分类精度的评价
- 格式:pdf
- 大小:500.93 KB
- 文档页数:16
遥感数据分类精度评价的方法和指标遥感技术在地质、农业、环境等领域的应用越来越广泛,其分类精度评价成为评估遥感数据可靠性的重要手段。
本文将介绍遥感数据分类精度评价的方法和指标,并探讨在应用中的局限性和改进方向。
一、方法1. 精确性评价法精确性评价法通过对比遥感分类结果和真实地面样本数据,计算分类的准确率、误差矩阵、Kappa系数等指标。
准确率指标能反映分类精度的整体水平,误差矩阵则可以分析各类别之间的混淆程度,Kappa系数可以衡量分类结果与随机分类的一致性。
这些指标可以从不同角度评价分类的精确性,但需要借助真实样本数据,存在采样不均匀和标注误差等问题。
2. 信息熵评价法信息熵评价法通过信息熵和互信息等信息论指标,衡量分类结果中包含的信息量和类别关联性。
信息熵越小,代表分类结果中包含的信息越少,分类精确度越高;互信息可以衡量分类结果与真实结果的相关程度。
这些指标基于信息论的原理,可以有效评价分类的精度,但对于数据量较大的情况,计算量较大。
3. 混淆矩阵评价法混淆矩阵评价法主要通过构建混淆矩阵,分析分类结果中不同类别之间的混淆情况。
混淆矩阵由真实类别和分类类别组成,可以直观地展示分类结果的正确性和误判情况。
通过混淆矩阵,可以分析分类结果中各类别之间的相似度和差异性,为分类模型的改进提供参考。
二、指标1. 总体精度总体精度是评价分类结果的整体正确率,通过计算分类正确的像素数量与总像素数量的比例得出。
高总体精度代表分类结果准确度高,但并不能说明各类别的精确性。
2. 用户精度和生产者精度用户精度和生产者精度是评价分类结果各类别准确性的重要指标。
用户精度是指分类结果为某一特定类别的样本中,实际属于该类别的比例。
生产者精度是指实际属于某一特定类别的样本中,被正确分类为该类别的比例。
用户精度主要关注分类结果对应每个类别的准确性,生产者精度主要关注每个类别被正确分类的概率。
3. Kappa系数Kappa系数是衡量分类结果与随机分类结果一致性的指标。
遥感影像分类精度评价遥感影像分类精度评价(2009-11-20 14:20:57)在ENVI中,选择主菜单->Classification->Post Classification->ConfusionMatrix->Using Ground Truth ROIs。
将分类结果和ROI输入,软件会根据区域自动匹配,如不正确可以手动更改。
点击ok后选择报表的表示方法(像素和百分比),就可以得到精度报表。
对分类结果进行评价,确定分类的精度和可靠性。
有两种方式用于精度验证:一是混淆矩阵,二是ROC曲线,比较常用的为混淆矩阵,ROC曲线可以用图形的方式表达分类精度,比较形象。
对一帧遥感影像进行专题分类后需要进行分类精度的评价,而进行评价精度的因子有混淆矩阵、总体分类精度、Kappa系数、错分误差、漏分误差、每一类的制图精度和拥护精度。
1、混淆矩阵(Confusion Matrix): 主要用于比较分类结果和地表真实信息,可以把分类结果的精度显示在一个混淆矩阵里面。
混淆矩阵是通过将每个地表真实像元的位置和分类与分类图象中的相应位置和分类像比较计算的。
混淆矩阵的每一列代表了一个地表真实分类,每一列中的数值等于地表真实像元在分类图象中对应于相应类别的数量,有像元数和百分比表示两种。
2、总体分类精度(Overall Accuracy): 等于被正确分类的像元总和除以总像元数,地表真实图像或地表真实感兴趣区限定了像元的真实分类。
被正确分类的像元沿着混淆矩阵的对角线分布,它显示出被分类到正确地表真实分类中的像元数。
像元总数等于所有地表真实分类中的像元总和。
3、Kappa系数:是另外一种计算分类精度的方法。
它是通过把所有地表真实分类中的像元总数(N)乘以混淆矩阵对角线(Xkk)的和,再减去某一类中地表真实像元总数与该类中被分类像元总数之积对所有类别求和的结果,再除以总像元数的平方差减去某一类中地表真实像元总数与该类中被分类像元总数之积对所有类别求和的结果所得到的。
混淆矩阵遥感影像分类就是一个对给定的遥感影像所包含的所有像元的地表属性进行识别归类的过程;目的是在属性识别归类的基础上获取研究区域内各个地物类型的分布状况及面积。
对遥感影像分类结果进行评估就是一个通过比较检验样本与分类结果的符合程度来确定分类准确度的过程。
精度与准确度“精度”,是对同一批样本采用相同方法进行多次的测定,比较各次的测定值之间彼此接近的程度。
如果每个测定值彼此之间越接近,则精度越高,体现的是测定结果的重现性。
