1880m^3高炉热风炉冷却水系统改造
- 格式:pdf
- 大小:798.72 KB
- 文档页数:3
炼铁高炉热风炉现状及发展方向张振峰冯晓军摘要:根据国家《钢铁产业发展政策》,以及国家节能减排政策的实施,对我国钢铁工业健康发展提出相关要求,技术装备现代化、大型化,高效节能是高炉炼铁生产的发展方向,而做为高炉炼铁生产,热风炉的效率、装备水平对炼铁生产能耗降低起到重要作用。
本文对我国高炉炼铁热风炉装备水平及运行现状和发展方向做以总结分析。
关键词:高炉、热风炉、现状及发展方向1、引言:目前,我国高炉炼铁生产技术步入了飞速发展阶段,随着国家节能减排,以及淘汰落后产能的步伐加大,对于高炉炼铁能耗降低、热风炉提供高风温、增加煤粉喷吹量,节能降低焦比的有效措施,随着高炉大型化装备水平的现代化,热风炉各种新技术的应用,使热风炉逐渐走向节能、高效、长寿的步伐。
改进内燃式、外燃式均取得了1200℃以上的高风温。
随着顶燃式热风炉的发展,特别是卡鲁金顶燃式热风炉的引进,其高效、长寿、投资成本低的特点,逐渐为大型高炉所采用,并取得成功,已成为热风炉发展方向。
2、目前我国炼铁高炉热风炉现状:2.1 现代热风炉的分类:热风炉做为高炉炼铁重要组成设备,随着高炉炼铁技术的发展进步,热风炉结构形成发展的步伐从来就没有停止,其历史久远,现代热风炉分为以下几类:①按燃烧室位置分:内燃式、外燃式和顶燃式。
②按燃烧入口位置分:低架式(落地式)和高架式。
③按燃烧室形状分:眼睛形、苹果型和圆形。
④按蓄热体形状分、板状、块状和球状。
本文以现代主流热风炉分类依据,按燃烧室位置来分别讨论内燃式、外燃式、顶燃式热风炉的现状及发展方向。
2.2国内炼铁高炉装备内燃式热风炉的现状。
2.2.1内燃式热风炉结构特点:热风炉的燃烧室(又叫火井)和蓄热室同置于一个圆型炉壳内,称之为内燃式热风炉,内燃式热风炉又分为传统内燃式和改进内燃式,传统内燃式热风炉的风温低、寿命短,已被改进内燃式所代替,改进内燃式的主要特点:①采用悬链线型拱顶结构,优化拱顶高温稳定性及气流分布;②采用圆型火井及新型隔墙;③采用陶瓷燃烧器和弧形炉衬板。
邯钢集团邯宝钢铁 2 号 32 00m3高炉热风炉改造工程实践摘要:邯钢集团邯宝钢铁有限公司炼铁厂现有两座3200m3高炉,配置三座内燃式热风炉,2号高炉2016年送风温度不足1080℃,为节能降耗提高风温并保证现有高炉的正常生产,2#高炉采用增加一座顶燃式热风炉,新建顶燃式热风炉建成后对原有内燃式热风炉进行逐座改造。
改造完成后送风温度达到1200℃以上。
关键词:顶燃式热风炉;热风炉改造;交叉并联送风;长寿中图分类号:文献标识码:文章编号:导言高风温、长寿是现代高炉的重要技术特征。
热风炉结构形式主要包括:内燃式、外燃式、顶燃式。
随着顶燃式热风炉在5000m3以上大型高炉的成功应用,顶燃式热风炉在新建高炉中应用比例越来越大。
顶燃式热风炉吸收了内燃式、外燃式热风炉的技术优点,传统内燃式热风炉炉型改造成顶燃式热风炉已成为一种必然趋势。
概述邯钢集团邯宝钢铁炼铁厂两座3200m3高炉,两座高炉分别于2008年4月和2010年5月投产,当初均配置三座霍戈文内燃式热风炉,并已预留NO.4热风炉的位置,热风炉蓄热室采用七孔格子砖,系统配置空、煤气换热器,加热风量6900Nm3/min。
