高考物理一轮复习阶段综合检测(三)第七~九章验收(普通班)
- 格式:doc
- 大小:357.50 KB
- 文档页数:12
拾躲市安息阳光实验学校第九章 第3讲 电磁感应的综合问题1.(多选)(深圳联考)两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻.将质量为m 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂直,如图9-3-12所示.除电阻R 外其余电阻不计.现将金属棒从弹簧原长位置由静止释放.则( )图9-3-12A .释放瞬间金属棒的加速度等于重力加速度gB .金属棒向下运动时,流过电阻R 的电流方向为a →bC .金属棒的速度为v 时.所受的安培力大小为F =B 2L 2vRD .电阻R 上产生的总热量等于金属棒重力势能的减少量 【答案】AC【解析】在导体棒下落过程中受重力、弹簧弹力和安培力作用,但释放瞬间,弹簧弹力为0,安培力为0,只受重力作用,所以加速度等于重力加速度g ,A 项正确;根据楞次定律(或右手定则)可以判断,电阻R 中的电流方向由b →a ,B 项错误;金属棒速度为v 时,导体棒中产生的电动势E =BLv ,回路中电流I=E R ,安培力F =ILB =B 2L 2v R,C 项正确;根据能量守恒定律,金属棒重力势能的减少量一部分转化为动能,一部分转化为焦耳热能,还有一部分转化为弹簧的弹性势能,D 项错误.2.(多选)(佛山一模)如图9-3-13,足够长的光滑导轨倾斜放置,导轨宽度为L ,其下端与电阻R 连接;导体棒ab 电阻为r ,导轨和导线电阻不计,匀强磁场竖直向上.若导体棒ab 以一定初速度v 0下滑,则ab 棒( )图9-3-13A .所受安培力方向水平向右B .可能以速度v 0匀速下滑C .则下滑瞬间产生的电动势为BLv 0D .减少的重力势能等于电阻R 产生的内能【答案】AB3.(多选)(湛江模拟)如图9-3-14所示,导线ab 、cd 跨接在电阻不计的光滑导轨上,ab 的电阻为2R ,cd 的电阻为R .当cd 在外力F 1作用下向右运动时,ab 在外力F 2的作用下保持静止.则下列说法正确的是( )图9-3-14A .ab 两端的电势差一定大于cd 两端的电势差B .若cd 向右匀速运动,则F 1与F 2大小一定相等C.若cd向右加速运动,则F1一定大于F2D.拉力F1所做的功一定等于电路中消耗的电能【答案】BC【解析】cd切割磁感线产生感应电动势,cd相当于电源,ab是外电路,cd两端电压是路段电压,导线ab与cd两端电压相等,故A错误;两导线电流相等,两导线受到的安培力大小相等,ab静止、cd向右匀速运动,两导线都处于平衡状态,F1与F2大小都等于安培力,则F1与F2大小相等,故B正确;两导线受到的安培力相等,ab静止,处于平衡状态,F2等于安培力,cd向右加速运动,F1大于安培力,则F1大于F2,故C正确;当cd匀速运动时,拉力F1做的功转化为电能,拉力F1所做的功等于电路消耗的电能,如果cd加速运动,F1做功转化为电能与cd的动能,则F1做功大于电路消耗的电能,故D错误.4.(单选)(天津卷)如图9-3-15所示,纸面内有一矩形导体闭合线框abcd.ab边长大于bc边长,置于垂直纸面向里、边界为MN的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN.第一次ab 边平行MN进入磁场.线框上产生的热量为Q1,通过线框导体横截面的电荷量为q1;第二次bc边平行MN进入磁场.线框上产生的热量为Q2,通过线框导体横截面的电荷量为q2,则( )图9-3-15A.Q1>Q2,q1=q2 B.Q1>Q2,q1>q2C.Q1=Q2,q1=q2 D.Q1=Q2,q1>q2【答案】A【解析】根据功能关系,线框上产生的热量等于克服安培力做功.由F=BIL,I=ER,E=BLv,第一次ab边平行MN进入磁场,线框上产生的热量为Q1=W1=F1L bc=B2L2ab vRL bc=B2SvRL ab.第二次bc边平行MN进入磁场.线框上产生的热量为Q2=W2=F2L ab=B2L2bc vRL ab=B2SvRL bc.由于L ab>L bc,所以Q1>Q2.由I=qΔt,E=ΔΦΔt,E=IR,联立解得q=ΔΦR.两次磁通量变化ΔΦ相同,所以q1=q2,选项A正确.5.(武昌检测)如图9-3-16,两根相距l=1 m的平行光滑长金属导轨电阻不计,被固定在绝缘水平面上,两导轨左端接有R=2 Ω的电阻,导轨所在区域内加上与导轨垂直、方向相反的磁场,磁场宽度d相同且为0.6 m,磁感应强度大小B1=25T、B2=0.8 T.现有电阻r=1 Ω的导体棒ab垂直导轨放置且接触良好,当导体棒ab以v=5 m/s从边界MN进入磁场后始终做匀速运动,求:图9-3-16(1)导体棒ab进入磁场B1时拉力的功率;(2)导体棒ab 经过任意一个B 2区域过程中通过电阻R 的电量; (3)导体棒ab 匀速运动过程中电阻R 两端的电压有效值. 【答案】见解析【解析】(1)在B 1中时,E 1=B 1lv ,I 1=E 1R +r,F =B 1I 1l ,则P =Fv =23W.(2)由闭合电路欧姆定律有I 2=B 2lvR +r, 电量q =I 2Δt 2,位移d =v Δt 2, 解得q =0.16 C.(3)导体棒进入B 2时,电动势E 2=B 2lv =4 V , 设电动势有效值为E ,有 E 21R +r ·T 2+E 22R +r ·T 2=E 2R +r ·T , 解得E =3 V.电阻R 两端电压有效值为U R =ER +rR =2 V.。
取夺市安慰阳光实验学校单元滚动检测九 磁场考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页. 3.本次考试时间90分钟,满分100分. 4.请在密封线内作答,保持试卷清洁完整. 第Ⅰ卷(选择题,共48分)一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,第1~6题只有一个选项正确,第7~12题有多项正确,全部选对的得4分,选对但不全的得2分,有选错或不选的得0分)1.将一个质量很小的金属圆环用细线吊起来,在其附近放一块条形磁铁,磁铁的轴线与圆环在同一平面内,且通过圆环中心,如图1所示,当圆环中通以顺时针方向的电流时,从上往下看( )图1A .圆环顺时针转动,靠近磁铁B .圆环顺时针转动,远离磁铁C .圆环逆时针转动,靠近磁铁D .圆环逆时针转动,远离磁铁2.将长为L 的导线弯成六分之一圆弧,固定于垂直于纸面向外、大小为B 的匀强磁场中,两端点A 、C 连线竖直,如图2所示.若给导线通以由A 到C 、大小为I 的恒定电流,则导线所受安培力的大小和方向是( )图2A .ILB ,水平向左 B .ILB ,水平向右 C.3ILB π,水平向右D.3ILB π,水平向左3.如图3所示,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 为半圆弧的圆心,∠MOP =60°,在M 、N 处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O 点的磁感应强度大小为B 1.若将M 处长直导线移至P 处,则O 点的磁感应强度大小为B 2,那么B 2与B 1之比为( )图3A.3∶1B.3∶2 C .1∶1 D .1∶24.某空间有一圆柱形匀强磁场区域,磁感应强度大小为B .该区域的横截面的半径为R ,磁场方向垂直于横截面.一质量为m 、电荷量为q (q >0)的粒子以某一速率沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向74°.不计重力,则初速度v 0大小为(已知sin 37°=35)( )A.4qBR 3mB.5qBR 3mC.3qBR 4mD.3qBR 5m5.带电粒子以初速度v 0从a 点垂直y 轴进入匀强磁场,如图4所示.运动中经过b 点,Oa =Ob ,若撤去磁场加一个与y 轴平行的匀强电场,仍以v 0从a 点垂直于y 轴进入电场,粒子仍能通过b 点,不考虑粒子重力,那么电场强度E 与磁感应强度B 之比为( )图4A .v 0B .1C .2v 0 D.v 026.如图5所示,abcd 为一正方形边界的匀强磁场区域,磁场边界边长为L ,三个粒子以相同的速度从a 点沿ac 方向射入,粒子1从b 点射出,粒子2从c 点射出,粒子3从cd 边垂直于磁场边界射出,不考虑粒子的重力和粒子间的相互作用.根据以上信息,可以确定( )图5A .粒子1带负电,粒子2不带电,粒子3带正电B .粒子1和粒子3的比荷之比为2∶1C .粒子1和粒子3在磁场中运动时间之比为4∶1D .粒子3的射出位置与d 点相距L27.如图6所示,带正电的A 粒子和B 粒子先后以同样大小的速度从宽度为d 的有界匀强磁场的边界上的O 点分别以30°和60°(与边界的夹角)射入磁场,又都恰好不从另一边界飞出,则下列说法中正确的是( )图6A .A 、B 两粒子在磁场中做圆周运动的半径之比是13B .A 、B 两粒子在磁场中做圆周运动的半径之比是32+3C .A 、B 两粒子m q 之比是13D .A 、B 两粒子m q 之比是32+38.如图7所示为一个质量为m 、电荷量为+q 的圆环,可在水平放置的粗糙细杆上自由滑动,细杆处在磁感应强度为B 的匀强磁场中,圆环以初速度v 0向右运动直至处于平衡状态,则圆环克服摩擦力做的功可能为( )图7 A .0B.12mv 20 C.m 2g 22q 2B2 D.12m (v 20-m 2g 2q 2B2) 9.如图8所示,在平板PQ 上有一匀强磁场,磁场方向垂直纸面向里.某时刻有a 、b 、c 三个电子(不计重力)分别以大小相等、方向如图所示的初速度v a 、v b 和v c 经过平板PQ 上的小孔O 射入匀强磁场.这三个电子打到平板PQ 上的位置到小孔O 的距离分别是l a 、l b 和l c ,电子在磁场中运动的时间分别为t a 、t b 和t c .整个装置放在真空中,则下列判断正确的是( )图8A .l a =l c <l bB .l a <l b <l cC .t a <t b <t cD .t a >t b >t c10.如图9所示,在x 轴上的上方有沿y 轴负方向的匀强电场,电场强度为E ,在x 轴下方的等腰直角三角形CDM 区域内有垂直于xOy 平面向外的匀强磁场,磁感应强度为B ,其中C 、D 在x 轴上,它们到原点O 的距离均为a .现将质量为m 、带电荷量为+q 的粒子从y 轴上的P 点由静止释放,设P 点到O 点的距离为h ,不计重力作用与空气阻力的影响.下列说法正确的是( )图9A .若h =B 2a 2q2mE ,则粒子垂直于CM 射出磁场B .若h =B 2a 2q2mE ,则粒子平行于x 轴射出磁场C .若h =B 2a 2q8mE,则粒子垂直于CM 射出磁场D .若h =B 2a 2q8mE,则粒子平行于x 轴射出磁场11.如图10所示,竖直放置的两块很大的平行金属板a 、b ,相距为d ,a 、b 间的电场强度为E ,今有一带正电的微粒从a 板下边缘以初速度v 0竖直向上射入电场,当它飞到b 板时,速度大小不变,而方向变为水平方向,且刚好从高度也为d 的狭缝进入bc 区域,bc 区域的宽度也为d ,所加电场的场强大小为E ,方向竖直向上,磁感应强度方向垂直纸面向里,磁场磁感应强度大小等于Ev 0,重力加速度为g ,则下列关于微粒运动的说法正确的是( ) 图10A .微粒在ab 区域的运动时间为v 0gB .微粒在bc 区域中做匀速圆周运动,圆周半径r =2dC .微粒在bc 区域中做匀速圆周运动,运动时间为πd6v 0D .微粒在ab 、bc 区域中运动的总时间为π+6d3v 012.如图11所示,两个倾角分别为30°和60°的光滑斜面固定于水平面上,并处于方向垂直纸面向里、磁感应强度为B 的匀强磁场中.两个质量均为m 、带电荷量均为+q 的小滑块甲和乙分别从两个斜面顶端由静止释放,运动一段时间后,两小滑块都将飞离斜面,在此过程中( )图11A .甲滑块飞离斜面瞬间的速度比乙滑块飞离斜面瞬间的速度大B .甲滑块在斜面上运动的时间比乙滑块在斜面上运动的时间短C .甲滑块在斜面上运动的位移与乙滑块在斜面上运动的位移大小相同D .两滑落块在斜面上运动的过程中,重力的平均功率相等 第Ⅱ卷(非选择题,共52分) 二、非选择题(共52分)13.