3.4生活中的优化问题举例(含答案)
- 格式:doc
- 大小:232.50 KB
- 文档页数:6
能力拓展提升一、选择题11.某公司生产一种产品,固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x (0≤x ≤390)的关系是R (x )=-x 39 000+400x,0≤x ≤390,则当总利润最大时,每年生产的产品单位数是( )A .150B .200C .250D .300[答案] D[解析] 由题意可得总利润P (x )=-x 3900+300x -20 000,0≤x ≤390.由P ′(x )=0,得x =300.当0≤x ≤300时,p ′(x )>0;当300<x ≤390时,P ′(x )<0,所以当x =300时,P (x )最大,故选D.12.三棱锥O -ABC 中,OA 、OB 、OC 两两垂直,OC =2x ,OA =x ,OB =y ,且x +y =3,则三棱锥O -ABC 体积的最大值为( )A .4B .8 C.43 D.83[答案] C[解析] V =13×2x 22·y =x 2y 3=x 2(3-x )3=3x 2-x33(0<x <3),V ′=6x -3x 23=2x -x 2=x (2-x ). 令V ′=0,得x =2或x =0(舍去). ∴x =2时,V 最大为43.13.要制作一个圆锥形的漏斗,其母线长为20cm ,要使其体积最大,则高为( )A.33cm B.1033cm C.1633cm D.2033cm[答案] D[解析] 设圆锥的高为x ,则底面半径为202-x 2, 其体积为V =13πx (400-x 2) (0<x <20), V ′=13π(400-3x 2),令V ′=0,解得x =2033. 当0<x <2033时,V ′>0;当2033<x <20时,V ′<0 所以当x =2033时,V 取最大值.14.若一球的半径为r ,作内接于球的圆柱,则其圆柱侧面积最大值为( )A .2πr 2B .πr 2C .4πr 2D.12πr 2[答案] A[解析] 设内接圆柱的底面半径为r 1,高为t ,则S =2πr 1t =2πr 12r 2-r 21=4πr 1r 2-r 21. ∴S =4πr 2r 21-r 41. 令(r 2r 21-r 41)′=0得r 1=22r .此时S =4π·22r ·r 2-⎝ ⎛⎭⎪⎫22r 2=4π·22r ·22r =2πr 2. 二、填空题15.做一个容积为256的方底无盖水箱,它的高为________时最省料.[答案] 4[解析] 设底面边长为x ,则高为h =256x 2,其表面积为S =x 2+4×256x 2×x =x 2+256×4x ,S ′=2x -256×4x 2,令S ′=0,则x =8,则当高h =25664=4时S 取得最小值.16.某厂生产某种产品x 件的总成本:C (x )=1 200+275x 3,又产品单价的平方与产品件数x 成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为________件.[答案] 25[解析] 设产品单价为a 元,又产品单价的平方与产品件数x 成反比,即a 2x =k ,由题知a =500x .总利润y =500x -275x 3-1 200(x >0),y ′=250x -225x 2,由y ′=0,得x =25,x ∈(0,25)时,y ′>0,x ∈(25,+∞)时,y ′<0,所以x =25时,y 取最大值.三、解答题17.已知某厂生产x 件产品的成本为c =25 000+200x +140x 2(元). (1)要使平均成本最低,应生产多少件产品?(2)若产品以每件500元售出,要使利润最大,应生产多少件产品?[解析] (1)设平均成本为y 元,则y =25 000+200x +140x 2x =25 000x +200+x40(x >0), y ′=⎝ ⎛⎭⎪⎫25 000x +200+x 40′=-25 000x 2+140. 令y ′=0,得x 1=1 000,x 2=-1 000(舍去). 当在x =1 000附近左侧时,y ′<0; 在x =1 000附近右侧时,y ′>0; 故当x =1 000时,y 取得极小值.由于函数只有一个极小值点,那么函数在该点取得最小值,因此要使平均成本最低,应生产1 000件产品.(2)利润函数为L =500x -(25 000+200x +x 240) =300x -25 000-x 240. ∴L ′=300-x20.令L ′=0,得x =6 000,当x 在6 000附近左侧时,L ′>0;当x 在6 000附近右侧时,L ′<0,故当x =6 000时,L 取得极大值.由于函数只有一个使L ′=0的点,且函数在该点有极大值,那么函数在该点取得最大值.因此,要使利润最大,应生产6 000件产品.18.已知圆柱的表面积为定值S ,求当圆柱的容积V 最大时圆柱的高h 的值.[分析]将容积V表达为高h或底半径r的函数,运用导数求最值.由于表面积S=2πr2+2πrh,此式较易解出h,故将V的表达式中h消去可得V是r的函数.[解析]设圆柱的底面半径为r,高为h,则S圆柱底=2πr2,S圆柱侧=2πrh,∴圆柱的表面积S=2πr2+2πrh.∴h=S-2πr2 2πr,又圆柱的体积V=πr2h=r2(S-2πr 2)=rS-2πr32,V′=S-6πr22,令V′=0得S=6πr2,∴h=2r,又r=S6π,∴h=2S6π=6πS3π.即当圆柱的容积V最大时,圆柱的高h为6πS 3π.。