例如,测量一段线段的长度,每次都采用相同的方法——用直尺进行测量,经过多次测量之后我们发现,每次测量的结果都是1cm,这就说明我们以直尺进行测量这种方法的精度很高。
准确度则不然,是指测量结果与真实值相符合的程度。
还是以测量线段长度举例,真实的线段长度为1.00001cm,测量结果为1cm,这就说明测量方法的准确度还是很高的。
两者之间的关系:准确度高,意味着精度也很高,但是精度高却不意味着准确度高。
假设第一次的测量结果为1.5cm,第二次为1.52cm,第三次为1.49cm,表面上我们的精度很高,但实际上线段的长度只有1.00001cm,准确度并不高。
评估指标1总体分类精度(Overall Accuracy)指针对每一个随机样本,所分类的结果与检验数据类型相一致的概率,也就是被正确分类的像元总和除以总像元数。
即混淆矩阵中对角线上的像元数总和除以总像元数目。
2生产者精度生产者精度,也称制图精度,指相对于检验数据中的任意一个随机样本,分类图上相同位置的分类结果与其相一致的概率。
即混淆矩阵中,分类器将整幅影像正确分类为A的像元数(对角线上A类的值)与真实情况下A的像元数(真实情况A的像元数总和)之比。
3用户精度指在分类结果中任取一随机样本,其所具有的类型与地表真实情况相符合的条件概率。
即混淆矩阵中,分类器将整幅影像正确分类为A的像元数和(对角线上A类的值)与分类器分出的所有A类像元数(预测值为A的像元数总和)之比。
测绘技术如何进行遥感影像分类精度评定测绘技术在现代科技发展中扮演着至关重要的角色。
遥感影像分类精度评定是测绘技术中的一个重要环节。
本文将从测绘技术的发展背景、遥感影像分类精度评定的基本概念和方法、实际应用案例等方面进行论述。
一、测绘技术的发展背景随着科技进步和信息化时代的到来,人们对地球及其资源的认知和需求也逐渐提升。
测绘技术应运而生,成为人们获取地理信息的重要手段。
遥感影像作为测绘技术的重要组成部分,以其高效、全面的特点被广泛应用。
二、遥感影像分类精度评定的基本概念和方法(一)基本概念遥感影像分类精度评定是指通过一系列定量和定性的方法,对遥感影像分类的准确程度进行评估和衡量。
分类精度评定结果直接反映了遥感影像分类方法和技术的可行性和准确性。
(二)方法和指标1.对比法:将遥感影像分类结果与实地调查结果进行对比,通过判断分类结果中的错误分类和遗漏分类的程度,评估分类精度。
2.混淆矩阵法:通过构建混淆矩阵,统计分类结果中各类别的正确分类和错误分类的数量,从而计算出分类精度指标,如准确性、偏差、精度等。
3.Kappa系数法:Kappa系数是一种常用的分类精度评价指标,用于衡量分类结果与实地调查结果之间的一致性程度。
Kappa系数取值范围为[-1, 1],值越接近1表示分类结果与实地调查结果一致性越高。
三、实际应用案例(一)土地利用分类精度评定遥感影像在土地利用监测中具有广泛的应用。
通过对遥感影像进行分类精度评定可以更好地了解土地利用情况,为土地资源管理和规划提供数据支持。
例如,通过对遥感影像分类结果与实地调查结果进行对比,可以评估城市绿地覆盖率的准确性,并据此制定相应的城市绿化计划。
(二)植被分类精度评定植被分类是遥感影像分类的重要应用之一。
通过对植被分类精度进行评定,可以了解植被分布情况以及植被类型的变化趋势,为植被保护和生态恢复提供科学依据。
例如,在森林资源调查中,通过对遥感影像分类结果的准确性进行评估,可以计算出森林面积、林种组成等重要指标,为森林资源的管理提供数据支持。
遥感影像分类精度评价在ENVI中,选择主菜单->Classification->Post Classification->Confusion Matrix->Using Ground Truth ROIs。
将分类结果和ROI输入,软件会根据区域自动匹配,如不正确可以手动更改。
点击ok后选择报表的表示方法(像素和百分比),就可以得到精度报表。
对分类结果进行评价,确定分类的精度和可靠性。
有两种方式用于精度验证:一是混淆矩阵,二是ROC曲线,比较常用的为混淆矩阵,ROC曲线可以用图形的方式表达分类精度,比较形象。
对一帧遥感影像进行专题分类后需要进行分类精度的评价,而进行评价精度的因子有混淆矩阵、总体分类精度、Kappa系数、错分误差、漏分误差、每一类的制图精度和拥护精度。
1、混淆矩阵(Confusion Matrix): 主要用于比较分类结果和地表真实信息,可以把分类结果的精度显示在一个混淆矩阵里面。
混淆矩阵是通过将每个地表真实像元的位置和分类与分类图象中的相应位置和分类像比较计算的。
混淆矩阵的每一列代表了一个地表真实分类,每一列中的数值等于地表真实像元在分类图象中对应于相应类别的数量,有像元数和百分比表示两种。