(9分)霍尔效应是电磁基本现象之一,近期我国科学家在该领域的实验研究上取得了突破性进展.如图12所示,在一矩形半导体薄片的P 、Q 间通入电流I ,同时外加与薄片垂直的磁场B ,在M 、N 间出现电压U H ,这个现象称为霍尔效应,U H 为霍尔电压,且满足U H =k IBd,式中d 为薄片的厚度,k 为霍尔系数.某同学通过实验来测定该半导体薄片的霍尔系数.图12(1)若该半导体材料是空穴(可视为带正电粒子)导电,电流与磁场方向如图所示,该同学用电压表测量U H 时,应将电压表的“+”接线柱与______(选填“M ”或“N ”)端通过导线连接.(2)已知薄片厚度d =0.40 mm ,该同学保持磁感应强度B =0.10 T 不变,改变电流I 的大小,测量相应的U H 值,记录数据如下表表示.I /×10-3A 3.0 6.0 9.0 12.015.18.0 U H /×10-3 V1.11.93.44.56.26.8根据表中数据在图13中的坐标纸上画出U H -I 图线,利用图线求出该材料的霍尔系数为____________×10-3V·m·A -1·T -1(保留2位有效数字).图13(3)该同学查阅资料发现,使半导体薄片中的电流反向再次测量,取两个方向测量的平均值,可以减小霍尔系数的测量误差,为此该同学设计了如图14所示的测量电路.S1、S2均为单刀双掷开关,虚线框内为半导体薄片(未画出).为使电流自Q端流入,P端流出,应将S1掷向______(选填“a”或“b”),S2掷向______(选填“c”或“d”).图14为了保证测量安全,该同学改进了测量电路,将一合适的定值电阻串接在电路中.在保持其他连接不变的情况下,该定值电阻应串接在相邻器件________和________(填器件代号)之间.14.(9分)如图15所示,在水平地面上固定一对与水平面夹角为α的光滑平行导电轨道,轨道间的距离为l,两轨道底端的连线与轨道垂直,顶端接有电源.将一根质量为m的直导体棒ab放在两轨道上,且与两轨道垂直.已知轨道和导体棒的电阻及电源的内电阻均不能忽略,通过导体棒的恒定电流大小为I,方向由a到b,图乙为图甲沿a→b方向观察的平面图.若重力加速度为g,在轨道所在空间加一竖直向上的匀强磁场,使导体棒在轨道上保持静止.图15(1)请在图乙所示的平面图中画出导体棒受力的示意图;(2)求出磁场对导体棒的安培力的大小;(3)如果改变导轨所在空间的磁场方向,试确定使导体棒在轨道上保持静止的匀强磁场磁感应强度B的最小值的大小和方向.15.(10分)在直径为d的圆形区域内存在着匀强磁场,磁感应强度为B,磁场方向垂直于圆面指向纸外.一电荷量为q、质量为m的带正电粒子,从磁场区域的一条直径AC上的A点沿纸面射入磁场,其速度方向与AC成α=15°角,如图16所示.若此粒子在磁场区域运动的过程中,速度的方向一共改变了90°.重力可忽略不计,求:图16(1)该粒子在磁场区域内运动所用的时间t;(2)该粒子射入时的速度大小v.16.(12分)如图17所示,在平面直角坐标系中AO是∠xOy的角平分线,x 轴上方存在水平向左的匀强电场,下方存在竖直向上的匀强电场和垂直纸面向里的匀强磁场,两电场的电场强度大小相等.一质量为m、电荷量为+q的质点从OA上的M点由静止释放,质点恰能沿AO运动而通过O点,经偏转后从x 轴上的C点进入第一象限内并击中AO上的D点(C,D均未画出).已知OD=34OM,匀强磁场的磁感应强度大小为B=mq(T),重力加速度为g=10 m/s2.求:图17(1)两匀强电场的电场强度E的大小;(2)OM的长度L;(3)质点从M点出发到击中D点所经历的时间t.17.(12分)如图18所示,竖直平面坐标系xOy的第一象限有垂直xOy面向外的水平匀强磁场和竖直向上的匀强电场,大小分别为B和E;第四象限有垂直xOy面向里的水平匀强电场,大小也为E;第三象限内有一绝缘光滑竖直放置的半径为R的半圆轨道,轨道最高点与坐标原点O相切,最低点与绝缘光滑水平面相切于N,一质量为m的带电小球从y轴上(y>0)的P点沿x轴正方向进入第一象限后做圆周运动,恰好通过坐标原点O,且水平切入半圆轨道并沿轨道内侧运动,过N点水平进入第四象限,并在电场中运动(已知重力加速度为g ).图18(1)判断小球的带电性质并求出其所带电荷量; (2)P 点距坐标原点O 至少多高;(3)若该小球以满足(2)中OP 最小值的位置和对应速度进入第一象限,通过N 点开始计时,经时间t =2Rg小球距坐标原点O 的距离s 为多远? 答案精析1.C [根据环形电流周围的磁场分布结合左手定则可知,圆环右侧部分受到的安培力向里,左侧部分受到的安培力向外,所以从上往下看圆环逆时针转动.再将转动90°后的通电圆环等效成一个小磁针,则N 极在左,S 极在右,根据同极相互排斥异极相互吸引可知,圆环靠近磁铁,C 正确.]2.D [弧长为L ,圆心角为60°,则弦长AC =3Lπ,导线受到的安培力F =BI ·AC =3BILπ,由左手定则可知,导线受到的安培力方向水平向左.]3.B [如图甲所示,当通有电流的长直导线在M 、N 两处时,根据安培定则可知,二者在圆心O 处产生的磁感应强度的大小都为B 12;当将M 处长直导线移到P 处,两直导线在圆心O 处产生的磁感应强度的大小也为B 12,如图乙所示,作平行四边形,由图中的几何关系,可得cos 30°=B 22B 12=B 2B 1=32,故选项B正确,选项A 、C 、D 错误.]4.A [带正电的粒子垂直磁场方向进入圆形匀强磁场区域,由洛伦兹力提供向心力而做匀速圆周运动,画出轨迹,根据几何知识得,轨迹的圆心角等于速度的偏转角74°,且轨迹的半径r =Rtan 37°=43R ,根据牛顿第二定律得qv 0B =m v 20r ,则v 0=4qBR 3m,故A 正确.]5.C [带电粒子在匀强磁场中做匀速圆周运动,O 为圆心,故Oa =Ob =r=mv 0qB①带电粒子在匀强电场中做类平抛运动,故Ob =v 0t =Oa =qE 2m t 2②由①②得EB=2v 0,故选项C 对.]6.B [根据左手定则可知粒子1带正电,粒子2不带电,粒子3带负电,选项A 错误;粒子1在磁场中的轨迹为四分之一圆周,半径r 1=22L ,时间t 1=14T =14×2πr 1v =2πL 4v ,粒子3在磁场中的轨迹为八分之一圆周,半径r 3=2L ,时间t 3=18T =18×2πr 3v =2πL 4v ,则t 1=t 3,选项C 错误;由r =mv qB 可知粒子1和粒子3的比荷之比为r 3∶r 1=2∶1,选项B 正确;粒子3的射出位置与d 点相距(2-1)L ,选项D 错误.]7.BD [由题意知,粒子在磁场中运动时由洛伦兹力提供向心力,根据Bqv=m v 2r ,得r =mvBq.由几何关系可得,对粒子B :r B cos 60°+r B =d ,对粒子A :r A cos 30°+r A =d ,联立解得r A r B =32+3,所以A 错误,B 正确.再根据r =mvBq ,可得A 、B 两粒子m q 之比是32+3,故C 错误,D 正确.]8.ABD [若圆环所受洛伦兹力等于重力,圆环对粗糙细杆压力为零,摩擦力为零,圆环克服摩擦力做的功为零,选项A 正确;若圆环所受洛伦兹力不等于重力,圆环对粗糙细杆压力不为零,摩擦力不为零,圆环以初速度v 0向右做减速运动.若开始圆环所受洛伦兹力小于重力,则一直减速到零,圆环克服摩擦力做的功为12mv 20,选项B 正确;若开始圆环所受洛伦兹力大于重力,则减速到洛伦兹力等于重力达到稳定,稳定速度v =mgqB,由动能定理可得圆环克服摩擦力做的功为W =12mv 20-12mv 2=12m (v 20-m 2g2q 2B 2),选项C 错误,D 正确.]9.AD [由带电粒子在磁场中运动的特征可以画出这三个电子在磁场中运动的轨迹,如图所示.由带电粒子在磁场中运动的半径公式R =mv Bq 和周期公式T =2πmBq很容易得到l a =l c <l b ,t a >t b >t c ,所以B 、C 错误,A 、D 正确.]10.AD [粒子在电场中加速,有qEh =12mv 20,在磁场中做圆周运动,若粒子垂直于CM 射出磁场,则轨迹所对的圆心角θ=45°,半径R =a ,而R =mv 0qB ,联立以上各式得h =B 2a 2q2mE ,A 正确;若粒子平行于x 轴射出磁场,则轨迹所对的圆心角θ=90°,半径R =a2,同理可得h =B 2a 2q8mE,D 正确.]11.ABD [微粒在ab 区域运动时,竖直方向上受重力作用,做匀减速运动,由题意知,gt =v 0,故A 正确;微粒在bc 区域所受电场力竖直向上,且qE =mg ,故微粒在bc 区域做匀速圆周运动,其轨迹半径r =mv 0qB ,又v 20=2gd ,B =E v 0,解得r =2d ,故B 正确;设微粒在bc 区域转过的角度为θ,由几何关系知θ=30°,所以微粒在bc 区域做匀速圆周运动的时间为t 2=T12=πm 6qB =πd3v 0,故C 错误;微粒在ab 区域运动的时间为t 1=v 0g =2dv 0,微粒在ab 、bc 区域中运动的总时间为t =t 1+t 2=π+6d3v 0,故D 正确.]12.AD [小滑块飞离斜面时,洛伦兹力与重力垂直斜面的分力平衡,mg cosθ=qv m B ,解得v m =mg cos θqB,故斜面倾角越大,飞离时速度越小,甲飞离斜面速度大于乙,A 正确;甲斜面倾角小,平均加速度小,但是末速度大,故甲在斜面上运动的时间比乙的长,故B 错误;根据动能定理mgl sin θ=12mv 2m ,解得l =m 2g cos 2θ2q 2B 2sin θ,故甲的位移大于乙的位移,故C 错误;重力的平均功率为重力乘以竖直方向的分速度的平均值P =mg v sin θ=mg ·mg cos θ2qB sinθ,代入数据相等,故D 正确.]13.(1)M (2)见解析图 1.5(1.4~1.6均可) (3)b c S 1 E (或E S 2) 解析 (1)根据左手定则可判断带正粒子向M 端偏转,故应将电压表的“+”接线柱与M 端连接.(2)作出U H -I 图线如图所示.由U H =k IB d 得k =U H dIB,求出图线斜率,再将题目中给出的B 、d 的值代入,可计算出k =1.5×10-3 V·m·A -1·T -1.(3)S 1掷向b ,S 2掷向c .加入定值电阻的目的是为了防止两个开关同时掷向a 、c 或b 、d 而将电源短路,故应将定值电阻串接在相邻器件E 和S 1或E 和S 2之间.14.(1)见解析图 (2)mg tan α (3)mg sin αIl,方向垂直于轨道平面向上解析 (1)如图所示.(2)根据共点力平衡条件可知,磁场对导体棒的安培力的大小F =mg tan α. (3)要使磁感应强度最小,则要求安培力最小.根据受力情况可知,最小安培力F min =mg sin α,方向平行于轨道斜向上,所以最小磁感应强度B min =F minIl =mg sin αIl,根据左手定则可判断出,此时的磁感应强度的方向为垂直于轨道平面向上.15.(1)πm 2qB (2)6qBd4m解析 (1)粒子在匀强磁场中运动的周期:T =2πmqB带正电粒子的速度方向改变了90°,所用的时间:t =T 4=πm 2qB(2)设粒子做圆周运动的半径为r ,则粒子的运动情况如图所示. 由几何关系知,△AOD 是等腰直角三角形. 所以AD =2r在△CAD 中,∠CAD =90°-α-∠OAD =30°,则AD =d cos 30°=32d解得半径r =64d又因为qvB =m v 2r因此粒子射入时的速度大小v =6qBd4m. 16.(1)mg q (2)20 2 m 或2029m (3)7.71 s 或6.38 s解析 (1)质点在第一象限内受重力和水平向左的电场力作用沿AO 做加速直线运动,所以有mg =qE ,即E =mgq(2)质点在x 轴下方,重力与电场力平衡,质点做匀速圆周运动,从C 点进入第一象限后做类平抛运动,其轨迹如图所示.有Bqv =m v 2R由运动学规律知v 2=2aL ,a =2g设粒子从C 点运动到D 点所用时间为t 3, 由类平抛运动规律知 R =vt 3,R -3L 4=12at 23联立解得L =20 2 m 或2029 m.(3)质点做匀加速直线运动有L =12at 21得t 1=2 s 或23s质点做匀速圆周运动有t 2=34×2πmBq =4.71 s质点做类平抛运动有R =vt 3,得t 3=1 s 质点从M 点出发到击中D 点所经历的时间为t =t 1+t 2+t 3=7.71 s 或6.38 s.17.(1)带正电mg E (2)2E B Rg(3)27R 解析 (1)小球进入第一象限正交的电场和磁场后,在垂直磁场的平面内做圆周运动,说明重力与电场力平衡,设小球所带电荷量为q ,则有qE =mg ① 解得q =mg E②又电场方向竖直向上,故小球带正电.(2)设小球做匀速圆周运动的速度为v 、轨道半径为r .由洛伦兹力提供向心力得qBv =mv 2r③小球通过半圆轨道的最高点并恰能沿轨道运动,为满足题目要求,则有mg =mv 2R ④由②③④得r =EBR g⑤ 即PO 的最小距离为y =2r =2EBR g. (3)设小球到达N 点的速度为v N ,由机械能守恒定律得:mg ·2R =12mv 2N -12mv 2⑦由④⑦解得:v N =5gR ⑧小球从N 点进入电场区域后,在绝缘光滑水平面上做类平抛运动,设加速度为a ,则有沿x 轴方向x =v N t ⑨ 沿电场方向z =12at 2⑩由牛顿第二定律得:a =qEm ⑪t 时刻小球距O 点为 s =x 2+2R2+z 2=27R ⑫。