基础巩固强化一、选择题1.三次函数当x =1时,有极大值4;当x =3时,有极小值0,且函数过原点,则此函数是( )A .y =x 3+6x 2+9xB .y =x 3-6x 2+9xC .y =x 3-6x 2-9xD .y =x 3+6x 2-9x [答案] B[解析] 设函数f (x )=ax 3+bx 2+cx +d (a ≠0), ∵函数图象过原点,∴d =0.f ′(x )=3ax 2+2bx +c , 由题意得,⎩⎪⎨⎪⎧f ′(1)=0f ′(3)=0f (1)=4,即⎩⎪⎨⎪⎧3a +2b +c =027a +6b +c =0a +b +c =4,解得⎩⎪⎨⎪⎧a =1b =-6c =9,∴f (x )=x 3-6x 2+9x ,故应选B.2.将数8拆分为两个非负数之和,使其立方之和为最小,则分法为( )A .2和6B .4和4C .3和5D .以上都不对[答案] B[解析] 设一个数为x ,则另一个数为8-x ,则y =x 3+(8-x)3,0≤x≤8,y′=3x2-3(8-x)2,令y′=0,即3x2-3(8-x)2=0,解得x=4.当0≤x<4时,y′<0,函数单调递减;当4<x≤8时,y′>0,函数单调递增,所以x=4时,y最小.3.某产品的销售收入y1(万元)是产量x(千台)的函数:y1=17x2(x>0);生产成本y2(万元)是产量x(千台)的函数:y2=2x3-x2(x>0),为使利润最大,则应生产()A.6千台B.7千台C.8千台D.9千台[答案] A[解析]设利润为y(万元),则y=y1-y2=17x2-2x3+x2=18x2-2x3(x>0),y′=36x-6x2,令y′>0,得0<x<6,令y′<0,得x>6,∴当x=6时,y取最大值,故为使利润最大,则应生产6千台.4.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是()[答案] A[解析]加速过程,路程对时间的导数逐渐变大,图象下凸;减速过程,路程对时间的导数逐渐变小,图象上凸,故选A.5.内接于半径为R 的球且体积最大的圆锥的高为( ) A .R B .2R C.43R D.34R[答案] C[解析] 设圆锥高为h ,底面半径为r , 则R 2=(R -h )2+r 2,∴r 2=2Rh -h 2, ∴V =13πr 2h =π3h (2Rh -h 2)=23πRh 2-π3h 3, ∴V ′=43πRh -πh 2,令V ′=0得h =43R , 当0<h <43R 时,V ′>0;当43R <h <2R 时,V ′<0. 因此当h =43R 时,圆锥体积最大,故应选C.6.福建炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x h 时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么,原油温度的瞬时变化率的最小值是( )A .8 B.203 C .-1 D .-8 [答案] C[解析] 瞬时变化率即为f ′(x )=x 2-2x 为二次函数,且f ′(x )=(x -1)2-1,又x ∈[0,5],故x =1时,f ′(x )min =-1. 二、填空题7.把长为60cm 的铁丝围成矩形,长为________,宽为________时,矩形的面积最大.[答案] 15cm 15cm[解析] 设长为x cm ,则宽为(30-x )cm ,此时S =x ·(30-x )=30x -x 2,S ′=30-2x =0,所以x =15.所以长为15cm ,宽为15cm 时,矩形的面积最大.8.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最小,则圆柱的底面半径为________.[答案] 3[解析] 设圆柱的底面半径为R ,母线长为L ,则V =πR 2L =27π,∴L =27R 2,要使用料最省,只需使圆柱形表面积最小,∴S 表=πR 2+2πRL =πR 2+54πR ,∴S ′(R )=2πR -54πR 2=0,令S ′=0得R =3, ∴当R =3时,S 表最小.9.用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2 1,该长方体的最大体积是________.