到2016年2#高炉热风炉送风风温降低严重,送风温度不足1080℃,冷热风压差较大,煤气不好烧。
经研究分析可能存在以下原因:1)内燃式热风炉蓄热室断面上气流分布不均,从而导致温度分布不均匀,格子砖的热膨胀不均匀,蓄热室格子砖高度39m,累积变形量较大,引起格子砖的错位、错孔等现象。
导致格子砖通孔率降低,冷热风压差大;2)隔墙的“香蕉”变形形成裂缝,有窜风现象产生;3)格子砖的渣化、蠕变变形等。
为了提高风温,降低焦比,保证高炉连续稳定运行,2017年初邯钢决定2号高炉热风炉系统在预留位置处新建一座顶燃式热风炉,具备将3座内燃式热风炉逐一改造为顶燃式的条件。
同时在烟气预热器后增加一台烟气引风机,克服烟气阻力,保证3座内燃式热风炉正常燃烧,增加热风炉蓄热量,提高热风温度。
冷却水系统改造施工方案1. 引言冷却水系统在工业生产中起到了至关重要的作用。
然而,随着时间的推移,冷却水系统往往需要进行改造以保持其正常运行。
本文将介绍一种冷却水系统改造的施工方案,以确保系统的高效运行和安全性。
2. 目标和范围本改造方案的目标是提升冷却水系统的效率和稳定性,同时确保系统满足相关的安全规范。
改造的范围包括冷却水系统内的设备和管道,以及控制和监测系统。
3. 施工步骤步骤一:评估现有系统在开始改造之前,需要对现有的冷却水系统进行全面的评估。
这包括检查设备的运行状况、管道的损坏程度以及控制系统的功能。
评估的结果将有助于确定改造的重点和所需的资源。
步骤二:更新设备和管道根据评估的结果,确定需要更新或更换的设备和管道。
这可能包括更换老化的泵、阀门和冷却塔,修复或更换损坏的管道等。
设备和管道的更新应遵循相关的安全规范和制造商的指导。
步骤三:优化管道布局在改造过程中,可以考虑优化管道布局,以提高冷却水系统的效率和稳定性。
优化布局应考虑管道的长度、直径和流量分布等因素,并确保系统能够满足预定的冷却需求。
步骤四:改进控制和监测系统除了更新设备和管道,改造过程还应包括改进冷却水系统的控制和监测系统。
这包括安装更先进的传感器、仪表和自动控制设备,以实现对冷却水系统的实时监测和精确控制。
步骤五:测试和调试在改造完成后,进行全面的测试和调试,以确保冷却水系统正常运行并满足设计要求。
测试和调试的过程应包括对设备、管道和控制系统的功能进行验证,并记录相关的数据和参数。
步骤六:培训和文档编制改造完成后,培训操作人员并编制相关的文档,包括操作手册、维护手册和安全操作规程。
这将有助于操作人员正确运行和维护改造后的冷却水系统。
4. 安全措施在施工过程中,应严格遵守相关的安全规范和操作规程。
施工人员应佩戴适当的个人防护装备,并遵循操作程序。
对于涉及冷却水系统的高风险任务,应采取额外的防护措施,例如使用适当的安全工具和设备。
冷却水管道改造工程方案一、前言冷却水管道是生产过程中非常关键的设备之一,其性能的优劣关系到整个生产过程的稳定与高效。
然而,由于长期使用和环境的影响,部分冷却水管道存在老化、堵塞、泄漏等问题,已经严重影响到生产效率和工作环境。
因此,对冷却水管道进行改造已成为亟待解决的问题。
二、目的本工程旨在对现有的冷却水管道进行改造,提高其安全性、稳定性和使用寿命,保障生产过程的顺利进行。
具体目标包括:解决管道老化、堵塞、泄漏等问题,提高管道的流通性和稳定性,降低维护成本和延长使用寿命。
三、现状分析1. 冷却水管道存在老化、腐蚀、堵塞、泄漏等问题,严重影响到生产效率和设备运行的稳定性。