第七章静电场一、选择题(每一小题6分,共60分)1.(2015·广东华附、省实、广雅、深中四校联考)(多项选择)如下列图,平行板电容器与直流电源连接,上极板接地。
一带负电的油滴位于电容器中的P点且处于静止状态。
现将下极板竖直向下缓慢地移动一小段距离,如此(AC)A.带电油滴将竖直向下运动B.带电油滴的机械能将增加C.P点的电势将升高D.电容器的电容增加,极板带电量增加【解析】对带电油滴受力分析,油滴受向上的电场力和向下的重力,电容器下极板下移后,由E=,故两板间距离增大,电容减小,由Q=CU得两板的带电量将减小,D项错误。
2.(2015·临沂二模)如下列图,实线和虚线分别表示某电场的电场线和等势线,如下说法中正确的答案是(B)A.c点场强大于a点场强B.c点电势高于a点电势C.c、b两点间的电势差大于c、a两点间的电势差D.假设将一试探电荷+q由a点移动到b点,电场力做正功【解析】a点的电场线比c点电场线密,可知a点的场强大于c点的场强,故A项错误;沿电场线方向电势逐渐降低,可知c点的电势高于a点电势,故B项正确;因为b、a两点电势相等,可知c、b两点间的电势差等于c、a两点间的电势差,故C项错误;a、b两点电势相等,将一试探电荷+q由a点移动到b点,电场力做功为零,故D项错误。
3.(2016·山东临沂一中期中检测)(多项选择)如下列图,竖直向上的匀强电场中,一竖直绝缘轻弹簧的下端固定在地面上,上端拴接一带正电小球,小球静止时位于N点,弹簧恰好处于原长状态。
保持小球的带电量不变,现将小球提高到M点由静止释放。
如此释放后小球从M 运动到N过程中(BC)A.小球的机械能与弹簧的弹性势能之和保持不变B.小球重力势能的减少量等于小球电势能的增加量C.弹簧弹性势能的减少量等于小球动能的增加量D.小球动能的增加量等于电场力和重力做功的代数和【解析】由于小球静止时弹簧恰好处于原长状态,所以小球受到的电场力大小等于小球的重力,小球从M点释放向下运动,重力做的功与电场力做的功的代数和始终等于零,把小球和弹簧看作一个系统,除重力和弹力做功外,系统受到的电场力做负功,故系统的机械能减小,即小球的机械能和弹簧的弹性势能之和减小,A项错误;因电场力等于重力,故小球重力势能的减少量等于小球电势能的增加量,B项正确;由于小球受到的电场力和重力是一对平衡力,小球的动能之所以会增加,是因为弹簧的弹力做正功,即弹簧弹弹性势能的减少量等于小球动能的增加量,C项正确;电场力和重力做功的代数和为零,D项错误。
阶段综合检测(四) 第七~十二章验收(时间:90分钟 满分:110分)一、选择题(本题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~12题有多项符合题目要求。
全部选对的得4分,选对但不全的得2分,有选错的得0分)1.(2018·温州模拟)在物理学发展过程中,观测、实验、假说和逻辑推理等方法都起到了重要作用。
下列叙述错误的是( )A .奥斯特在实验中观察到电流的磁效应,该效应揭示了电和磁之间存在联系B .安培根据通电螺线管的磁场和条形磁铁的磁场的相似性,提出了分子电流假说C .法拉第在实验中观察到,在通有恒定电流的静止导线附近的固定导线圈中,会出现感应电流D .楞次在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化解析:选C 奥斯特发现了电流的磁效应,揭示了电和磁之间存在联系,选项A 正确;根据通电螺线管产生的磁场与条形磁铁的磁场相似性,安培提出了磁性是分子内环形电流产生的,即分子电流假说,选项B 正确;根据感应电流的产生条件,导线中通有恒定电流时导线圈中不产生感应电流,选项C 错误;楞次定律指出感应电流的磁场总要阻碍引起感应电流的磁通量的变化,选项D 正确。
2.如图甲所示,理想变压器原、副线圈匝数分别为n 1、n 2,原线圈回路接有内阻不计的交流电流表A ,副线圈回路接有定值电阻R =2 Ω,现在a 、b 间和c 、d 间分别接上示波器,同时监测得a 、b 间和c 、d 间的电压随时间变化的图像如图乙、丙所示,则下列说法中错误的是( )A .T =0.02 sB .n 1∶n 2≈55∶1C .电流表A 的示数I ≈36.4 mAD .当原线圈电压瞬时值最大时,副线圈两端电压瞬时值为0解析:选D 由题图知,电压变化的周期是0.02 s ,所以A 正确;根据变压规律得:n 1n 2=U 1U 2≈55,所以B 正确;副线圈的电流I 2=U 2R =5.6622 A ,根据变流规律得原线圈电流I 1=I 255≈0.036 4 A=36.4 mA ,所以C 正确;由题图知,当原线圈电压瞬时值最大时,副线圈两端电压瞬时值也最大,故D 错误。
第九章综合测试一、单项选择题(本题共8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.关于场强的两个公式qFE =和2Q E k r =,下列说法中正确的是( )A .q 表示电场中的试探电荷、Q 表示场源电荷B .E 随q 的增大而减小,随Q 的增大而增大C .第一个公式适用于包括点电荷在内的所有场源的电场,且E 的方向和F -致D .第二个公式适用于包括点电荷在内的所有场源的电场,且拿走Q 后,电场就不存在了2.如图1所示,把一个架在绝缘支架上的枕形导体放在正电荷形成的电场中,导体处于静电平衡时,下列说法正确的是()图1A .A 、B 两点场强不相等,A B E E >B .A 、B 两点场强不相等,A B E E <C .感应电荷产生的附加电场A BE E <D .当电键S 闭合时,电子从大地沿导线向导体移动3.两个半径为R 的带电球所带电荷量分别为1q 和2q ,当两球心相距3R 时,相互作用的静电力大小A .122(3)q q F kR =B .122(3)q q F kR >C .122(3)q q F kR <D .无法确定4.将质量为m 的正点电荷q ,在电场中从静止开始释放,在它运动的过程中,如果不计重力,下列说法正确的是()A .点电荷运动轨迹必和电场线重合B .点电荷的速度方向必定与所在电场线的切线方向一致C .点电荷的加速度方向必定与所在电场线的切线方向垂直D .点电荷所受电场力的方向必定与所在电场线的切线方向一致5.真空中A 、B 两个点电荷相距为L ,质量分别为m 和2m ,它们由静止开始运动(不计重力),开始时A a ,经过一段时间,B 的加速度大小也是a ,那么此时A 、B 两点电荷的距离是( )B C .D .L6.如图2,a b c d 、、、四个点在一条直线上,a 和b b 、和c c 、和d 间的距离均为R ,在a 点处固定有一电荷量为Q 的正电荷,在d 点处固定有另一个电荷量未知的点电荷,除此之外无其它电荷,已知b 点处的场强为零,则c 点处场强的大小为(k 为静电力常量)()图2A .0B .2154Q kR C .24Q kR D .2Q kR 7.如图3所示,在水平向右、大小为E 的匀强电场中,在O 点固定一电荷量为Q 的正电荷,A 、B 、C 、D 为以O 为圆心、半径为r 的同一圆周上的四点,B 、D 连线与电场线平行,A 、C 连线与电场线垂直。
电容器与电容 带电粒子在电场中的运动[基础知识·填一填][知识点1] 电容器及电容 1.电容器(1)组成:由两个彼此 绝缘 又相互靠近的导体组成. (2)带电荷量:一个极板所带电荷量的 绝对值 . (3)电容器的充、放电①充电:使电容器带电的过程,充电后电容器两极板带上等量的 异种电荷_ ,电容器中储存电场能.②放电:使充电后的电容器失去电荷的过程,放电过程中 电能 转化为其他形式的能.2.电容(1)定义:电容器所带的 电荷量 与两个极板间的 电势差 的比值. (2)定义式: C =Q U.(3)单位:法拉(F)、微法(μF)、皮法(pF).1 F = 106μF= 1012pF. (4)意义:表示电容器 容纳电荷 本领的高低.(5)决定因素:由电容器本身物理条件(大小、形状、相对位置及电介质)决定,与电容器是否 带电 及 电压 无关.3.平行板电容器的电容(1)决定因素:正对面积、介电常数、两板间的距离. (2)决定式: C =εr S4πkd.判断正误,正确的划“√”,错误的划“×”.(1)电容器所带的电荷量是指每个极板所带电荷量的代数和.(×) (2)电容器的电容与电容器所带电荷量成反比.(×) (3)放电后的电容器电荷量为零,电容也为零.(×) [知识点2] 带电粒子在电场中的运动 1.加速问题(1)在匀强电场中:W =qEd =qU =12mv 2-12mv 20.(2)在非匀强电场中:W =qU =12mv 2-12mv 20.2.偏转问题(1)条件分析:不计重力的带电粒子以速度v 0垂直于电场线方向飞入匀强电场. (2)运动性质: 匀变速曲线 运动. (3)处理方法:利用运动的合成与分解. ①沿初速度方向:做 匀速 运动.②沿电场方向:做初速度为零的 匀加速 运动. 判断正误,正确的划“√”,错误的划“×”. (1)带电粒子在匀强电场中只能做类平抛运动.(×)(2)带电粒子在电场中,只受电场力时,也可以做匀速圆周运动.(√) (3)带电粒子在电场中运动时重力一定可以忽略不计.(×) [知识点3] 示波管1.装置:示波管由电子枪、偏转电极和荧光屏组成,管内抽成真空,如图所示. 2.原理(1)如果在偏转电极XX ′和YY ′之间都没有加电压,则电子枪射出的电子沿直线传播,打在荧光屏 中心 ,在那里产生一个亮斑.(2)YY ′上加的是待显示的 信号电压 ,XX ′上是机器自身产生的锯齿形电压,叫做扫描电压.若所加扫描电压和信号电压的周期相同,就可以在荧光屏上得到待测信号在一个周期内变化的图象.[教材挖掘·做一做]1.(人教版选修3-1 P32第1题改编)(多选)如图所示,用静电计可以测量已充电的平行板电容器两极板之间的电势差U ,电容器已带电,则下列判断正确的是( )A .增大两极板间的距离,指针张角变大B .将A 板稍微上移,静电计指针张角变大C .若将玻璃板插入两板之间,则静电计指针张角变大D .若减小两板间的距离,则静电计指针张角变小解析:ABD [电势差U 变大(小),指针张角变大(小).电容器所带电荷量一定,由公式C =εr S 4πkd 知,当d 变大时,C 变小,再由C =QU得U 变大;当A 板上移时,正对面积S 变小,C 也变小,U 变大;当插入玻璃板时,C 变大,U 变小;而两板间的距离减小时,C 变大,U 变小,所以选项A 、B 、D 正确.]2.(人教版选修3-1 P39第2题改编)两平行金属板相距为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射出,最远到达A 点,然后返回,如图所示,OA =h ,此电子具有的初动能是( )A.edhU B .edUhC.eU dhD.eUh d解析:D [电子从O 点到A 点,因受电场力作用,速度逐渐减小.根据题意和图示判断,电子仅受电场力,不计重力.这样,我们可以用能量守恒定律来研究问题,即12mv 20=eU OA .因E =U d ,U OA =Eh =Uh d ,故12mv 20=eUhd,故选项D 正确.] 3.(人教版选修3-1 P39第4题改编)如图所示,含有大量11H 、21H 、42He 的粒子流无初速度进入某一加速电场,然后沿平行金属板中心线上的O 点进入同一偏转电场,最后打在荧光屏上.