[答案] 3m 3[解析] 设长方体的宽为x ,则长为2x ,高为92-3x (0<x <32),故体积为V =2x 2⎝ ⎛⎭⎪⎫92-3x =-6x 3+9x 2,V ′=-18x 2+18x ,令V ′=0得,x =0或1, ∵0<x <2,∴x =1.∴该长方体的长、宽、高各为2m 、1m 、1.5m 时,体积最大,最大体积V max =3m 3.三、解答题10.用边长为120cm的正方形铁皮做一个无盖水箱,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱.问:水箱底边的长取多少时,水箱容积最大?最大容积是多少?[解析]设水箱底边长为x cm,则水箱高为h=60-x2(cm).水箱容积V=V(x)=60x2-x32(0<x<120)(cm3).V′(x)=120x-32x 2.令V′(x)=0得,x=0(舍)或x=80.当x在(0,120)内变化时,导数V′(x)的正负如下表:数V(x)的最大值.将x=80代入V(x),得最大容积V=802×60-8032=128 000(cm3).答:水箱底边长取80cm时,容积最大,最大容积为128 000cm3.。
生活中的优化问题举例引言生活中,我们经常面临各种各样的问题和挑战。
为了提高效率、提升生活质量,我们需要不断寻找解决问题的方法和策略。
在这篇文章中,我们将探讨生活中的优化问题,并给出一些实际的例子来说明如何应对这些问题。
什么是优化问题?优化问题是指在给定的限制条件下,寻找一个最优解的问题。
通过优化,我们可以最大限度地提高效率、降低成本、提升满意度等。
在生活中,我们可以将优化问题应用于各个领域,如时间管理、健康管理、金融规划等。
生活中的优化问题举例1. 时间管理时间管理是一个常见的生活优化问题。
我们每天都面临着有限的时间资源,如何合理分配时间成为了一个重要的课题。
以下是一些可以帮助我们优化时间管理的方法和技巧:1.制定优先级:将任务按照重要性和紧急性进行排序,优先处理重要且紧急的任务,避免因琐碎的事务耗费过多时间。
2.打破大目标:学会将大目标分解成小目标,逐步推进。
这样可以减少任务的压力,并更好地管理时间。
3.制定时间表:制定一个明确的时间表,为每项任务规定固定的时间段。
这样可以提高效率,并避免时间的浪费。
4.利用时间碎片:充分利用日常生活中的碎片化时间,比如排队等待、交通工具上的时间,可以用来读书、听课等。
2. 健康管理健康是幸福生活的基石,因此健康管理也成为了一个重要的优化问题。
以下是一些可以帮助我们优化健康管理的方法和策略:1.合理饮食:均衡饮食是健康的基础。
合理控制饮食,摄入适量的营养物质,避免过量或偏食,有助于维持身体的健康状态。
2.积极运动:适量的运动可以帮助我们保持身体健康和心理平衡。
根据个人情况选择合适的运动方式和时间,如慢跑、游泳、瑜伽等。
3.规律作息:良好的作息习惯对于身体和心理健康至关重要。
合理安排睡眠时间,确保充足的休息,有助于保持精力充沛和情绪稳定。
4.健康检查:定期进行身体检查,及时发现和处理潜在的健康问题,有助于预防和治疗疾病。
3. 金融规划金融规划是一个经济优化的问题。
生活中的优化问题举例
以下是一些生活中常见的优化问题举例:
1. 路线规划:对于一次旅行或者日常通勤,如何选择最短或最快的路线,以节省时间和资源。
2. 日程安排:如何合理分配时间,使得工作效率最大化,同时留出时间进行休息和娱乐。
3. 购物决策:在购买商品时,如何选择最佳的品牌、型号或价格,以满足需求并节约开支。
4. 饮食计划:如何合理安排饮食,以保证营养均衡,同时避免浪费和过量摄入。
5. 能源使用:如何优化能源的使用,例如合理设置空调温度、减少电器待机时间等,以节约能源成本并保护环境。
6. 个人理财:如何合理规划个人财务,包括投资、储蓄和债务,以实现财务增长并达到目标。
7. 旅游安排:在进行旅游计划时,如何选择最佳的目的地、交通方式、住宿和活动,以满足旅行的需求。
8. 学习方法:如何优化学习方法,例如选择适合个人的学习时间、学习环境和学习资源,以提高学习效率。
9. 生活习惯:如何培养健康的生活习惯,例如规律作息、科学饮食和适度运动,以改善身体健康。
10. 时间管理:如何合理分配时间,设置优先级和避免拖延,以提高工作和生活的效率。
