生活中的优化问题2
- 格式:ppt
- 大小:109.50 KB
- 文档页数:12
§1.4.2生活中的优化问题举例(2)
【学情分析】:
在基本方法已经掌握的基础上,本节课重点放在提高学生的应用能力上。
【教学目标】:
1.掌握利用导数求函数最值的基本方法。
2.提高将实际问题转化为数学问题的能力.提高学生综合、灵活运用导数的知识解决生活中问题的能力
3.体会导数在解决实际问题中的作用.
【教学重点】:
利用导数解决生活中的一些优化问题.
【教学难点】:
将生活中的问题转化为用函数表示的数学问题,再用导数解决数学问题,从而得出问题的最优化选择。
【教法、学法设计】:
练---讲---练.
【教学过程设计】:
396500500x x x ⎫+=⎪⎭ 500=
20=.。
个性学习 课题:《生活中的优化问题举例》 授课时间______________ 个性学习学习目标:利用导数解决一些生活中的优化问题.学习重点:利用导数解决一些生活中的优化问题. 一、复习引入: 1.函数的最大值和最小值: 在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值.(1)在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值.(2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.(3)函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个.2.利用导数求函数的最值步骤: ⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值. 二、讲解新课: 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的强有力工具.这一节,我们利用导数,解决一些生活中的优化问题. 二、典型例题例1、海报版面尺寸的设计:学校或班级举行活动,通常需要张贴海报进行宣传, 现让你设计一张如右图所示的竖向张贴的海报,要求版 心面积为128dm2,上、下两边各空2dm ,左、右两边各 空1dm ,如何设计海报的尺寸才能使四周空白面积最小?思考2: (课本习题A 组第3题)圆柱形金属饮料罐的容积一定时,它的高与底面半径应怎样选取,才能使所用的材料最省?例2:饮料瓶大小对饮料公司利润的影响 (1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?(2)是不是饮料瓶越大,饮料公司的利润越大? 背景知识:某制造商制造并出售球型瓶装的某种饮料。
第五节生活中的优化问题举例(数学建模二)A组基础题组1.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-x3+81x-234,则使该生产厂家获得最大年利润的年产量为()A.13万件B.11万件C.9万件D.7万件答案C由题意得,y'=-x2+81,令y'=0,解得x=9或x=-9(舍去).当0<x<9时,y'>0;当x>9时,y'<0.故当x=9时,y取最大值.2.(2019孝感模拟)某品牌小汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/时)的函数解析式为y=x3-x+18(0<x≤120).要使该汽车行驶200千米时的油耗最低,则汽车匀速行驶的速度应为()A.60千米/时B.80千米/时C.90千米/时D.100千米/时答案C当速度为x千米/小时时,该汽车行驶200千米时行驶了小时,设耗油量为h(x)升,y=x3-x+18(0<x≤120).依题意得h(x)=-·=x2+-20(0<x≤120),h'(x)=x-=-(0<x≤120).令h'(x)=0,得x=90.当x∈(0,90)时,h'(x)<0,h(x)是减函数;当x∈(90,120]时,h'(x)>0,h(x)是增函数.所以当x=90时,h(x)取得极小值h(90)=18.因为h(x)在(0,120]上只有一个极值,所以当x=90时取得最小值.故选C.3.设底面为正三角形的直棱柱的体积为V,那么其表面积最小时,底面正三角形的边长为()A. B. C. D.2答案C设底面正三角形的边长为x,侧棱长为l,则V=x2·sin60°·l,∴l=,∴S表=2S底+S侧=x2sin60°+3xl=x2+.令S'表=x-=0,得x=,又当x∈(0,)时,S'表<0;x∈(,+∞)时,S'表>0,∴当x=时,表面积最小.4.在半径为r的半圆内作一内接梯形,使其下底为直径,其他三边为圆的弦,则梯形的面积最大时,梯形的上底长为()A. B.r C.r D.r答案D设梯形的上底长为2x,高为h,面积为S,∵h=-,∴S=-=(r+x)·-.∴S'=---=-=-.令S'=0,得x=(x=-r舍去),∴h=r.