下列有关荧光屏上亮点分布的说法正确的是( )A .出现三个亮点,偏离O 点最远的是11H B .出现三个亮点,偏离O 点最远的是42He C .出现两个亮点 D .只会出现一个亮点 答案:D4.(人教版选修3-1 P36思考与讨论改编)如图是示波管的原理图,它由电子枪、偏转电极(XX ′和YY ′)、荧光屏组成.管内抽成真空.给电子枪通电后,如果在偏转电极XX ′和YY ′上都没有加电压,电子束将打在荧光屏的中心O 点.(1)带电粒子在 __________ 区域是加速的,在 ________ 区域是偏转的. (2)若U YY ′>0,U XX ′=0,则粒子向 ________ 板偏转,若U YY ′=0,U XX ′>0,则粒子向 ________ 板偏转.答案:(1)Ⅰ Ⅱ (2)Y X考点一 平行板电容器的动态分析[考点解读]1.两类典型问题(1)电容器始终与恒压电源相连,电容器两极板间的电势差U 保持不变. (2)电容器充电后与电源断开,电容器两极板所带的电荷量Q 保持不变. 2.动态分析思路 (1)U 不变①根据C =Q U =εr S4πkd 先分析电容的变化,再分析Q 的变化.②根据E =U d分析场强的变化. ③根据U AB =Ed 分析某点电势变化. (2)Q 不变①根据C =Q U =εr S4πkd先分析电容的变化,再分析U 的变化.②根据E =U d=4k πQεr S分析场强变化.[典例赏析][典例1] (多选)如图所示,平行板电容器与直流电源连接,下极板接地,一带电油滴位于电容器中的P 点且处于静止状态,现将上极板竖直向上移动一小段距离,则( )A .带电油滴将沿竖直方向向上运动B .P 点电势将降低C .电容器的电容减小,极板带电荷量减小D .带电油滴的电势能保持不变[解析] BC [电容器与电源相连,两极板间电压不变,下极板接地,电势为0.油滴位于P 点处于静止状态,因此有mg =qE .当上极板向上移动一小段距离时,板间距离d 增大,由C =εr S 4πkd 可知电容器电容减小,板间场强E 场=Ud 减小,油滴所受的电场力减小,mg>qE ,合力向下,带电油滴将向下加速运动,A 错;P 点电势等于P 点到下极板间的电势差,由于P 到下极板间距离h 不变,由φP =ΔU =Eh 可知,场强E 减小时P 点电势降低,B 对;由C =Q U可知电容器所带电荷量减小,C 对;带电油滴所处P 点电势下降,而由题图可知油滴带负电,所以油滴电势能增大,D 错.]分析平行板电容器动态变化的三点关键1.确定不变量:先明确动态变化过程中的哪些量不变,是电荷量保持不变还是极板间电压不变.2.恰当选择公式:灵活选取电容的决定式和定义式,分析电容的变化,同时用公式E =U d分析极板间电场强度的变化情况.3.若两极板间有带电微粒,则通过分析电场力的变化,分析其运动情况的变化.[题组巩固]1.(2016·全国卷Ⅰ)一平行板电容器两极板之间充满云母介质,接在恒压直流电源上,若将云母介质移出,则电容器( )A .极板上的电荷量变大,极板间电场强度变大B .极板上的电荷量变小,极板间电场强度变大C .极板上的电荷量变大,极板间电场强度不变D .极板上的电荷量变小,极板间电场强度不变解析:D [据C =εr S4πkd 可知,将云母介质移出电容器,C 变小,电容器接在恒压直流电源上,电压不变,据Q =CU 可知极板上的电荷量变小,据E =U d可知极板间电场强度不变,故选D.]2.(2018·北京卷) 研究与平行板电容器电容有关因素的实验装置如图所示.下列说法正确的是( )A .实验前,只用带电玻璃棒与电容器a 板接触,能使电容器带电B .实验中,只将电容器b 板向上平移,静电计指针的张角变小C .实验中,只在极板间插入有机玻璃板, 静电计指针的张角变大D .实验中,只增加极板带电荷量,静电计指针的张角变大,表明电容增大解析:A [当用带电玻璃棒与电容器a 板接触,由于静电感应,从而在b 板感应出等量的异种电荷,从而使电容器带电,故选项A 正确;根据电容器电容的决定式:C =εr S 4πkd ,将电容器b 板向上平移,即正对面积S 减小,则电容C 减小,根据C =QU可知, 电荷量Q 不变,则电压U 增大,则静电计指针的张角变大,故选项B 错误;根据电容器电容的决定式:C =εr S4πkd,只在极板间插入有机玻璃板,则介电常数εr 增大,则电容C 增大,根据C =Q U可知, 电荷量Q 不变,则电压U 减小,则静电计指针的张角减小,故选项C 错误;根据C =Q U可知,电荷量Q 增大,则电压U 也会增大,而电容由电容器本身决定,C不变,故选项D 错误.]考点二 带电粒子在电场中的直线运动[考点解读]1.做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动.(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动.2.用动力学观点分析a =qE m ,E =Ud,v 2-v 20=2ad .3.用功能观点分析匀强电场中:W =Eqd =qU =12mv 2-12mv 2非匀强电场中:W =qU =E k2-E k1.[典例赏析][典例2] (2019·湖南长沙模拟)如图所示,在A 点固定一正电荷,电荷量为Q ,在离A 高度为H 的C 处由静止释放某带同种电荷的液珠,开始运动瞬间向上的加速度大小恰好等于重力加速度g .已知静电力常量为k ,两电荷均可看成点电荷,不计空气阻力.求:(1)液珠的比荷;(2)液珠速度最大时离A 点的距离h ;(3)若已知在点电荷Q 的电场中,某点的电势可表示成φ=kQr,其中r 为该点到Q 的距离(选无限远的电势为零).求液珠能到达的最高点B 离A 点的高度r B .[解析] (1)设液珠的电荷量为q ,质量为m ,由题意知,当液珠在C 点时k QqH2-mg =mg 比荷为q m =2gH 2kQ(2)当液珠速度最大时,k Qq h2=mg 得h =2H(3)设BC 间的电势差大小为U CB ,由题意得U CB =φC -φB =kQ H -kQr B对液珠由释放处至液珠到达最高点(速度为零)的全过程应用动能定理得qU CB -mg (r B -H )=0即q ⎝ ⎛⎭⎪⎫kQ H -kQr B -mg (r B -H )=0解得:r B =2H ,r B =H (舍去). [答案] (1)2gH 2kQ(2)2H (3)2H带电体在匀强电场中的直线运动问题的解题步骤[题组巩固]1.(多选)如图所示,带电小球自O 点由静止释放,经C 孔进入两水平位置的平行金属板之间,由于电场的作用,刚好下落到D 孔时速度减为零.对于小球从C 到D 的运动过程,已知从C 运动到CD 中点位置用时t 1,从C 运动到速度等于C 点速度一半的位置用时t 2,下列说法正确的是( )A .小球带负电B .t 1<t 2C .t 1>t 2D .将B 板向上平移少许后小球可能从D 孔落下解析:AB [由题图可知,A 、B 间的电场强度方向向下,小球从C 到D 做减速运动,受电场力方向向上,所以小球带负电,选项A 正确;由于小球在电场中受到的重力和电场力都是恒力,所以小球做匀减速直线运动,其速度图象如图所示,由图可知,t 1<t 2,选项B 正确,C 错误;将B 板向上平移少许时两板间的电压不变,根据动能定理可知,mg (h +d )-qU =0,mg (h +x )-qUx d ′=0,联立得x =h h +d -d ′d ′<d ′,即小球不到D 孔就要向上返回,所以选项D 错误.]2.(2017·江苏卷)如图所示,三块平行放置的带电金属薄板A 、B 、C 中央各有一小孔,小孔分别位于O 、M 、P 点.由O 点静止释放的电子恰好能运动到P 点.现将C 板向右平移到P ′点,则由O 点静止释放的电子( )A .运动到P 点返回B .运动到P 和P ′点之间返回C .运动到P ′点返回D .穿过P ′点解析:A [设A 、B 板间的电势差为U 1,B 、C 间电势差为U 2,板间距为d ,电场强度为E ,第一次由O 点静止释放的电子恰好能运动到P 点,根据动能定理得:qU 1=qU 2=qEd ,将C 板向右移动,B 、C 板间的电场强度:E =U 2d =Q C 0d =4πkQεr S不变,所以电子还是运动到P 点速度减小为零,然后返回,故A 正确,B 、C 、D 错误.]考点三 带电粒子在匀强电场中的偏转[考点解读]1.运动规律(1)沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =lv 0b.不能飞出电容器:y =12at 2=qU 2mdt 2,t =2mdyqU(2)沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =qUmd离开电场时的偏移量:y =12at 2=qUl 22mdv2离开电场时的偏转角:tan θ=v y v 0=qUl mdv202.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:由qU 0=12mv 2y =12at 2=12·qU 1md ·⎝ ⎛⎭⎪⎫l v 02tan θ=qU 1lmdv 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d.(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.[典例赏析][典例3] 如图所示,水平放置的平行板电容器与某一电源相连,它的极板长L =0.4 m ,两板间距离d =4×10-3m ,有一束由相同带电微粒组成的粒子流,以相同的速度v 0从两板中央平行极板射入,开关S 闭合前,两板不带电,由于重力作用微粒能落到下极板的正中央,已知微粒质量为m =4×10-5kg ,电荷量q =+1×10-8C ,g 取10 m/s 2.求:(1)微粒入射速度v 0为多少?(2)为使微粒能从平行板电容器的右边射出电场,电容器的上极板应与电源的正极还是负极相连?所加的电压U 应取什么范围?[审题指导] 开关闭合前,微粒做平抛运动,开关闭合后,微粒做类平抛运动,两个过程的分析方法相同,都要用到运动的合成与分解.[解析] (1)开关S 闭合前,由L 2=v 0t ,d 2=12gt 2可解得v 0=L2gd=10 m/s. (2)电容器的上极板应接电源的负极.当所加的电压为U 1时,微粒恰好从下板的右边缘射出,即d 2=12a 1⎝ ⎛⎭⎪⎫L v 02, 又a 1=mg -qU 1dm,解得U 1=120 V当所加的电压为U 2时,微粒恰好从上极板的右边缘射出,即d 2=12a 2⎝ ⎛⎭⎪⎫L v 02, 又a 2=q U 2d-mg m,解得U 2=200 V所以120 V ≤U ≤200 V.[答案] (1)10 m/s (2)与负极相连,120 V ≤U ≤200 V带电粒子在电场中偏转问题求解通法1.解决带电粒子先加速后偏转模型的通法:加速电场中的运动一般运用动能定理qU =12mv 2进行计算;在偏转电场中的运动为类平抛运动,可利用运动的分解进行计算;二者靠速度相等联系在一起.2.计算粒子打到屏上的位置离屏中心的距离Y 的四种方法: (1)Y =y +d tan θ(d 为屏到偏转电场的水平距离).(2)Y =⎝ ⎛⎭⎪⎫L2+d tan θ(L 为电场宽度). (3)Y =y +v y ·d v 0.(4)根据三角形相似Y y =L2+d L2.[题组巩固]1.(多选)如图所示,带电荷量之比为q A ∶q B =1∶3的带电粒子A 、B 以相等的速度v 0从同一点出发,沿着跟电场强度垂直的方向射入平行板电容器中,分别打在C 、D 点,若OC =CD ,忽略粒子重力的影响,则( )A .A 和B 在电场中运动的时间之比为1∶2 B .A 和B 运动的加速度大小之比为4∶1C .A 和B 的质量之比为1∶12D .A 和B 的位移大小之比为1∶1解析:ABC [粒子A 和B 在匀强电场中做类平抛运动,水平方向由x =v 0t 及OC =CD 得,t A ∶t B =1∶2,选项A 正确;竖直方向由h =12at 2得a =2ht 2,它们沿竖直方向下落的加速度大小之比为a A ∶a B =4∶1,选项B 正确;根据a =qE m 得m =qEa,故m A ∶m B =1∶12,选项C 正确;A 和B 的位移大小不相等,选项D 错误.]2.