1.做一个圆柱形锅炉,容积为V ,两个底面的材料每单位面积的价格为a 元,侧面的材料每单位面积的价格为b 元,当造价最低时,锅炉的底面直径与高的比为( )A.ab B.a 2b C.b a D.b 2a[答案] C [解析]如图,设圆柱的底面半径为R ,高为h ,则V =πR 2h .设造价为y ,则y =2πR 2a +2πRhb =2πaR 2+2πRb ·V πR2=2πaR 2+2bV R ,∴y ′=4πaR -2bVR 2.令y ′=0并将V =πR 2h 代入解得,2R h =ba .2.以长为10的线段AB 为直径画半圆,则它的内接矩形面积的最大值为( )A .10B .15C .25D .50[答案] C[解析] 如图,设∠NOB =θ,则矩形面积S =5sin θ·2·5cos θ=50sin θ·cos θ=25sin2θ,故S max =25.3.某商品一件的成本为30元,在某段时间内若以每件x 元出售,可卖出(200-x )件,要使利润最大每件定价为________元.[答案] 85[解析] 设每件商品定价x 元,依题意可得利润为L =x (200-x )-30x =-x 2+170x (0<x <200). L ′=-2x +170,令-2x +170=0,解得x =1702=85.因为在(0,200)内L 只有一个极值,所以以每件85元出售时利润最大.4.已知某商品生产成本C 与产量q 的函数关系式为C =100+4q ,价格p 与产量q 的函数关系式为p =25-18q ,求产量q 为何值时,利润L 最大?[分析] 利润L 等于收入R 减去成本C ,而收入R 等于产量乘价格,由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.[解析] 收入R =q ·p =q (25-18q )=25q -18q 2.利润L =R -C =(25q -18q 2)-(100+4q )=-18q 2+21q -100(0<q <200),所以L ′=-14q +21.令L ′=0, 即-14q +21=0,解得q =84. 因为当0<q <84时,L ′>0; 当84<q <200时,L ′<0,所以当q =84时,L 取得最大值,最大值为782. 答:当产量为84时,利润取得最大值782.5.某厂生产某种产品的固定成本(固定投入)为2 500元,已知每生产x 件这样的产品需要再增加可变成本C (x )=200x +136x 3(元),若生产出的产品都能以每件500元售出,要使利润最大,该厂应生产多少件这种产品?最大利润是多少?[解析] 设该厂生产x 件这种产品利润为L (x ) 则L (x )=500x -2 500-C (x ) =500x -2 500-⎝⎛⎭⎪⎫200x +136x 3=300x -136x 3-2 500(x ∈N )令L ′(x )=300-112x 2=0,得x =60(件) 又当0≤x <60时,L ′(x )>0 x >60时,L ′(x )<0所以x =60是L (x )的极大值点,也是最大值点. 所以当x =60时,L (x )=9 500元.答:要使利润最大,该厂应生产60件这种产品,最大利润为9 500元.。
生活中最优化问题案例在我们的日常生活中,最优化问题无处不在。
从如何规划购物以节省开支,到安排工作任务以提高效率,再到选择出行方式以节省时间和费用,这些都是最优化问题的体现。
下面,让我们通过一些具体的案例来深入了解生活中的最优化问题。
案例一:购物省钱策略假设你要为家庭购买一周的生活用品,附近有两家超市 A 和 B。
超市 A 正在进行满 100 减 20 的活动,而超市 B 则对部分商品进行打折销售。
为了实现购物最优化,即花费最少的钱买到所需的商品,你需要对两家超市的商品价格和优惠政策进行详细比较。
首先,列出家庭一周所需的生活用品清单,包括食品、清洁用品等。
然后,分别到两家超市查看这些商品的价格。
对于超市 A,计算在满足满减条件后的实际支付金额。
对于超市 B,计算打折商品的折后价格。
在比较价格时,还需要考虑商品的质量、保质期等因素。
如果某些商品在两家超市的价格差异不大,但超市 A 的商品质量更好或保质期更长,那么即使在价格上稍微高一些,也可能是更优的选择。
此外,还需要考虑购物的便利性,比如超市的距离、交通状况等。
如果为了去一家稍微便宜但距离较远的超市而花费过多的时间和交通费用,可能并不划算。
通过综合考虑价格、质量、便利性等因素,最终做出最优化的购物决策,以达到省钱的目的。
案例二:工作任务安排假设你是一个项目负责人,手头上有多个任务需要在规定的时间内完成,并且每个任务都有不同的优先级和所需时间。
为了确保项目按时完成并提高工作效率,需要对任务进行合理的安排。
首先,对所有任务进行优先级排序。
将那些紧急且重要的任务排在前面,优先处理。
然后,根据每个任务所需的时间和团队成员的能力,合理分配任务。
在分配任务时,要考虑团队成员的专长和工作负荷。
避免将过多的任务分配给某一个成员,导致其压力过大而影响工作质量和效率。
同时,也要给一些相对复杂的任务预留足够的时间,以保证能够高质量地完成。
此外,要合理安排任务的执行顺序。