2、总体分类精度(Overall Accuracy): 等于被正确分类的像元总和除以总像元数,地表真实图像或地表真实感兴趣区限定了像元的真实分类。
被正确分类的像元沿着混淆矩阵的对角线分布,它显示出被分类到正确地表真实分类中的像元数。
像元总数等于所有地表真实分类中的像元总和。
3、Kappa系数:是另外一种计算分类精度的方法。
它是通过把所有地表真实分类中的像元总数(N)乘以混淆矩阵对角线(Xkk)的和,再减去某一类中地表真实像元总数与该类中被分类像元总数之积对所有类别求和的结果,再除以总像元数的平方差减去某一类中地表真实像元总数与该类中被分类像元总数之积对所有类别求和的结果所得到的。
遥感影像分类精度评价遥感影像分类是利用遥感技术获取的遥感影像数据进行地物分类的过程。
精度评价是评估分类结果与实际地物分布之间的一致性程度的过程。
在遥感影像分类精度评价中,常用的评价方法包括混淆矩阵法、Kappa系数、总体精度和准确率以及召回率等指标。
下面将对这些评价方法进行详细介绍。
一、混淆矩阵法混淆矩阵法是一种常用的分类精度评价方法,通过统计分类结果和实际地物分布之间的一致性进行评估。
混淆矩阵是一个N*N的矩阵,其中N 表示分类的类别数。
矩阵的行和列分别表示实际类别和分类类别,每个元素表示实际类别在分类结果中的分布情况。
通过计算混淆矩阵可以得出分类的总体精度、准确率、召回率等指标。
二、Kappa系数Kappa系数是一种常用的评估分类结果一致性的统计量。
Kappa系数取值范围为[-1,1],其中-1表示完全不一致,0表示随机一致,1表示完全一致。
Kappa系数越大表示分类结果的一致性越好。
计算Kappa系数需要利用混淆矩阵中的各项数据进行计算。
三、总体精度和准确率以及召回率总体精度是指分类结果正确的分类数占总分类数的比例,是衡量分类正确率的重要指标。
总体精度的计算公式为:总体精度=(分类正确的样本数/总样本数)*100%。
准确率是指分类结果中真阳性(TP,分类正确的正例)和真阴性(TN,分类正确的负例)的比例,计算公式为:准确率=TP/(TP+FP)。
召回率是指真阳性比真阳性和假阴性(FN,分类错误的负例)的比例,计算公式为:召回率=TP/(TP+FN)。
总体精度、准确率和召回率都是衡量分类精度的重要指标,可以综合评价分类结果的正确性和完整性。
在进行遥感影像分类精度评价时,应根据具体的分类目的和要求选择合适的评价方法。
针对不同的评价指标,可以采取不同的统计方法进行计算,以达到准确评估分类结果和精度的目的。
综上所述,遥感影像分类精度评价是评估分类结果与实际地物分布之间的一致性程度的过程,常用的评价方法包括混淆矩阵法、Kappa系数、总体精度和准确率以及召回率。
图像分类和融合中精度评价指标1.图像分类中精度评价的几个指标对分类结果进行评价,确定分类的精度和可靠性,有两种方式用于精度验证:一是混淆矩阵,二是ROC曲线。
比较常用的为混淆矩阵,ROC曲线可以用图形的方式表达分类精度,比较形象。
评价精度的因子有混淆矩阵、总体分类精度、Kappa系数、错分误差、漏分误差、每一类的制图精度和用户精度:1. 混淆矩阵(confusion matrix)混淆矩阵又称误差矩阵(error matrix),是一个用于表示分为某一类别的像元个数与地面检验为该类别数的比较阵列。
通常,阵列中的列代表参考数据,行代表由遥感数据分类得到的类别数据。
有像元数和百分比表示两种。
Ground Truth(Pixels)Class水体林地耕地未利用地居民地Total水体257920024425838林地8016825297684132419210耕地5196027424381154239583未利用地3100963848710156居民地3230491333055131056 Total26745168852777010495439481258432.总体分类精度(Overall Accuracy)等于被正确分类的像元总和除以总像元数。
被正确分类的像元数目沿着混淆矩阵的对角线分布,总像元数等于所有真实参考源的像元总数,如本次精度分类精度表中的Overall Accuracy = 110230/1258433.Kappa系数(Kappa Coefficient)它是通过把所有真实参考的像元总数(N)乘以混淆矩阵对角线(XKK)的和,再减去某一类中真实参考像元数与该类中被分类像元总数之积之后,再除以像元总数的平方减去某一类中真实参考像元总数与该类中被分类像元总数之积对所有类别求和的结果。
结果k=83.96%.4.错分误差(Commission)指被分为用户感兴趣的类,而实际属于另一类的像元,它显示在混淆矩阵里面。