(2016·北京卷23题改编)如图所示,电子由静止开始经加速电场加速后,沿平行于板面的方向射入偏转电场,并从另一侧射出.已知电子质量为m ,电荷量为e ,加速电场电压为U 0,偏转电场可看做匀强电场,极板间电压为U ,极板长度为L ,板间距为d .(1)忽略电子所受重力,求电子射入偏转电场时的初速度v 0和从电场射出时沿垂直板面方向的偏转距离Δy ;(2)分析物理量的数量级,是解决物理问题的常用方法.在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因.已知U =2.0×102 V ,d =4.0×10-2m ,m =9.1×10-31 kg ,e =1.6×10-19 C ,g =10 m/s 2. 解析:(1)根据动能定理,有eU 0=12mv 20, 电子射入偏转电场时的初速度v 0=2eU 0m 在偏转电场中,电子的运动时间Δt =Lv 0=L m 2eU 0加速度a =eE m =eU md偏转距离Δy =12a (Δt )2=UL 24U 0d(2)只考虑电子所受重力和电场力的数量级,有重力 G =mg ≈10-29 N 电场力F =eUd ≈10-15 N由于F ≫G ,因此不需要考虑电子所受的重力.答案:(1) 2eU 0m UL 24U 0d(2)见解析 思想方法(十四) 电容器在现代科技生活中的应用[典例] (多选)目前智能手机普遍采用了电容触摸屏,电容触摸屏是利用人体的电流感应进行工作的,它是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂一层ITO(纳米铟锡金属氧化物),夹层ITO 涂层作为工作面,四个角引出四个电极,当用户手指触摸电容触摸屏时,手指和工作面形成一个电容器,因为工作面上接有高频信号,电流通过这个电容器分别从屏的四个角上的电极中流出,且理论上流经四个电极的电流与手指到四个角的距离成比例,控制器通过对四个电流比例的精密计算来确定手指位置.对于电容触摸屏,下列说法正确的是( )A.电容触摸屏只需要触摸,不需要压力即能产生位置信号B.使用绝缘笔在电容触摸屏上也能进行触控操作C.手指压力变大时,由于手指与屏的夹层工作面距离变小,电容变小D.手指与屏的接触面积变大时,电容变大[解析]AD [据题意知,电容触摸屏只需要触摸,由于流经四个电极的电流与手指到四个角的距离成比例,控制器就能确定手指的位置,因此不需要手指有压力,故A正确;绝缘笔与工作面不能形成一个电容器,所以不能在电容屏上进行触控操作,故B错误;手指压力变大时,由于手指与屏的夹层工作面距离变小,电容将变大,故C错误;手指与屏的接触面积变大时,电容变大,故D正确.][题组巩固]1.(2019·汕头模拟)图示为某电容传声器结构示意图,当人对着传声器讲话,膜片会振动.若某次膜片振动时,膜片与极板距离增大,则在此过程中( ) A.膜片与极板间的电容增大B.极板所带电荷量增大C.膜片与极板间的电场强度增大D.电阻R中有电流通过解析:D [根据C=εr S4πkd可知,膜片与极板距离增大,膜片与极板间的电容减小,选项A错误;根据Q=CU可知极板所带电荷量减小,因此电容器要通过电阻R放电,所以选项D正确,B错误;根据E=Ud可知,膜片与极板间的电场强度减小,选项C错误.]2.(多选)电容式加速度传感器的原理如图所示,质量块左、右侧连接电介质、轻质弹簧,弹簧与电容器固定在外框上,质量块可带动电介质移动,改变电容.则( ) A.电介质插入极板间越深,电容器电容越小B.当传感器以恒定加速度运动时,电路中有恒定电流C.若传感器原来向右匀速运动,突然减速时弹簧会压缩D.当传感器由静止突然向右加速时,电路中有顺时针方向的电流解析:CD [由C =εr S 4πkd知,电介质插入越深,εr 越大,即C 越大,A 错;当传感器以恒定加速度运动时,电介质相对电容器静止,电容不变,电路中没有电流,B 错;传感器向右匀速运动,突然减速时,质量块由于惯性相对传感器向右运动,弹簧压缩变短,C 对;传感器由静止突然向右加速时,电介质相对电容器向左运动,εr 增大,C 增大,电源电动势不变,由C =Q U 知,Q 增大,上极板电荷量增大,即电路中有顺时针方向的电流,D 对.。
高考物理复习课时跟踪检测(九) 牛顿第一定律牛顿第三定律高考常考题型:选择题1.(2012·新课标全国卷)伽俐略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础。
早期物理学家关于惯性有下列说法,其中正确的是( ) A.物体抵抗运动状态变化的性质是惯性B.没有力的作用,物体只能处于静止状态C.行星在圆周轨道上保持匀速率运动的性质是惯性D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动2.(2012·重庆质检)下列说法正确的是( )A.运动越快的汽车越不容易停下来,是因为汽车运动得越快,惯性越大B.同一物体在地球上不同的位置受到的重力是不同的,所以它的惯性也随位置的变化而变化C.一个小球竖直上抛,抛出后能继续上升,是因为小球运动过程中受到了向上的推力D.物体的惯性大小只与本身的质量有关,质量大的物体惯性大,质量小的物体惯性小3.下列说法中正确的是( )A.物体在不受外力作用时,保持原有运动状态不变的性质叫惯性,故牛顿运动定律又叫惯性定律B.牛顿第一定律仅适用于宏观物体,只可用于解决物体的低速运动问题C.牛顿第一定律是牛顿第二定律在物体的加速度a=0条件下的特例D.伽利略根据理想实验推出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去4.下列关于力的说法正确的是( )A.作用力和反作用力作用在同一物体上B.太阳系中的行星均受到太阳的引力作用C.运行的人造地球卫星所受引力的方向不变D.伽利略的理想实验说明了力不是维持物体运动的原因5.一列以速度v匀速行驶的列车内有一水平桌面,桌面上的A处有一小球。
若车厢内的旅客突然发现(俯视图)小球沿如图1所示的虚线从A点运动到B点,则由此可以判断列车的运行情况是( )图1A.减速行驶,向北转弯B.减速行驶,向南转弯C.加速行驶,向南转弯D.加速行驶,向北转弯6.如图2所示,一个楔形物体M放在固定的粗糙斜面上,M上表面水平且光滑,下表面粗糙,在其上表面上放一光滑小球m,楔形物体由静止释放,则小球在碰到斜面前的运动轨迹是( )A.沿斜面方向的直线B.竖直向下的直线图2 C.无规则的曲线D.抛物线7.如图3所示,在匀速前进的磁悬浮列车里,小明将一小球放在水平桌面上,且小球相对桌面静止。
取夺市安慰阳光实验学校第7章静电场章末过关检测(七)(建议用时:60分钟满分:100分)一、单项选择题(本题共4小题,每小题6分,共24分.在每小题给出的四个选项中,只有一个选项正确)1.某点电荷和金属圆环间的电场线分布如图所示.下列说法正确的是( )A.a点的电势高于b点的电势B.若将一正试探电荷由a点移到b点,电场力做负功C.c点的电场强度与d点的电场强度大小无法判断D.若将一正试探电荷从d点由静止释放,电荷将沿着电场线由d到c解析:选B.过a、b两点做等势面,可得a点的电势比b点的电势低,将正电荷从低电势移到高电势,电场力做负功,故A错误,B正确;电场线的疏密程度可表示电场强度,c点的电场线稀疏,d点的电场线较密,所以d点的电场强度大于c点的电场强度,C错误;电场线只表示电场强度,不表示粒子的运动轨迹,D错误.2.(2018·温州中学模拟)如图,静电喷涂时,被喷工件接正极,喷枪口接负极,它们之间形成高压电场.涂料微粒从喷枪口喷出后,只在静电力作用下向工件运动,最后吸附在工件表面,图中虚线为涂料微粒的运动轨迹.下列说法正确的是( )A.涂料微粒一定带正电B.图中虚线可视为高压电场的部分电场线C.微粒做加速度先减小后增大的曲线运动D.喷射出的微粒动能不断转化为电势能解析:选C.因工件接电源的正极,可知涂料微粒一定带负电,选项A错误;因虚线为涂料微粒的运动轨迹,可知不能视为高压电场的部分电场线,选项B错误;从喷枪口看到工件的电场先减弱后增强,可知微粒做加速度先减小后增大,因电场线是曲线,故微粒做曲线运动,选项C正确;因电场力随微粒做正功,故微粒的电势能逐渐减小,选项D错误.3.(2018·重庆八中适应性考试)直角坐标系xOy中,A、B两点位于x轴上,坐标如图所示,C、D位于y轴上.C、D 两点各固定一等量正点电荷,另一电量为Q的负点电荷置于O点时,B点处的电场强度恰好为零.若将该负点电荷移到A点,则B点处场强的大小和方向分别为(静电力常量为k)( )A.5kQ4l2,沿x轴正方向B.5kQ4l2,沿x轴负方向C.3kQ4l 2,沿x 轴负方向 D .3kQ4l2,沿x 轴正方向解析:选D.B 点处的电场强度恰好为零,说明负电荷在B 点产生的场强与正电荷在B 点产生的场强大小相等,方向相反,根据点电荷的场强公式可得,负电荷在B 点的场强为kQ l 2,两正电荷在B 点的合场强也为kQl2,当负电荷移到A 点时,负电荷与B 点的距离为2l ,负电荷在B 点产生的场强为kQ4l2,方向沿x 轴负方向,由于CD 对称,所以两正电荷在B 点产生的合场强的大小为kQl2,方向沿x 轴正方向,所以B 点处合场强的大小为kQ l 2-kQ 4l 2=3kQ4l2,方向沿x 轴正方向,所以A 、B 、C 错误,D 正确.4.静电场方向平行于x 轴,其电势随x 的分布可简化为如图所示的折线,图中φ0和d 为已知量.一个带负电的粒子在电场中以x =0为中心、沿x 轴方向做周期性运动.已知该粒子质量为m 、电量为-q ,忽略重力.规定x 轴正方向为电场强度E 、加速度a 、速度v 的正方向,下图分别表示x 轴上各点的电场强度E 、小球的加速度a 、速度v 和动能E k 随x 的变化图象.其中正确的是( )解析:选D.因φ-x 图象的斜率表示电场强度,沿电场方向电势降低,因而在x =0的左侧,电场向左,且为匀强电场,故A 错误;由于粒子带负电,粒子的加速度在x =0左侧加速度为正值,在x =0右侧,加速度为负值,且大小不变,故B 错误;在x =0左侧,粒子向右匀加速,在x =0的右侧,向右做匀减速运动,速度与位移不成正比,故C 错误;在x =0左侧,粒子根据动能定理qEx =E k ,在x =0的右侧,根据动能定理可得-qEx =E k ′-E k ,故D 正确.二、多项选择题(本题共4小题,每小题6分,共24分.在每小题给出的四个选项中,有多个选项符合题目要求,全选对的得6分,选对但不全的得3分,有错选或不答的得0分)5.某老师用图示装置探究库仑力与电荷量的关系.A 、B 是可视为点电荷的两带电小球,用绝缘细线将A 悬挂,实验中在改变电荷量时,移动B 并保持A 、B 连线与细线垂直.用Q 和q 表示A 、B 的电荷量,d 表示A 、B 间的距离,θ(θ不是很小)表示细线与竖直方向的夹角,x 表示A 偏离O 点的水平距离.实验中( ) A .d 应保持不变B .B 的位置在同一圆弧上C .x 与电荷量乘积Qq 成正比D .tan θ与A 、B 间库仑力成正比解析:选ABC.因此实验要探究库仑力与电荷量的关系,故两电荷间距d 应保持不变,选项A 正确;因要保持A 、B 连线与细线垂直且AB 距离总保持d 不变,故B 的位置在同一圆弧上,选项B 正确;对A 球由平衡知识可知:F 库=mg sin θ,即k qQ d 2=mg xL,可知x 与电荷量乘积Qq 成正比,选项C 正确,D 错误.6.(2018·广东韶关六校联考)如图所示,直线MN 是某电场中的一条电场线(方向未画出).虚线是一带电的粒子只在电场力的作用下,由a 运动到b 的运动轨迹,轨迹为一抛物线.下列判断正确的是( )A .电场线MN 的方向一定是由N 指向MB .带电粒子由a 运动到b 的过程中动能不一定增加C .带电粒子在a 点的电势能一定大于在b 点的电势能D .带电粒子由a 运动到b 的过程中动能增加解析:选CD.由于该粒子只受电场力作用且做曲线运动,所受的电场力指向轨迹内侧,所以粒子所受的电场力一定是由M 指向N ,但是由于粒子的电荷性质不清楚,所以电场线的方向无法确定,故A 错误;粒子从a 运动到b 的过程中,电场力做正功,电势能减小,动能增加,故B 错误,D 正确;粒子从a 运动到b 的过程中,电场力做正功,电势能减小,带电粒子在a 点的电势能一定大于在b 点的电势能,故C 正确.7.