监督分类后处理和精度评价
- 格式:doc
- 大小:770.50 KB
- 文档页数:5
遥感实验报告实验目的:掌握遥感图像计算机分类的基本原理以及监督分类方法,掌握分类后处理方法、分类精度评价及专题地图制作。
实验内容:1、遥感图像计算机监督分类2、分类后处理3、分类精度评价4、专题图制作实验方法和步骤:实验方法:在监督分类的过程中,首先借助或者识别其他信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有该特性的像元。
对分类结果进行评价后在对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上进行最终分类。
实验步骤:1.定义分类模板2.精度评价3.进行监督分类4.评价分类结果5.分类后处理6.专题制图实验的过程和结果:(一)监督分类1.定义分类模板第一步:打开分类的图像,南宁市1990年9月16日TM,目视判断该遥感图像中南宁市土地利用类型,确定土地利用分类体系为:耕地、灌草地、林地、水域、建设用地、裸地。
如图1-1:图1-1第二步:打开模板编辑器并调整显示字段点击主菜单上的classifier打开classification对话框,选择signature editor。
如图1-2:图1-2第三步:获取分类模板信息,点击AOI,利用AOI-tools中的多边形工具绘制某一地类的样区。
将画好的耕地AOI添加到模板。
signature editor-edit-add.如图1-3,1-4:图1-3图1-4重复步骤第三步,在图中采集多个耕地样本。
选择所有耕地样本模板,按merge 按纽合并这组分类模板。
合并后将模板取名为耕地。
利用同样的方法,依次做好其灌草地、林地、水域、建设用地、裸地土地覆盖类型模板。
如图1-5:图1-5第四步:保存分类模板。
2 .评价分类模板第一步:点signature editor-Evaluate-contingency,利用可能性矩阵方法评价分类模板精度。
达到90以上即为精度满足要求,否则重新选择训练样区,再次进行精度评价,直到精度满足。
ENVI中几种监督分类方法精度比较遥感图像的监督分类常用方法目前可以分为:平行六面体法,马氏距离法,最大似然法,神经网络法以及支持向量机法等。
文章将就以上所述的五种常用的监督分类方法在ENVI中分别对汶川县威州镇同一Landsat8 OLI数据进行土地覆盖与利用状况分类.比较各种方法的分类精度,并对之所产生的差异的原因进行浅析,进而对实际的生产以及应用做出借鉴。
标签:监督分类;平行六面体;神经网络;支持向量机;分类精度Abstract:The common methods of supervised classification of remote sensing images can be divided into:parallelepiped classifier method,Mahalanobis distance method,maximum likelihood method,neural network method and support vector machine method. In this paper,the land cover and utilization of the same Landsat8 OLI data in Weizhou Town,Wenchuan County are classified by the five common supervised classification methods mentioned above in ENVI. Comparing the classification accuracy of various methods,we made an analysis of the causes of the differences,and then identify their actual production and application.Keywords:supervised classification;parallelepiped;neural network;support vector machine;classification accuracy1 概述遥感图像的分类主要是利用计算机将遥感图像中的光谱和空间信息进行分析,提出不同地物之间的特征及边界,并利用一定的算法的各个像元划归到互不重叠的各个子空间之中。
老师要求提交:1.可能性矩阵2.精度评价报告3.分类结果图具体流程:1.打开影像,考试时的影像是老师给的高分辨率影像。
以已有的QuickBird影像为例:File---Open Image File ,在Available Band 中以RGB打开,为真彩色,即地物的真实颜色。
2.选择监督分类样本(感兴趣区域):在影像的工具栏中选择,Overlay---Region of interest在打开的#1 ROI Tool 工具栏中,以多边形的方式选择感兴趣区:ROI-Type----Polygon 在zoom窗口中进行选择选择类别,植被,水体,裸地,房屋。
查看分离程度,继续在ROI Tool 工具栏中,选择Option—compute ROI separability ,选择影像ok.,相关度大于1.8的说明分类较好。