§3.4 生活中的优化问题举例课时目标 通过用料最省、利润最大、效率最高等优化问题,使学生体会导数在解决实际问题中的作用,会利用导数解决简单的实际生活中的优化问题.1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为____________,通过前面的学习,我们知道________是求函数最大(小)值的有力工具,运用________,可以解决一些生活中的______________.2.解决实际应用问题时,要把问题中所涉及的几个变量转化成函数关系,这需通过分析、联想、抽象和转化完成.函数的最值要由极值和端点的函数值确定,当定义域是开区间,而且其上有惟一的极值,则它就是函数的最值.3.解决优化问题的基本思路是:用函数表示的数学问题→用函数表示的数学问题 ↓ 优化问题的答案←用导数解决数学问题上述解决优化问题的过程是一个典型的_________ _过程.一、选择题1.某箱子的容积与底面边长x 的关系为V (x )=x 2⎝⎛⎭⎫60-x 2 (0<x <60),则当箱子的容积最大时,箱子底面边长为( )A .30B .40C .50D .其他2.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件3.某工厂要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌壁所用的材料最省时堆料场的长和宽分别为( )A .32米,16米B .30米,15米C .40米,20米D .36米,18米4.若底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( ) A .3V B .32V C .34V D .23V5.要做一个圆锥形的漏斗,其母线长为20 cm ,要使其体积最大,则高为( )A .33 cmB .1033 cmC .1633 cmD .2033cm6.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总收益r 与年产量x 的关系是r =⎩⎪⎨⎪⎧400x -12x 2 (0≤x ≤400)80 000 (x >400),则总利润最大时,年产量是( )7.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用y 1和y 2分别为2万元和8万元.那么,要使这两项费用之和最小,仓库应建在离车站________千米处.8.如图所示,一窗户的上部是半圆,下部是矩形,如果窗户面积一定,窗户周长最小时,x 与h 的比为________.9.做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为________.三、解答题10.某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元,距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其它因素.记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小?11.某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x (单位:元,0≤x ≤30)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.(1)将一个星期的商品销售利润表示成x 的函数; (2)如何定价才能使一个星期的商品销售利润最大?能力提升 12.某单位用2 160万元购得一块空地,计划在该块地上建造一栋至少10层、每层2 000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)13.已知某商品生产成本C 与产量q 的函数关系式为C =100+4q ,价格p 与产量q 的函数关系式为p =25-18q ,求产量q 为何值时,利润L 最大.利用导数解决生活中的优化问题的一般步骤.(1)分析实际问题中各变量之间的关系,建立实际问题的数学模型,写出实际问题中变量之间的函数关系y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值; (4)写出答案.§3.4 生活中的优化问题举例答案知识梳理1.优化问题 导数 导数 优化问题 作业设计1.B [V ′(x )=60x -3x 2=0,x =0或x =40.x (0,40) 40 (40,60)V ′(x ) + 0 -V (x )极大值可见当x =2.C [y ′=-x 2+81,令y ′=0,得x =9或x =-9(舍去).当0<x <9时,y ′>0;当x >9时,y ′<0,故当x =9时,函数有极大值,也是最大值.]3.A [要求材料最省就是要求新砌的墙壁总长度最短,如图所示,设场地宽为x 米,则长为512x 米,因此新墙壁总长度L =2x +512x(x >0),则L ′=2-512x2.令L ′=0,得x =±16.∵x >0,∴x =16.当x =16时,L 极小值=L min =64,此时堆料场的长为51216=32(米).]4.C [设底面边长为a ,直三棱柱高为h .