(2018·福建台州质量评估)如图所示,竖直平面内的xOy坐标系中,x 轴上固定一个点电荷Q ,y 轴上固定一根光滑绝缘细杆(细杆的下端刚好在坐标原点O 处),将一个重力不计的带电圆环(可视为质点)套在杆上,从P 处由静止释放,圆环从O 处离开细杆后恰好绕点电荷Q 做匀速圆周运动,则下列说法中正确的是( ) A .圆环沿细杆从P 运动到O 的过程中,加速度一直增大 B .圆环沿细杆从P 运动到O 的过程中,速度先增大后减小C .若只增大圆环所带的电荷量,圆环离开细杆后仍能绕点电荷Q 做匀速圆周运动D .若将圆环从杆上P 点上方由静止释放,其他条件不变,圆环离开细杆后不能绕点电荷Q 做匀速圆周运动解析:选CD.圆环运动到O 点且未离开细杆时库仑力沿x 轴正方向,与细杆对圆环的支持力平衡,加速度为零,则A 错误;因为圆环到O 点前,库仑力沿y轴负方向的分量大小始终不为0,故一直加速,速度增加,B 错误;设P 、O 两点间电势差为U ,由动能定理有qU =12mv 2,由牛顿第二定律有kQq r 2=mv2r ,联立有kQ r 2=2Ur,即圆环是否做匀速圆周运动与q 无关,C 正确;若从P 点上方释放,则U 变大,不能做匀速圆周运动,D 正确.8.(2018·沈阳东北育才学校模拟)一带正电的小球向右水平抛入范围足够大的匀强电场,电场方向水平向左.不计空气阻力,则小球( )A .做直线运动B .做曲线运动C .速率先减小后增大D .速率先增大后减小解析:选BC.小球运动时受重力和电场力的作用,合力F 方向与初速度v 0方向不在一条直线上,小球做曲线运动,选项A 错误,B 正确;小球所受的合力与速度方向先成钝角,后成锐角,因此小球的速率先减小后增大,故选项C 正确,D 错误.三、非选择题(本题共3小题,共52分,按题目要求作答.计算题要有必要的文字说明和解题步骤,有数值计算的要注明单位) 9.(16分)(2018·亳州模拟)如图所示,在E = 1.0×103V/m 的竖直匀强电场中,有一光滑半圆形绝缘轨道QPN 与一水平绝缘轨道MN 在N 点平滑相接,半圆形轨道平面与电场线平行,其半径R =40 cm ,N 为半圆形轨道最低点,P 为QN 圆弧的中点,一带负电q =1.0×10-4C的小滑块质量m =10 g ,与水平轨道间的动摩擦因数 μ=0.15,位于N 点右侧 1.5 m 的M 处,g 取10 m/s 2,求:(1)要使小滑块恰能运动到圆轨道的最高点Q ,则小滑块应以多大的初速度v 0向左运动?(2)这样运动的小滑块通过P 点时对轨道的压力是多大?解析:(1)设小滑块到达Q 点时速度为v ,由牛顿第二定律得mg +qE =m v 2R小滑块从开始运动至到达Q 点过程中,由动能定理得-mg ·2R -qE ·2R -μ(mg +qE )x =12mv 2-12mv 2联立方程组,解得:v 0=7 m/s.(2)设小滑块到达P 点时速度为v ′,则从开始运动至到达P 点过程中,由动能定理得-(mg +qE )R -μ(qE +mg )x =12mv ′2-12mv 20又在P 点时,由牛顿第二定律得F N =m v ′2R联立代入数据,解得:F N =0.6 N由牛顿第三定律得,小滑块对轨道的压力大小F ′N =F N =0.6 N.答案:(1)7 m/s (2)0.6 N10.(16分)如图所示,光滑的薄平板A ,放置在水平桌面上,平比荷为qm板右端与桌面相齐,在平板上距右端d =0.6 m 处放一=0.1 C/kg 的带电体B (大小可忽略),A 长L =1 m ,质量M =2 kg.在桌面上方区域内有电场强度不同的匀强电场,OO ′左侧电场强度为E =10 V/m ,方向水平向右;右侧电场强度为左侧的5倍,方向水平向左.在薄平板A 的右端施加恒定的水平作用力F ,同时释放带电体B ,经过一段时间后,在OO ′处带电体B与薄平板A 分离,其后带电体B 到达桌边缘时动能恰好为零.(g 取10 m/s 2)求: (1)OO ′处到桌面右边缘的距离;(2)加在薄平板A 上恒定水平作用力F 的大小.解析:(1)对B 在OO ′左侧运动时,qE =ma 1,设B 到达OO ′时的速度为v ,则:v 2=2a 1x 1,对B 在OO ′右侧运动时,q ·5E =ma 2,v 2=2a 2x 2,由几何关系知,x 1+x 2=d ,代入数据解得x 2=0.1 m.(2)对平板A ,在B 加速的时间内,x 3=L -x 2,x 3=12a 3t 21,B 在同一时间内加速的过程中,有:x 1=12a 1t 21,对平板A ,在B 加速的时间内受力F 的作用,由牛顿第二定律得,F =Ma 3,代入数据解得F =3.6 N. 答案:见解析11.(20分)(2018·上海调研)如图(a),O 、N 、P 为直角三角形的三个顶点,∠NOP =37°,OP 中点处固定一电量为q 1=2.0×10-8 C 的正点电荷,M 点固定一轻质弹簧.MN 是一光滑绝缘杆,其中ON 长为a =1 m ,杆上穿有一带正电的小球(可视为点电荷),将弹簧压缩到O 点由静止释放,小球离开弹簧后到达N 点的速度为零.沿ON 方向建立坐标轴(取O 点处x =0),图(b)中Ⅰ和Ⅱ图线分别为小球的重力势能和电势能随位置坐标x 变化的图象,其中E 0=1.24×10-3J ,E 1=1.92×10-3 J ,E 2=6.2×10-4 J .(静电力恒量k =9.0×109 N·m 2/C 2,取sin 37°=0.6,cos 37°=0.8,重力加速度g =10 m/s 2)(1)求电势能为E 1时小球的位置坐标x 1和小球的质量m ; (2)已知在x 1处时小球与杆间的弹力恰好为零,求小球的电量q 2; (3)求小球释放瞬间弹簧的弹性势能E p .解析:(1)电势能为E 1时最大,所以应是电荷q 1对小球做负功和正功的分界点,即应该是过q 1作的ON 的垂线与ON 的交点. x 1=a cos 37°×12cos 37°=0.32 m根据图象得到mgh =E 1得m =E 1gx 1sin 37°= 1.92×10-310×0.32×0.6 kg =1×10-3kg.(2)小球受到重力G 、库仑力Fkq 1q 2⎝ ⎛⎭⎪⎫12OP sin 37°2=mg cos 37°q 2=mg cos 37°⎝ ⎛⎭⎪⎫12OP sin 37°2kq 1=错误! C =2.56×10-6C.(3)对O 到N ,小球离开弹簧后到达N 点的速度为零,根据能量守恒,得到E p +E 0=E 2+mgh ONE p=E2+mgh ON-E0=6.2×10-4 J+1×10-3×10×0.6 J-1.24×10-3 J=5.38×10-3 J.答案:(1)0.32 m 1×10-3 kg (2)2.56×10-6 C(3)5.38×10-3 J。
静电场综合检测(时间:90分钟满分:100分)一、选择题(本题共14小题,每小题4分,共56分.在每小题给出的四个选项中,第1~8小题只有一个选项正确,第9~14小题有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不选的得 0分)1.下列关于匀强电场中电场强度和电势差的关系,正确的说法是( C )A.在相同距离上的两点,电势差大的其电场强度也必定大B.电场强度在数值上等于每单位距离上的电势降落C.沿着电场线方向,任何相同距离上的电势降落必定相同D.电势降落的方向必定是电场强度方向解析:由U AB=Ed及d为沿电场线方向的距离知选项C正确,A错误;由E=知电场强度在数值上等于沿电场线方向单位距离上的电势降落,电势降落最快的方向才是电场强度的方向,选项B,D错误.2. 如图a,b,c,d四个点在一条直线上,a和b,b和c,c和d间的距离均为R,在a点处固定有一电荷量为Q的点电荷,在d点处固定有另一个电荷量未知的点电荷,除此之外无其他电荷,已知b点处的电场强度为零,则c点处电场强度的大小为(式中k为静电力常量)( B )A.0B.C.D.解析:根据b点电场强度为零知=,得Q′=4Q,c点的电场强度大小为E=-=,选项B正确.3.如图(甲)所示,两段等长绝缘轻质细绳将质量分别为m,3m的带电小球A,B(均可视为点电荷)悬挂在O点,系统处于静止状态,然后在水平方向施加一匀强电场,当系统再次达到静止状态时,如图(乙)所示,小球B刚好位于O点正下方(细绳始终处于伸长状态).则两个点电荷带电荷量Q A与Q B的大小关系正确的是( A )A.7∶3B.3∶1C.3∶7D.5∶3解析:在图(乙)中,对A,B整体受力分析,由平衡条件可得F TOA cos θ=4mg,Q B E+F TOA sin θ=Q A E;对B受力分析,由平衡条件可得F TAB cos θ+Fcos θ=3mg,F TAB sin θ+Fsin θ=Q B E,由以上各式解得=,故A 正确.4.真空中相距为3a的两个点电荷A和B,分别固定于x轴上x1=0和x2=3a的两点,在二者连线上各点电场强度随x变化关系如图所示,以下说法正确的是( D )A.二者一定是异种电荷B.x=a处的电势一定为零C.x=2a处的电势一定大于零D.A,B的电荷量之比为1∶4解析:电场强度先负方向减少到零又反方向增加,必为同种电荷,故A错误;电场强度为零的地方电势不一定为零,故B错误;由于没有确定零电势点,无法比较x=2a处的电势与零电势的高低,故C错误;x=a处合场强为0,由E=知,=,所以A,B所带电荷量的绝对值之比为1∶4,故D正确.5.某区域的电场线分布如图所示,其中间一根电场线是直线,一带正电的粒子从直线上的O 点由静止开始在电场力作用下运动到A点.取O点为坐标原点,沿直线向右为x轴正方向,粒子的重力忽略不计.在O点到A点的运动过程中,下列关于粒子运动速度和加速度a随时间t 的变化、粒子的动能E k和运动径迹上的电势 随位移x的变化图线可能正确的是( B )解析:由图可知,从O到A点,电场线由密到疏再到密,电场强度先减小后增大,方向不变,因此电荷受到的电场力先减小后增大,则加速度先减小后增大,v t图像的斜率表示加速度的大小,故A错误,B正确;沿着电场线方向电势降低,而电势与位移的图像的斜率表示电场强度,故C错误;电荷在电场力作用下做正功,导致电势能减小,则动能增加,由动能定理可得动能与位移关系图线的斜率表示电场力的大小,因为电场力先减小,后增大,故D错误.6.在匀强电场中建立一直角坐标系,如图所示.从坐标原点沿+y轴前进0.2 m 到A点,电势降低了10 V,从坐标原点沿+x轴前进0.2 m到B点,电势升高了10 V,则匀强电场的电场强度大小和方向为( C )A.50 V/m,方向B→AB.50 V/m,方向A→BC.100 V/m,方向B→AD.100 V/m,方向垂直AB斜向下解析:连接AB,由题意可知,AB中点C点电势应与坐标原点O相等,连接OC即为等势线,与等势线OC垂直的方向为电场的方向,故电场方向由B→A,其大小为E==V/m=100 V/m,选项C正确.7.如图所示,带电荷量相等、质量不同的带电粒子a和b从带电平行板M的边缘沿平行于极板的方向进入M,N两极板间的匀强电场中,都恰好能从N板的右边缘飞出,不计重力作用,则( C )A.两粒子进入电场时的动能一定不相等B.两粒子进入电场时的初速度的大小一定相等C.两粒子飞出电场时的动能一定相等D.两粒子飞出电场时的速度大小一定相等解析:设极板的长度是L,板间距离是d,设粒子的初速度为v0,带电粒子在极板间做类平抛运动.在水平方向有L=v0t;竖直方向有d=at2=;则粒子的初动能E k0=m=,由于q,E,L,d相同,所以两粒子的初动能相等,选项A错误;由于两粒子进入电场时的初动能相等而粒子质量不相等,则粒子的初速度大小一定不相等,选项B错误;两粒子电荷量相等,进入与离开电场时的位置相同,则电场力做功相同,粒子的初动能相同,由动能定理可得,粒子离开电场时的动能相等,选项C正确;粒子离开电场时的动能相等,粒子质量不同,则粒子离开电场时的速度不等,选项D错误.8.如图所示,O点是两个点电荷+6Q和-Q连线的中点,M,N是+6Q和-Q连线中垂线上关于O点对称的两点.取无穷远处为零电势点,下列说法正确的是( C )A.O点的电场强度不为零,电势为零B.M,N两点的电势不为零,电场强度方向水平向右C.将一正的试探电荷由M点移到O点,该试探电荷的电势能变大D.