2. 管道系统的布局不合理,存在管路交叉、弯曲过多等问题,影响了冷却水的流通性和稳定性。
3. 管道所使用的材料、接头等存在腐蚀、老化等情况,已经严重影响到整个系统的安全性。
4. 管道设备本身存在设计不合理、制造质量不过关等问题,需要进行替换或维修。
综上所述,现有的冷却水管道系统存在较为严重的问题,需要进行全面的改造。
四、改造方案1. 设计合理的管道系统布局,减少管路交叉、弯曲过多等问题,提高冷却水的流通性和稳定性。
2. 选用高质量、耐腐蚀、耐磨损的材料进行管道的更换和修复,确保整个系统的安全性和稳定性。
3. 完善管道的防腐蚀涂层和维护保养措施,延长管道的寿命并降低维护成本。
4. 优化管道设备的设计和材料选择,提高冷却水管道系统的整体性能和使用寿命。
五、改造方案具体步骤1. 调查研究:对现有的冷却水管道系统进行全面的调查和研究,了解其结构、原材料、使用状况等相关情况。
2. 方案设计:设计合理的管道系统布局、材料选择、设备选型等方案,确保改造后的管道系统能够满足生产需求和安全要求。
3. 防护工程:在管道的重要部位进行加固和防腐蚀处理,确保管道的安全和稳定运行。
4. 技术改造:对受损的设备进行更换或修复,对设备的设计和材料进行优化,提高整个系统的性能和稳定性。
我公司锅炉炉底水封改造作者:高贤亮来源:《硅谷》2012年第06期1 概述我公司为4×600MW国产燃煤机组,#1机组2006年9月30日投产,#2机组2007年3月21日投产,#3机组2007年12月22日投产,#4机组2008年5月16日投产,除渣系统每台锅炉设一套独立的系统。
锅炉排出的渣经渣井、关断门落入水浸式刮板捞渣机内经冷却水冷却、粒化后,由刮板捞渣机连续捞出,直接排至位于捞渣机头部的渣仓暂存,渣仓的渣由运渣自卸汽车定期运至灰场。
其工作流程为:刮板捞渣机的溢流水先溢流至溢流水池,由溢流水泵送至高效浓缩机,经高效浓缩机澄清后的排水由回水泵输送至供渣斗溢流水冷却用的机力冷却塔冷却后,再送回锅炉房作为渣斗冷却水,循环利用。
高效浓缩机直径为10m,有效容积为230m3,高效浓缩机下设有2台排污泵,1台运行,1台备用,将高效浓缩机底部沉淀下来的积渣打回捞渣机,渣仓中存渣析出水及地面冲洗水汇集于污水池中,由污水池排污泵打回刮板捞渣机中。
锅炉捞渣机正常工作时冷却水来自上部渣井水封槽溢流及冷却喷淋水,其为连续加入,渣井锯齿型溢流堰连续溢流维持捞渣机上槽体内水位及保证正常工况下的水温维持在小于60℃。
捞渣机设水温度检测仪,当捞渣机遇锅炉吹灰渣量增大等情况瞬间水温增高超过60℃时,温度检测仪将信号发至电控箱打开补水阀迅速补充捞渣机上槽体内冷却水,直至水温降至小于60℃。
渣井的水封槽沿渣井四周布置,由连续溢流的密封水维持槽内的水位和渣斗密封,并在渣井内配置冷却水喷淋装置,并相应配置喷淋冷却的观察窗和通渣孔。
渣井能耐不小于800℃的高温。
渣井内衬具备抗冲击能力,且寿命不小于100000小时。
2 改造方案水封槽和捞渣机采用保持水位的运行方式,通过液位开关与自动补水阀的连锁,使渣水循环系统中的补水与渣蒸发及冷却带走的水达到零排放;停运电厂原设计使用的渣水循环系统,简化了系统,降低了能耗。
首次启动或检修后捞渣机充水使用工业水,捞渣机放水或溢流水排至溢流水池溢流至化学工业废水管网,两台溢流水泵停运。