保存文件。
2.用最大似然法进行监督分类,主菜单栏中,Classification —Supervised—Maximum Likelihood,进入选择参数的对话框。
Select all Item阈值Probability Threshold一般在0~1之间。
不需输出真实值。
因为还要分类后处理,储存至memory.3.分类后处理,①分类合并,在主菜单中Classification—post classification—Sieve Classes选择刚才分类好的,memory影像,改变Group Min Threshold数值,由2改到8.即改变每类别最小像元值,由于我只选了四个类别数,应该做完后不会有类别的合并。
保存文件,即要求交的分类结果图。
②生成混淆矩阵主菜单中,Classification—post classification—confusion Matrix—Using Ground Truth ROIS. 将所有类别都选上。
保存混淆矩阵大致是这样,可能还不完整。
单选1-5:AACCC6-10:BDCDD11-15:BADAB16-20:BBABA21-25:DCDAA26-30:ACDDC31-35:DBBCC36-40:DCCAD41-45:BDCBD46-50:ABBCA多选51、ABCD52、CD53、AD54、ABC55、ACD操作56-60:CCBDA61-65:DABBA名词解释66.大地坐标系答:大地坐标系是大地测量中以参考椭球面为基准面建立起来的坐标系。
地面点的位置用大地经度、大地纬度和大地高度表示。
大地坐标系的确立包括选择一个椭球、对椭球进行定位和确定大地起算数据。
大地坐标系亦称为地理坐标系。
67.BDS答:BDS是中国北斗卫星导航系统简写,是中国自行研制的全球卫星导航系统。
北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力。
68.分布式数据库答:是一组数据的集合,这些数据在物理上分布于计算机网络的不同结点上,而逻辑上属于同一个系统。
它具有分布性,同时在逻辑上互相关联。
69.泰森多边形答:它采用了一种极端的边界内插方法,只用最近的单个点进行区域插值。
泰森多边形按数据点位置将区域分割成子区域,每个子区域包含一个数据点,各子区域到其内数据点的距离小于任何到其它数据点的距离,并用其内数据点进行赋值。
70.空间分析答:是基于空间数据的分析技术,它以地学原理为依托,通过分析算法,从空间数据中获取有关地理对象的空间位置、空间分布、空间形态、空间形成、空间演变等信息。
简答题71.请简述影响大比例尺地形图数学精度的质量元素有哪些,并分别进行阐述。
1、数学基础:坐标系统、高程系统的正确性;各类投影计算、使用参数的正确性;图根控制测量精度;图廓尺寸、对角线长度、格网尺寸的正确性;控制点间图上距离与坐标反算长度较差;2、平面精度:平面绝对位置中误差;平面相对位置中误差;接边精度;3、高程精度:高程注记点高程中误差;等高线高程中误差;接边精度。
遥感图像分类后处理一、实验目的与要求监督分类和决策树分类等分类方法得到的一般是初步结果,难于达到最终的应用目的。
因此,需要对初步的分类结果进行一些处理,才能得到满足需求的分类结果,这些处理过程就通常称为分类后处理。
常用分类后处理通常包括:更改分类颜色、分类统计分析、小斑点处理(类后处理)、栅矢转换等操作。
本课程将以几种常见的分类后处理操作为例,学习分类后处理工具。
二、实验内容与方法1.实验内容1.小斑块去除●Majority和Minority分析●聚类处理(Clump)●过滤处理(Sieve)2.分类统计3.分类叠加4.分类结果转矢量5.ENVI Classic分类后处理●浏览结果●局部修改●更改类别颜色6.精度评价1.实验方法在ENVI 5.x中,分类后处理的工具主要位于Toolbox/Classification/Post Classification/;三、实验设备与材料1.实验设备装有ENVI 5.1的计算机2.实验材料以ENVI自带数据"can_tmr.img"的分类结果"can_tmr_class.dat"为例。
数据位于"...\13数据\"。
其他数据描述:•can_tmr.img ——原始数据•can_tmr_验证.roi ——精度评价时用到的验证ROI四、实验步骤1.小斑块去除应用监督分类或者非监督分类以及决策树分类,分类结果中不可避免地会产生一些面积很小的图斑。
无论从专题制图的角度,还是从实际应用的角度,都有必要对这些小图斑进行剔除或重新分类,目前常用的方法有Majority/Minority分析、聚类处理(clump)和过滤处理(Sieve)。
1)Majority和Minority分析Majority/Minority分析采用类似于卷积滤波的方法将较大类别中的虚假像元归到该类中,定义一个变换核尺寸,主要分析(Majority Analysis)用变换核中占主要地位(像元数最多)的像元类别代替中心像元的类别。
光谱理论,遥感影像上的同类地物在相同的表面结构特征、植被覆盖、光照条件下,具有相同或相近的光谱特征,应归属于同一个光谱空间区域;不同的地物,光谱信息特征不同,应归属于不同的光谱空间区域。