将一负的试探电荷由O点移到N点,电场力对试探电荷做正功解析:两点电荷在O点的电场强度都向右,不为零;由于两电荷电荷量不相等,将一正点电荷从无穷远处移到O点,6Q的正电荷做的负功与-Q的负电荷做的正功不相等,电场力做的总功不为零,故O点电势不为零,故A错误;M,N两点的电势不为零;由电场强度E=可知,6Q的正电荷在M,N点的电场强度大于-Q的负电荷的电场强度,根据矢量合成法则,M点的电场强度方向向右上方,N点的电场强度方向向右下方,故B错误;将一正的试探电荷由M点移到O 点,6Q的正电荷做的负功大于-Q的负电荷做的正功,该试探电荷的电势能变大,故C正确;将一负的试探电荷由O点移到N点,6Q的正电荷做的负功大于-Q的负电荷做的正功,电场力对试探电荷做负功,故D错误.9.如图所示,在正方形ABCD区域内有平行于AB边的匀强电场,E,F,G,H是各边中点,其连线构成正方形,其中P点是EH的中点.一个带正电的粒子(不计重力)从F点沿FH方向射入电场后恰好从D点射出.以下说法正确的是( BD )A.粒子的运动轨迹一定经过P点B.粒子的运动轨迹一定经过PE之间某点C.若将粒子的初速度变为原来的一半,粒子会由ED之间某点从AD边射出D.若将粒子的初速度变为原来的一半,粒子恰好由E点从AD边射出解析:粒子从F点沿FH方向射入电场后恰好从D点射出,其轨迹是抛物线,则过D点作速度的反向延长线一定与水平位移交于FH的中点,而延长线又经过P点,所以粒子轨迹一定经过PE 之间某点,选项A错误,B正确;由平抛知识可知,当竖直位移一定时,水平速度变为原来的一半,由于y方向的位移、加速度均不变,则运动时间不变,因此水平位移也变为原来的一半,粒子恰好由E点从AD边射出,选项C错误,D正确.10.在同一直线上的M,N两点正好是某电场中一条电场线上的两点,若在M点释放一个初速度为零的电子,电子仅受电场力作用,并沿电场线由M点运动到N点,其电势能随位移变化的关系如图所示,则下列说法正确的是( BD )A.该电场有可能是匀强电场B.该电场可能是负的点电荷产生的C.N点的电势比M点电势低D.该电子运动的加速度越来越小解析:由E p=-qEx可知,图像的斜率反映电场强度大小,由E p x图像可知,斜率越来越小,则电场强度逐渐减小,则选项A错误;电子由M到N的过程中,电场力做正功,电势能减小,因此电场线的方向由N到M,所以选项B正确,C错误;电子从M运动到N过程中,电场力越来越小,则加速度越来越小,选项D正确.11.如图所示,在水平放置的已经充电的平行板电容器之间,有一带负电的油滴处于静止状态.若某时刻油滴的电荷量开始减小(质量不变),为维持该油滴原来的静止状态应( AD )A.给平行板电容器继续充电,补充电荷量B.让平行板电容器放电,减少电荷量C.使两极板相互靠近些D.将上极板水平右移一些解析:给平行板电容器继续充电,电荷量增大,电容不变,根据U=知电势差增大,根据E=,知电场强度增大,则油滴受到的电场力增大,能再次平衡,故A正确;让电容器放电,电荷量减小,电容不变,根据U=,知电势差减小,根据E=,知电场强度减小,则油滴受到的电场力减小,电荷不能平衡,故B错误;因为U=,C=,所以电场强度E===,与电容器两极板间的距离无关,所以电容器两极板靠近和远离时,电场强度不变,则油滴受到的电场力减小,电荷不能平衡,故C错误;因为电场强度E=,当将上极板水平右移一些即面积减小,电场强度增大,则油滴受到的电场力增大,能再次平衡,故选项D正确.12.在静电场中,有一带电粒子仅在电场力作用下做变加速直线运动,先后经过A,B,C点运动到D点.在粒子通过A点时开始计时,此过程的“速度—时间”图像如图所示.下列说法正确的是( AC )A.A点的电场强度最大B.A点的电势小于B点的电势C.粒子在A点的电势能大于在B点的电势能D.A,C两点的电势差U AC与C,D两点的电势差U CD相等解析:由运动的速度—时间图像可看出:在A点时斜率最大,故加速度最大,故电场强度最大,故A正确.粒子电性不确定,无法比较电势高低,故B错误.因只有电场力做功,粒子的动能与电势能的总量不变,由图可知粒子在B点的速度最大,所以在B点的动能最大,电势能最小,所以粒子在A点的电势能大于在B点的电势能,故C正确.A,D两点的速度相等,故粒子的动能相同,A,D两点的电势能相等,电势相等,故U AC=U DC=-U CD,故D错误.13.两个完全相同的平行板电容器C1,C2水平放置,如图所示.开关S闭合时,两电容器中间各有一油滴A,B刚好处于静止状态.现将S断开,将C2下极板向上移动少许,然后再次闭合S,则下列说法正确的是( BCD )A.两油滴的质量相等,电性相反B.断开开关,移动C2下极板过程中,B所在位置的电势不变C.再次闭合S瞬间,通过开关的电流可能从上向下D.再次闭合开关后,A向下运动,B向上运动解析:当S闭合时,左边电容器的上极板和右边电容器的下极板相连,即两个极板的电势相等,又因为其他两个极板都接地,电势相等,故两极板间的电势差的绝对值相等,根据mg=q,由于不知道两油滴的电荷量,故两个油滴的质量不一定相等,若C1上极板带正电,则C1电场方向竖直向下,A液滴应受到竖直向上的电场力,故带负电,C2下极板带正电,则C2电场方向竖直向上,B滴液应受到竖直向上的电场力,所以带正电,电性相反;若C1上极板带负电,则C1电场方向竖直向上,A液滴应受到竖直向上的电场力,故带正电,C2下极板带负电,则C2电场方向竖直向下,B滴液应受到竖直向上的电场力,所以带负电,电性相反,总之两油滴的电性相反,A错误;断开开关,移动C2下极板过程中,两极板所带电荷量相等,根据C=,C=,E=联立可得E=,两极板间的电场强度大小和两极板间的距离无关,故电场强度恒定,所以B的受力不变,故仍处于静止状态,与上极板(零电势)的距离不变,根据U=Ed可知B点的电势不变,B正确;S断开,将C2下极板向上移动少许,根据C=可知C2增大,根据C=可知U减小,即C2下极板电势降低,再次闭合S瞬间,C1上极板的电势大于C2下极板的电势,通过开关的电流可能从上向下,稳定后,根据E=可知C1电容器两极板间的电势差减小,电场强度减小,A向下运动,C2两极板间的电势差增大,电场强度增大,B向上运动,C,D正确.14.水平放置的光滑绝缘环上套有三个带电小球,小球可在环上自由移动.如图所示是小球平衡后的可能位置图.(甲)图中三个小球构成一个钝角三角形,A点是钝角三角形的顶点.(乙)图中小球构成一个锐角三角形,其中三角形边长DE>DF>EF.可以判断正确的是( AC )A.(甲)图中A,B两小球一定带异种电荷B.(甲)图中三个小球一定带等量电荷C.(乙)图中三个小球一定带同种电荷D.(乙)图中三个小球带电荷量的大小为Q D>Q F>Q E解析:对C球进行受力分析,根据平衡条件得C球一定要受一个排斥力和一个吸引力,则A,B 球一定带不同电荷,选项A正确;如果(甲)图中小球是带等量电荷,那么小球应该均匀地分布在环上,选项B错误;对D球分析,D球不可能受到一个斥力和一个引力,所以E,F球带同种电荷,分析E球根据平衡条件可得D,F球带同种电荷,所以(乙)图中三个球带同种电荷,选项C 正确;D球受到两斥力,设圆心为O,DE大于DF,同时∠ODE小于∠ODF,可得受E球斥力更大,又离E球远可得E球电荷量大于F球,选项D错误.二、非选择题(共44分)15.(8分)如图所示,长度为d的绝缘轻杆一端套在光滑水平转轴O上,另一端固定一质量为m、电荷量为q的带负电小球.小球可以在竖直平面内做圆周运动,AC和BD分别为圆的竖直和水平直径.等量异种点电荷+Q,-Q分别固定在以C为中点、间距为2d的水平线上的E,F两点.让小球从最高点A由静止开始运动,经过B点时小球的速度大小为v,不考虑q对+Q,-Q 所产生电场的影响.求:(1)小球经过C点时球对杆的拉力的大小;(2)小球经过D点时速度的大小.解析:(1)设U BA=U,根据对称性可知,U BA=U AD=U,U AC=0小球从A到C过程,根据动能定理有mg·2d=m(2分)沿竖直方向有F T-mg=m(1分)整理得F T=5mg(1分)根据牛顿第三定律可知,球对杆的拉力大小为5mg.(1分)(2)从A到B和从A到D的过程中,根据动能定理得mgd+qU=mv2(1分)mgd-qU=m(1分)整理得v D=.(1分)答案:(1)5mg (2)16.(10分)如图所示,两块平行金属板MN间的距离为d,两板间电压u随时间t变化的规律如图所示,电压的绝对值为U0.t=0时刻M板的电势比N板低.在t=0时刻有一个电子从M板处无初速度释放,经过 1.5个周期刚好到达N板.电子的电荷量为e,质量为m.求:(1)该电子到达N板时的速率v.(2)在1.25个周期末该电子和N板间的距离s.解析:(1)由题意知,电子在第一、第三个T内向右做初速度为零的匀加速运动,第二个T内向右做末速度为零的匀减速运动.由x=at2知,这三段时间内电子的位移是相同的.在第三个T内对电子用动能定理eU=mv2,(3分)其中U=U0,得v=.(2分)(2)在第三个T内,电子做初速度为零的匀加速运动,总位移是d,前一半时间内的位移是该位移的,为x′=d,(3分)因此这时离N板的距离s=d-d= d.(2分)答案:(1)(2) d17.(12分)如图所示,在竖直面内有一矩形区ABCD,水平边AB=L,竖直边BC=L,O为矩形对角线的交点.将一质量为m的小球以一定的初动能自O点水平向右抛出,小球经过BC边时的速度方向与BC夹角为60°.使此小球带电,电荷量为q(q>0),同时加一平行于矩形ABCD的匀强电场.现从O点以同样的初动能沿各个方向抛出此带电小球,小球从矩形边界的不同位置射出,其中经过C点的小球的动能为初动能的,经过E点(DC中点)的小球的动能为初动能的,重力加速度为g,求:(1)小球的初动能;(2)取电场中O点的电势为零,求C,E两点的电势;(3)带电小球经过矩形边界的哪个位置动能最大?最大动能是多少? 解析:(1)没加电场时,由平抛运动知识水平方向L=v0t(1分)竖直方向v y=gt(1分)v y=v0tan 30°联立解得小球的初动能E k0=m=mgL.(1分)(2)加电场后,根据能量守恒定律由O到C:qϕC=mgL+E k0-E k0=mgL(1分)由O到E:qϕE=mgL+E k0-E k0=mgL(1分)则ϕC=,ϕE=.(1分)(3)如图,取OC中点F,则EF为等势线,电场线与等势线EF垂直由U OE=ELcos 30°(1分)得qE=mg(1分)用正交分解法求出电场力和重力的合力F x=qEsin 30°=mg(1分)F y=qEcos 30°=mg(1分)合力F==mg,方向沿OD合力对小球做功越多,小球动能越大,则从D点射出的带电小球动能最大,根据动能定理F·=E km-E k0(1分)解得最大初动能E km=mgL.(1分)答案:(1)mgL (2)(3)见解析18.(14分)如图所示,在方向竖直向上、大小为E=1×106 V/m的匀强电场中,固定一个穿有A,B两个小球(均视为质点)的光滑绝缘圆环,圆环在竖直平面内,圆心为O、半径为R=0.2 m.A,B用一根绝缘轻杆相连,A带的电荷量为q=+7×10-7 C,B不带电,质量分别为m A= 0.01 kg,m B=0.08 kg.将两小球从圆环上的图示位置(A与圆心O等高,B在圆心O的正下方)由静止释放,两小球开始沿逆时针方向转动.取g =10 m/s2.(1)通过计算判断,小球A能否到达圆环的最高点C;(2)求小球A的最大速度值;(可保留根号)(3)求小球A从图示位置逆时针转动的过程中,其电势能变化的最大值.解析:(1)设A,B在转动过程中,轻杆对A,B做的功分别为W T,W T′,则W T+W T′=0(1分)设A,B到达圆环最高点的动能分别为E kA,E kB对A由动能定理qER-m A gR+W T1=E kA(1分)对B由动能定理W T1′-m B gR=E kB(1分)联立解得E kA+E kB=-0.04 J(1分)上式表明,A在圆环最高点时,系统动能为负值.故A不能到达圆环最高点.(1分)(2)设B转过α角时,A,B的速度大小分别为v A,v B,因A,B做圆周运动的半径和角速度均相同,故v A=v B(1分)对A由动能定理qERsin α-m A gRsin α+W T2=m A(1分)对B由动能定理W T2′-m B gR(1-cos α)=m B(1分)联立解得=×(3sin α+4cos α-4)(1分)解得当tan α=时,A,B的最大速度均为v max= m/s.(1分)(3)A,B从图示位置逆时针转动过程中,当两球速度为0时,电场力做功最多,电势能减少最多,故得3sin α+4cos α-4=0(1分)解得sin α=(sin α=0舍去)故A的电势能减少量|ΔE p|=qERsin α(2分)代入数值得|ΔE p|= J=0.134 4 J.(1分)(其他解法合理均可)答案:(1)不能,理由见解析(2) m/s (3)0.134 4 J。