体积V =34a 2h ,所以h =4V3a 2,表面积S =2·34a 2+3a ·4V 3a 2=32a 2+43Va ,S ′=3a -43V a 2,由S ′=0,得a =34V .经验证,当a =34V 时,表面积最小.]5.D [设高为x cm ,则底面半径为202-x 2 cm ,体积V =π3x ·(202-x 2) (0<x <20),V ′=π3(400-3x 2),由V ′=0,得x =2033或x =-2033(舍去).当x ∈⎝⎛⎭⎫0,2033时,V ′>0,当x ∈⎝⎛⎭⎫2033,20时,V ′<0,所以当x =2033时,V 取最大值.]6.D [由题意,总成本为c =20 000+100x , 所以总利润为p =r -c=⎩⎪⎨⎪⎧300x -x 22-20 000 (0≤x ≤400)60 000-100x (x >400),p ′=⎩⎪⎨⎪⎧300-x (0≤x ≤400)-100 (x >400),p ′=0,当0≤x ≤400时,得x =300; 当x >400时,p ′<0恒成立, 易知当x =300时,总利润最大.] 7.5解析 依题意可设每月土地占用费y 1=k 1x,每月库存货物的运费y 2=k 2x ,其中x 是仓库到车站的距离.于是由2=k 110,得k 1=20;由8=10k 2,得k 2=45.因此两项费用之和为y =20x +4x 5,y ′=-20x 2+45,令y ′=-20x 2+45=0得x =5(x =-5舍去),经验证,此点即为最小值点.故当仓库建在离车站5千米处时,两项费用之和最小. 8.1∶1解析 设窗户面积为S ,周长为L ,则S =π2x 2+2hx ,h =S 2x -π4x ,所以窗户周长L =πx +2x +2h =π2x +2x +S x ,L ′=π2+2-Sx2.由L ′=0,得x =2S π+4,x ∈⎝⎛⎭⎪⎫0, 2S π+4时,L ′<0,x ∈⎝ ⎛⎭⎪⎫2S π+4,+∞时,L ′>0, 所以当x = 2Sπ+4时,L 取最小值,此时h x =2S -πx 24x 2=2S 4x 2-π4=π+44-π4=1.9.3解析 设半径为r ,则高h =27ππr 2=27r 2.∴水桶的全面积S (r )=πr 2+2πr ·27r 2=πr 2+54πr.S ′(r )=2πr -54πr2,令S ′(r )=0,得r =3.∴当r =3时,S (r )最小.10.解 (1)设需新建n 个桥墩,则(n +1)x =m ,即n =mx-1 (0<x <m ),所以y =f (x )=256n +(n +1)(2+x )x=256⎝⎛⎭⎫m x -1+m x (2+x )x =256m x+m x +2m -256 (0<x <m ).(2)由 (1)知,f ′(x )=-256m x 2+12mx -12=m 2x 2(x 32-512). 令f ′(x )=0,得x 32=512,所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)内为减函数;当64<x <640时,f ′(x )>0,f (x )在区间(64,640)内为增函数,所以f (x )在x =64处取得最小值,此时n =m x -1=64064-1=9.故需新建9个桥墩才能使y 最小.11.解 (1)设商品降低x 元时,多卖出的商品件数为kx 2,若记商品在一个星期的销售利润为f (x ),则依题意有f (x )=(30-x -9)·(432+kx 2) =(21-x )·(432+kx 2), 又由已知条件24=k ·22,于是有k =6,所以f (x )=-6x 3+126x 2-432x +9 072,x ∈[0,30]. (2)根据(1),有f ′(x )=-18x 2+252x -432 =-18(x -2)(x -12).极小值12=18(元)能使一个星期的商品销售利润最大.12.解 设楼房每平方米的平均综合费用为f (x )元,则f (x )=(560+48x )+2 160×10 0002 000x=560+48x +10 800x (x ≥10,x ∈N *),f ′(x )=48-10 800x2,令f ′(x )=0得x =15. 当x >15时,f ′(x )>0; 当0<x <15时,f ′(x )<0.因此,当x =15时,f (x )取最小值f (15)=2 000.所以为了使楼房每平方米的平均综合费用最少,该楼房应建为15层.13.解 收入R =q ·p =q ⎝⎛⎭⎫25-18q =25q -18q 2. 利润L =R -C =⎝⎛⎭⎫25q -18q 2-(100+4q ) =-18q 2+21q -100 (0<q <200),L ′=-14q +21,令L ′=0,即-14q +21=0,解得q =84.因为当0<q <84时,L ′>0; 当84<q <200时,L ′<0,所以当q =84时,L 取得最大值. 所以产量q 为84时,利润L 最大.。