当x∈时,S'>0;当x∈时,S'<0,∴当x=时,S取最大值,即当梯形的上底长为r 时,它的面积最大.5.某厂生产某种产品x件的总成本c(x)=1200+x3(万元),已知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50万元,则产量定为件时,总利润最大.答案25解析设产品的单价为p万元,根据已知,可设p2=,其中k为比例系数.因为当x=100时,p=50,所以k=250000,所以p2=,p=(x>0).设总利润为y万元,则y=·x-1200-x3=500-x3-1200.y'=-x2.令y'=0,得x=25.当0<x<25时,y'>0;当x>25时,y'<0.因此当x=25时,函数y取得极大值,也是最大值.6.要做一个圆锥形的漏斗,其母线长为20cm,要使其体积最大,则高为cm.答案解析设该漏斗的高为x cm,则其底面半径为-cm,体积V=π(202-x2)x=π(400x-x3)(0<x<20),则V'=π(400-3x2).令V'=0,解得x1=,x2=-(舍去).当0<x<时,V'>0;当<x<20时,V'<0,所以当x=时,V取得最大值.7.统计表明,某种型号的汽车在匀速行驶过程中的耗油量y(L/h)关于行驶速度x(km/h)的解析式可以表示为y=x3-x+8(0<x≤120).已知甲、乙两地相距100km.(1)当汽车以40km/h的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少?解析(1)汽车以40km/h的速度从甲地匀速行驶到乙地需=2.5(h),要耗油-×2.5=17.5(L).(2)当匀速行驶速度为x km/h时,汽车从甲地行驶到乙地需h,设耗油量为h L,依题意得h(x)=-=-+(0<x≤120),则h'(x)=-=-(0<x≤120).令h'(x)=0,得x=80.当x∈(0,80)时,h'(x)<0,h(x)是减函数;当x∈(80,120]时,h'(x)>0,h(x)是增函数.所以当x=80时,h(x)取得极小值h(80)=11.25.因为h(x)在(0,120]上只有一个极小值,所以它也是最小值.所以当汽车以80km/h的速度匀速行驶时,从甲地到乙地耗油最少,为11.25L.8.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h 米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时,该蓄水池的体积最大.解析(1)因为蓄水池侧面的总成本为100·2πrh=200πrh元,底面的总成本为160πr2元,所以蓄水池的总成本为(200πrh+160πr2)元.又据题意知200πrh+160πr2=12000π,所以h=(300-4r2),从而V(r)=πr2h=(300r-4r3).又由r>0,h>0可得r<5,故函数V(r)的定义域为(0,5).(2)因V(r)=(300r-4r3),故V'(r)=(300-12r2).令V'(r)=0,解得r1=5,r2=-5(舍去).当r∈(0,5)时,V'(r)>0,故V(r)在(0,5)上为增函数;当r∈(5,5)时,V'(r)<0,故V(r)在(5,5)上为减函数.由此可知,V(r)在r=5处取得最大值,此时h=8.即当r=5,h=8时,该蓄水池的体积最大.B组提升题组1.某商店经销一种奥运纪念品,每件产品的成本为30元,并且每卖出一件产品需向税务部门上交a(a为常数,4≤a≤5)元的税收,设每件产品的日售价为x(35≤x≤41)元,根据市场调查,日销售量与e x(e为自然对数的底数)成反比.已知每件产品的日售价为40元时,日销量为10件.(1)求该商店的日利润L(x)元与每件产品的日售价x元的函数关系式;(2)当每件产品的日售价为多少元时,该商品的日利润L(x)最大?并求出L(x)的最大值.解析(1)设日销售量为,则=10,所以k=10e40,则日销售量为件.则日利润L(x)=(x-30-a)=--(35≤x≤41).(2)由(1)可得L'(x)=-,因为4≤a≤5,所以35≤a+31≤36.令L'(x)=0,得x=a+31,故L(x)在[35,a+31]上为增函数,在(a+31,41]上为减函数.所以当x=a+31时,L(x)取得最大值,最大值为10e9-a.2.某种商品的成本为5元/件,开始按8元/件销售,销售量为50件,为了获得最大利润,商家先后采取了提价与降价两种措施进行试销.经试销发现:销售单价每上涨1元,每天的销售量就减少10件,而降价后,日销售量Q(单位:件)与实际销售单价x(单位:元)满足关系:Q(x)=---(1)试写出该商家的销售利润y与销售单价x的函数关系式;(利润=销售额-成本)(2)当实际销售单价为多少元时,日销售利润最大?并求出最大利润.