章末质量检测(七)(时间:40分钟)一、选择题(此题共8小题,1~5题为单项选择题,6~8题为多项选择题) 1.如下关于电场强度的说法中正确的答案是( )A.由E =F q知,假设q 减半,如此该处电场强度变为原来的2倍 B.由E =k Q r 2知,E 与Q 成正比,而与r 2成反比C.由E =k Q r2知,在以Q 为球心、r 为半径的球面上的各点的电场强度均一样 D.电场中某点的电场强度的方向就是该点所放电荷受到的静电力的方向解析 电场中某点的场强大小与试探电荷的电荷量无关,应当选项A 错误;由E =k Q r2知,E 与Q 成正比,而与r 2成反比,选项B 正确;由E =k Qr2知,在以Q 为球心、r 为半径的球面上的各点的电场强度大小均一样,但是方向不同,选项C 错误;电场中某点的电场强度的方向就是该点所放正电荷受到的电场力的方向,选项D 错误。
答案 B2.对以下四幅图中包含的物理知识说法正确的答案是( )图1A.图甲:将两板间距拉开一些后,静电计指针张角会变小B.图乙:距离带电体越远,等势面的形状与带电体的形状越相似C.图丙:研究均匀带电球体在球外产生的电场时,可以认为全部电荷集中在球心D.图丁:此种电容器不仅可以接在直流电源上使用,也可以接在交流电源上使用解析 图甲中,当Q 一定时,由C =Q U ,C =εr S4k πd 知,d ↑、C ↓、U ↑,静电计指针张角变大,选项A 错误;距离带电体越远,等势面的形状越接近圆形,选项B 错误;均匀带电球体或球壳在球外产生的电场,可认为全部电荷集中在球心,选项C 正确;图中电容器为电解电容器,只能在直流电源上使用。
答案 C3.(2020·泰安一模)如图2所示,+Q 为固定的正点电荷,虚线圆是其一条等势线,两电荷量一样、但质量不相等的粒子,分别从同一点A 以一样的速度v 0射入,轨迹如图中曲线,B 、C 为两曲线与圆的交点。
1 / 12 阶段综合检测(三) 第七~九章验收 (时间:90分钟 满分:110分) 一、选择题(本题共12小题,每小题4分,共48分。在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~12题有多项符合题目要求。全部选对的得4分,选对但不全的得2分,有选错的得0分) 1.(2018·苏州模拟)如图为金属球放入匀强电场后电场线的分布情两点B、A,则BE、AE两点的电场强度大小分别为B、A况。设该电场中( ) ,电场方向相同BE=AE.A ,电场方向相同BE,电场方向不同BE>AE.C ,电场方向不同BE解析:选D A、B两点的场强方向沿电场线的切线方向,场强大小看电场线的疏密程项正确。D,电场方向不同,BE2.(2018·安徽郎溪中学模拟)根据电磁理论,半径为R、电流强度
为已知常量。k,其中IRk=B的环形电流中心处的磁感应强度大小I为现有一半径为r,匝数为N的线圈,线圈未通电流时,加水平且平行于,给线圈通上)不考虑地磁场(的匀强磁场,小磁针指向在线圈平面内CB线圈平面、大小为待测电流后,小磁针水平偏转了α角。则( ) αsin CB=OB处产生的磁感应强度O.待测电流在圆心A
BCrtan αkN=xI的大小xI.待测电流B
C.仅改变电流方向,小磁针转向不会变化 D.仅改变电流大小可以使小磁针垂直于线圈平面 处产生的磁感O与待测电流在圆心CB所加磁场磁感应强度 B解析:选=OB错误;由题意可知:A,αtan CB=OB的关系如图所示,有:OB应强度
磁感应强正确;仅改变电流方向,环形电流产生的磁场的B,BCrtan αkN=xI,解得:NIxrk
度方向改变,小磁针转向发生变化,C错误;仅改变电流大小,环形电流产生的磁场的磁感应强度方向不变,大小改变,合场强不能与线圈平面垂直,小磁针也不能垂直于线圈平面,D错误。 ★3.(2018·广西柳州铁路一中模拟)两个较大的平行金属板A、B相距为d,分别接在电压为U的电源正、负极上,这时质量为m、带电荷量为-2 / 12
q的油滴恰好静止在两板之间,如图所示。在其他条件不变的情况下,如果将B板向下移
动一小段距离,则该过程中( ) A.油滴将向上加速运动,电流计中的电流从b流向a B.油滴将向下加速运动,电流计中的电流从a流向b C.油滴静止不动,电流计中的电流从b流向a D.油滴静止不动,电流计中的电流从a流向b 解析:选B 开始时油滴静止,说明电场力与重力平衡;电容器与电源直接相连,故
可知,电场强度减Ud=E增大,则由d板向下移动一小段距离,板间距离B电压不变,当
可εrS4πkd=C增大,则由d小,电场力减小,故重力大于电场力,油滴向下加速运动;由于知,电容C减小,因电压不变,则由Q=UC可知,电荷量Q减小,电容器放电,电流计中有从a到b的电流,故B正确,A、C、D错误。 ★4.(2018·广州模拟)如图所示,已知甲空间中没有电场;乙空间中有竖直向上的匀强电场;丙空间中有竖直向下的匀强电场。三个图中的斜面相同且绝缘,相同的带负电小沿水平方向抛出,分别落在甲、乙、丙图中斜0v点以相同初速度 O球从斜面上的相同位置。小球受到的电场力OCl、OBl、OAl点的距离分别为 O,距离)图中未画出(点 C、B、A面上始终小于重力,不计空气阻力。则
OCl>OBl>OAl.A OCl>OAl>OBl.B
OBl>OAl>OCl.C OAl>OBl>OCl.D
解析:选C 甲图小球不受电场力,加速度为g,带电小球在乙图中受到竖直向下的电场力与重力,加速度大于g,而在丙图中受到竖直向上的电场力与重力,加速度小于g,根
=t,解得:at2v0=12at2v0t=hx=θtan 据类平抛运动规律,他们落在斜面上时均有:,可知,当加速度越大时,所用时间越短,因此沿斜面运动的距离也就越小,即2v0tan θa
错误。D、B、A正确,C,故OBl>OAl>OCl
5.(2018·齐齐哈尔八中模拟)如图所示,匀强电场中的A、B、C三点移动A的电子从e的等边三角形。把带电荷量为-a3的连线构成边长为3 / 12
到B,电场力做功W;把带电荷量为e的粒子从B移到C,电场力也做功W,则下列说法中正确的是( )
Cφ>Bφ>Aφ三点的电势关系为C、B、A.A
Cφ=Bφ>Aφ三点的电势关系为C、B、A.B
C.电场强度的方向与AB垂直 2W3ea.若场强与纸面平行,则场强大小等于D
解析:选D 把带电荷量为-e的电子从A点移动到B点,电场力做功W,把带电荷量为e的粒子从B点移动到C点,电场力做正功仍为W,则若电子从A到C,电场力做功为;若移动的是负电荷,随着电场力做正功,电势能减小,而电势增加;Cφ=Aφ零,所以>Bφ,Bφ<Aφ若是正电荷,则随着电场力做正功,电势能减小,且电势减小,所以有两点是等势点,连线为等势面,电场线与等势面垂直,C、A错误;由上可知B、A,故Cφ
所以电场线方向垂直于AC,故C错误;由题意可知,粒子从B到C电场力做功为W,则32=sin 60°×a3=d间沿电场线方向上距离为:C、B,We=BCU间的电势差大小为:C、B
正确。D,故2W3ea=UBCd=E,所以a ★6.(2018·河北邱县一中模拟)一质量为m的带电液滴以竖直向下的初进入某电场中。由于电场力和重力的作用,液滴沿竖直方向下落一段0v速度距离h后,速度变为0。在此过程中,以下判断正确的是( ) A.液滴一定带负电
mgh+20mv12.重力对液滴做的功为B
20mv
1
2.合外力对液滴做的功为-C
D.液滴的机械能减少了mgh 解析:选C 重力方向竖直向下,而液体向下做匀减速直线运动,故合力向上,所以液滴受到的电场力方向一定竖直向上,液滴带正电,A错误;液滴下降了h,所以重力做功
正确;液滴的重力势能减少C,20mv12=-20mv12-0=合W错误;根据动能定理可得B,mgh为
错误。D,mgh+20mv12,所以液滴的机械能减少20mv12,动能减少mgh 正U238 92如图所示,虚线圆是一个铀核)河南南阳一中模拟7.(2018·★点时,衰变O做匀速圆周运动的轨迹,当它运动到0v在匀强磁场中以速率共线,不计衰变后粒0v和另外一个新核,两核的速度方向与Th234 90成钍核子间的相互作用,则关于钍核与新核在磁场中运动的轨迹和绕行方向可能正确的是( ) 4 / 12
方向相同,根据动量守恒定律知,钍核的速度方0v若新核的速度方向与 A解析:选方向相同,由左手定则判断可知,衰变后钍核与新核所受的洛伦兹力均向0v向也可能与
是动量,由于钍核的带电荷量远大于p,pqB=mvqB=r右,均沿顺时针方向绕行。由半径公式新核(α粒子)的带电荷量,知钍核的轨道半径小于新核的轨道半径,因此A图是可能的,方向相反,由左手定则知,衰变后钍核0v错误;若衰变后钍核的速度方向与C正确,A故
0v错误;若衰变后钍核和新核的速度方向均与B所受的洛伦兹力向左,应顺时针绕行,故
方向相反,衰变后两者的总动量与原来的总动量方向相反,违反了动量守恒定律,故D错误。 8.(2018·东台模拟)如图所示在玻璃皿的中心放一个圆柱形电极P,紧贴边缘内壁放一个圆环形电极Q,并把它们与电源的两极相连,
然后在玻璃皿中放入导电液体。现在把玻璃皿放在图示磁场中,下列判断正确的是( ) A.若P接电池的正极,Q接电池的负极,俯视时液体逆时针转动 B.若P接电池的正极,Q接电池的负极,俯视时液体顺时针转动 C.若两电极之间接50 Hz正弦交流电,液体不转动 D.若两电极之间接50 Hz正弦交流电,液体不断往返转动 解析:选BC 若P接电源正极,Q接电源负极,在电源外部电流由正极流向负极,因此电流由中心流向边缘;玻璃皿所在处的磁场竖直向上,由左手定则可知,导电液体受到的磁场力沿顺时针方向,因此液体顺时针方向旋转,故A错误,B正确;P、Q与50 Hz的交流电源相接,电流方向变化时间过短,液体不会旋转,故C正确,D错误。 9.如图所示,电源电动势为E,内阻不计。滑动变阻器阻值为R,三只电流表都是理想电20 Ω=2R,30 Ω=1R,定值电阻50 Ω=流表。滑动变阻器的滑动触头P从a向b移动过程中,下列说法正确的是( ) A.电流表A的示数先增大后减小 的示数先增大后减小1A.电流表B 的示数逐渐增大2A.电流表C 5 / 12
D.滑动触头P移到b端时电流表A的示数最大 滑动变阻器的滑动触时,外电路的电阻最大,则bPR+2R=aPR+1R当满足 CD解析:选头P从a向b移动过程中,电路的总电阻先增大后减小,电流先减小后增大,电流表A的=1I的示数1A错误;因电源的内阻不计,可知电流表A示数先减小后增大,选项
=2I的示数2A错误;电流表B示数减小,选项1A的增加,电流表aPR,则随着ER1+RaP
正确;由数学知识可知,当C示数逐渐增大,选项2A的减小,电流表bPR,则随着ER1+RbP
滑动触头P移到b端时电路的总电阻最小,此时电流表A的示数最大,选项D正确。 10.如图所示,两平行金属板始终与电源两极相连,电源电压为8.0 V,两板的间距为2 cm,而且极板B接地。极板间有C、D两点,C距A板0.5 cm,D距B板0.5 cm,则( ) A.两板间的场强大小为400 V/m B.C、D两点的电势相等 2.0 V=Cφ点的电势C.C 2.0 V=Dφ点的电势D.D
正A,则400 V/m=V/m 80.02=Ud=E计算出两板间的场强为Ud=E由公式 AD解析:选Dφ;同理得6 V=Cφ,得2 V=V 2-400×0.5×10=ACU,8 V=Aφ,0=Bφ板接地,B确;
=2 V,D正确,B、C错误。 11.(2018·大庆实验中学模拟)如图所示,虚线MN将平面分成Ⅰ和Ⅱ两个区域,两个区域都存在与纸面垂直的匀强磁场。一带电粒子仅在磁场力作用下由Ⅰ区运动到Ⅱ区,弧线aPb为运动过程中的一段轨迹,其中弧aP与弧Pb的弧长之比为2∶1,下列判断一定正确的是( ) A.两个磁场的磁感应强度方向相反,大小之比为2∶1 B.粒子在两个磁场中的运动速度大小之比为1∶1 C.粒子通过aP、Pb两段弧的时间之比为2∶1 D.弧aP与弧Pb对应的圆心角之比为2∶1 解析:选BC 根据曲线运动的条件,可知洛伦兹力的方向与运动方向的关系,再由左
,及洛伦兹力不做mvBq=r,再由θ=lr手定则可知,两个磁场的磁感应强度方向相反,根据
,因圆心角不知,所以无法确定磁mvθql=B功,即运动的速率不变,可得磁感应强度大小感应强度之比,故A、D错误;由于洛伦兹力不做功,所以粒子在两个磁场中的运动速度大小不变,故B正确;已知粒子在两个磁场中运动的速度大小相等,两段弧长之比为2∶1,