数据准备与研究区概况实习数据:1. 512×512的研究区 Landsat 8 OLI影像;研究区概况:研究区域位于甘肃省金昌市北部,东北部分连接腾格里沙漠。
研究区地形以戈壁为主,有少量沙漠,土地干旱;植被以干旱植物为主,有叫少量的数目与草地,无河流。
土地空旷。
根据所下载影像数据命名规则可知,成像时间为2014年第262天,即八月下旬。
由于影像为西北河西走廊区域金昌市,农作物一年一熟,成熟期约为八月,故此时农作物尚未成熟。
农作物与各植物依旧呈现绿色。
研究区大部分以沙漠及戈壁为主,除此之外,有少量砾漠、草地、农田等,且有一条较小的河流与一片较大水体,地物种类简单且形式单一。
研究区含小部分城区且城区规模较小,建筑物密集度低,城镇高楼较少,农村建筑以砖瓦房为主,有少量土坯房。
其余戈壁区域未经人为开发,为自然状态。
操作步骤一、监督分类:1、选取研究区数据(512×512或者1024×1024),结合GoogleEarth影像通过目视解译建立分类系统及其编码体系;编码体系如下:编码地物名称色调12水浇地 irrigated land R225 G225 B15030草地 grassland R170 G190 B03051河流 stream R150 G240 B25552水库、坑塘 reservoir or pond R160 G205 B24071沙漠 sandy desert R200 G190 B17072砾漠 gravel desert R215 G200 B18573裸地及盐碱地 barren land R200 G205 B2002、按照监督分类的步骤,在影像上找出对应各个土地利用/覆盖类型的参考图斑,利用ROI工具建立训练区:训练样本如下:对训练样本进行统计,结果如下:对训练样本中各地物特征值进行统计,得到各个类别的特征统计表:地物类型73:barren land 采样单元数:波段1234567号:单变量统计最小13329132781422116003179042056019082值最大14137143391590318212208392251620998值均值13593。
监督分类后处理和精度评价监督分类是机器学习中常用的一种方法,它通过训练模型来预测给定输入的类别。
然而,分类模型的输出可能不够理想,需要进行后处理和精度评价来提高分类的准确性。
本文将介绍监督分类后处理和精度评价的方法,并讨论其优缺点。
重采样方法是解决样本不平衡问题的一种常用后处理方法。
当样本的类别分布不均衡时,模型容易偏向于多数类别。
使用重采样方法可以增加少数类别样本的数量,以缓解这种偏差。
常见的重采样方法包括过采样方法(如SMOTE)和欠采样方法(如NearMiss)。
决策规则是另一种常见的后处理方法。
当分类器的预测结果不确定或存在边缘情况时,决策规则可以根据先验知识或专家经验对结果进行修正。
常见的决策规则有多数投票法和加权投票法等。
特征选择和特征组合也是常用的后处理方法。
通过选择最相关的特征或将多个特征组合成新的特征,可以提高模型的分类能力。
常见的特征选择方法包括过滤法和包装法,而特征组合方法包括特征乘积和特征差等。
除了后处理之外,精度评价是评估分类模型性能的重要指标。
常用的精度评价指标包括准确率、召回率、F1值和ROC曲线等。
准确率是分类器正确分类的样本数占总样本数的比例。
准确率高不代表分类器性能好,在样本不平衡的情况下,准确率可能会被多数类别主导。
召回率是指分类器能够正确识别为正样本的比例。
召回率高表示分类器对正样本的识别能力较好,但忽略了分类器对负样本的识别能力。
F1值综合了准确率和召回率,并平衡了两者之间的关系。
F1值越高,分类器的性能越好。
ROC曲线描述了分类器在不同阈值下的准确率和召回率之间的关系。
一般情况下,ROC曲线越接近左上角,分类器的性能越好。
需要注意的是,不同的应用场景对精度评价指标的要求不同。
因此,根据实际需求选择适合的精度评价指标是十分重要的。
总之,监督分类后处理方法和精度评价指标可以提高分类模型的准确性和可靠性。
通过后处理方法对分类结果进行优化,可以修正分类器的误差;而通过精度评价指标来评估分类器的性能,可以选择最适合的分类器。
监督分类后处理和精度评价
1.下面的图像是用监督分类法来分的乌鲁木齐市的遥感图像,我分了四个class,植物,水体,城市,山地等。
我们可以看到很多不应该城市的地方变成城市了,所以我们应该对它进行一些处理。
2.处理过程是:#1Max like窗口的overlay-→classification→出现一个下面的窗口b5E2RGbCAP
我把Active class调整山地,然后按下面的步聚来进行处理
#1Interactive class tool 窗口的Edit Mode:polygon add to classp1EanqFDPw
3.下面的是处理好的图像。
4.接下来可以进行精度评价;classification→post classification→Confusion Matrix→Using Ground Truth ROIs。
然后选择自己分类的图像和原图像进行评价操作。
DXDiTa9E3d
5.下面的进行精度评价而的出来的结果。
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用
途。