解析(1)根据题意得y=--------=-----(2)由(1)得当5<x<7时,y=39(2x3-39x2+252x-535),y'=39(6x2-78x+252),令y'=0,则6x2-78x+252=0,解得x=6或x=7(舍去).当5<x<6时,y'>0;当6<x<7时,y'<0,故当x=6时,y max=195.当7≤x<8时,y=6(33-x),故当x=7时,y max=156.当8≤x≤13时,y=-10x2+180x-650=-10(x-9)2+160,故当x=9时,y max=160.综上可知,当实际销售单价定为6元时,日销售利润最大,最大利润为195元.3.如图,点C为某沿海城市的高速公路出入口,直线BD为海岸线,∠CAB=,AB⊥BD,是以A 为圆心,半径为1km的圆弧形小路.该市拟修建一条从C通往海岸的观光专线-PQ,其中P 为上异于B,C的一点,PQ与AB平行,设∠PAB=θ.(1)证明:观光专线-PQ的总长度随θ的增大而减小;(2)已知新建道路PQ的单位成本是翻新道路的单位成本的2倍,当θ取何值时,观光专线-PQ的修建总成本最低?请说明理由.解析(1)证明:由题意,∠CAP=-θ,所以=-θ.又PQ=AB-APcosθ=1-cosθ,所以观光专线的总长度f(θ)=-θ+1-cosθ=-θ-cosθ++1,0<θ<.因为当0<θ<时,f'(θ)=-1+sin θ<0,所以f(θ)在上单调递减,即观光专线-PQ的总长度随θ的增大而减小.(2)设翻新道路的单位成本为a(a>0),则总成本g(θ)=a--=a(-θ-2cosθ++2),0<θ<,g'(θ)=a(-1+2sinθ),令g'(θ)=0,得sinθ=,因为0<θ<,所以θ=.当0<θ<时,g'(θ)<0;当<θ<时,g'(θ)>0.所以,当θ=时,g(θ)最小,即当θ=时,观光专线-PQ的修建总成本最低.。
生活中的优化问题举例引言生活中,我们经常面临各种各样的问题和挑战。
为了提高效率、提升生活质量,我们需要不断寻找解决问题的方法和策略。
在这篇文章中,我们将探讨生活中的优化问题,并给出一些实际的例子来说明如何应对这些问题。
什么是优化问题?优化问题是指在给定的限制条件下,寻找一个最优解的问题。
通过优化,我们可以最大限度地提高效率、降低成本、提升满意度等。
在生活中,我们可以将优化问题应用于各个领域,如时间管理、健康管理、金融规划等。
生活中的优化问题举例1. 时间管理时间管理是一个常见的生活优化问题。
我们每天都面临着有限的时间资源,如何合理分配时间成为了一个重要的课题。
以下是一些可以帮助我们优化时间管理的方法和技巧:1.制定优先级:将任务按照重要性和紧急性进行排序,优先处理重要且紧急的任务,避免因琐碎的事务耗费过多时间。
2.打破大目标:学会将大目标分解成小目标,逐步推进。
这样可以减少任务的压力,并更好地管理时间。
3.制定时间表:制定一个明确的时间表,为每项任务规定固定的时间段。
这样可以提高效率,并避免时间的浪费。
4.利用时间碎片:充分利用日常生活中的碎片化时间,比如排队等待、交通工具上的时间,可以用来读书、听课等。
2. 健康管理健康是幸福生活的基石,因此健康管理也成为了一个重要的优化问题。
以下是一些可以帮助我们优化健康管理的方法和策略:1.合理饮食:均衡饮食是健康的基础。
合理控制饮食,摄入适量的营养物质,避免过量或偏食,有助于维持身体的健康状态。
2.积极运动:适量的运动可以帮助我们保持身体健康和心理平衡。
根据个人情况选择合适的运动方式和时间,如慢跑、游泳、瑜伽等。
3.规律作息:良好的作息习惯对于身体和心理健康至关重要。
合理安排睡眠时间,确保充足的休息,有助于保持精力充沛和情绪稳定。
4.健康检查:定期进行身体检查,及时发现和处理潜在的健康问题,有助于预防和治疗疾病。
3. 金融规划金融规划是一个经济优化的问题。
生活中的优化问题举例
以下是一些生活中常见的优化问题举例:
1. 路线规划:对于一次旅行或者日常通勤,如何选择最短或最快的路线,以节省时间和资源。
2. 日程安排:如何合理分配时间,使得工作效率最大化,同时留出时间进行休息和娱乐。
3. 购物决策:在购买商品时,如何选择最佳的品牌、型号或价格,以满足需求并节约开支。
4. 饮食计划:如何合理安排饮食,以保证营养均衡,同时避免浪费和过量摄入。
5. 能源使用:如何优化能源的使用,例如合理设置空调温度、减少电器待机时间等,以节约能源成本并保护环境。
6. 个人理财:如何合理规划个人财务,包括投资、储蓄和债务,以实现财务增长并达到目标。
7. 旅游安排:在进行旅游计划时,如何选择最佳的目的地、交通方式、住宿和活动,以满足旅行的需求。
8. 学习方法:如何优化学习方法,例如选择适合个人的学习时间、学习环境和学习资源,以提高学习效率。
9. 生活习惯:如何培养健康的生活习惯,例如规律作息、科学饮食和适度运动,以改善身体健康。
10. 时间管理:如何合理分配时间,设置优先级和避免拖延,以提高工作和生活的效率。