用,可以简化计算过程并得到解析解。
具体而言,可降阶的高阶微分方程通常可以通过一系列变量代换将高阶导数转化为低阶导数,从而降低微分方程的阶数。
常见的变量代换包括令新变量等于原函数的高阶导数,或者令新变量等于原函数与其高阶导数之间的某种组合。
通过这些变量代换,高阶微分方程可以转化为一系列关于新变量的低阶微分方程。
例如,考虑一个三阶微分方程:\[y'''(x) + p(x)y''(x) + q(x)y'(x) + r(x)y(x) = 0\]可以通过令新变量\(v = y'(x)\)和\(u = v'\)来进行变量代换。
通过求导可以得到:\[v' = u\]将上述代换带入原方程,可以得到一个关于\(u\)和\(v\)的二阶微分方程:\[u' + p(x)u + q(x)v + r(x)y = 0\]通过继续进行变量代换,可以将该二阶微分方程进一步降阶为一阶微分方程。
这种可降阶的方法可以在高阶微分方程的求解中起到重要的作用。
二、二阶常系数微分方程二阶常系数微分方程是一种形式为\(ay''(x) + by'(x) + cy(x) = 0\)的微分方程,其中\(a\)、\(b\)和\(c\)是常数。
这类微分方程在物理、工程和数学等领域中广泛应用,可以描述许多自然现象和物理过程。
对于二阶常系数微分方程,其特征方程为\(ar^2 + br + c = 0\),其中\(r\)为待定的解。
通过解特征方程可以得到该微分方程的通解。
特别地,当特征方程有两个不相等的实根时,通解可以表示为:\[y(x) = C_1e^{r_1x} + C_2e^{r_2x}\]其中\(C_1\)和\(C_2\)为任意常数,\(r_1\)和\(r_2\)为特征方程的两个实根。