生活中的优化问题举例
- 格式:doc
- 大小:127.50 KB
- 文档页数:4
生活中的优化问题举例引言生活中,我们经常面临各种各样的问题和挑战。
为了提高效率、提升生活质量,我们需要不断寻找解决问题的方法和策略。
在这篇文章中,我们将探讨生活中的优化问题,并给出一些实际的例子来说明如何应对这些问题。
什么是优化问题?优化问题是指在给定的限制条件下,寻找一个最优解的问题。
通过优化,我们可以最大限度地提高效率、降低成本、提升满意度等。
在生活中,我们可以将优化问题应用于各个领域,如时间管理、健康管理、金融规划等。
生活中的优化问题举例1. 时间管理时间管理是一个常见的生活优化问题。
我们每天都面临着有限的时间资源,如何合理分配时间成为了一个重要的课题。
以下是一些可以帮助我们优化时间管理的方法和技巧:1.制定优先级:将任务按照重要性和紧急性进行排序,优先处理重要且紧急的任务,避免因琐碎的事务耗费过多时间。
2.打破大目标:学会将大目标分解成小目标,逐步推进。
这样可以减少任务的压力,并更好地管理时间。
3.制定时间表:制定一个明确的时间表,为每项任务规定固定的时间段。
这样可以提高效率,并避免时间的浪费。
4.利用时间碎片:充分利用日常生活中的碎片化时间,比如排队等待、交通工具上的时间,可以用来读书、听课等。
2. 健康管理健康是幸福生活的基石,因此健康管理也成为了一个重要的优化问题。
以下是一些可以帮助我们优化健康管理的方法和策略:1.合理饮食:均衡饮食是健康的基础。
合理控制饮食,摄入适量的营养物质,避免过量或偏食,有助于维持身体的健康状态。
2.积极运动:适量的运动可以帮助我们保持身体健康和心理平衡。
根据个人情况选择合适的运动方式和时间,如慢跑、游泳、瑜伽等。
3.规律作息:良好的作息习惯对于身体和心理健康至关重要。
合理安排睡眠时间,确保充足的休息,有助于保持精力充沛和情绪稳定。
4.健康检查:定期进行身体检查,及时发现和处理潜在的健康问题,有助于预防和治疗疾病。
3. 金融规划金融规划是一个经济优化的问题。
1。
4生活中的优化问题举例1.要制做一个圆锥形的漏斗,其母线长为20cm,要使其体积最大,则高为() A。
错误!cm B.错误!cm C.错误!cm D.错误!cm [答案] D2.用总长为6m的钢条制作一个长方体容器的框架,如果所制作容器的底面的相邻两边长之比为3:4,那么容器容积最大时,高为()A.0.5m B.1m C.0。
8m D.1.5m[答案] A[解析]设容器底面相邻两边长分别为3x m、4x m,则高为错误!=错误!(m),容积V=3x·4x·错误!=18x2-84x3错误!,V′=36x-252x2,由V′=0得x=1或x=0(舍去).x∈错误!时,V′〉0,x∈错误!时,V′<0,7所以在x=错误!处,V有最大值,此时高为0。
5m。
3.内接于半径为R的球且体积最大的圆锥的高为()A.R B.2R C.错误!R D.错误!R[答案] C[解析]设圆锥高为h,底面半径为r,则R2=(h-R)2+r2,∴r2=2Rh-h2, ∴V=错误!πr2h=错误!h(2Rh-h2)=错误!πRh2-错误!h3,V′=错误!πRh-πh2。
令V′=0得h=错误!R.当0<h〈错误!R时,V′〉0;当错误!<h〈2R时,V′〈0。
因此当h=错误!R时,圆锥体积最大.4.福建炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时时,原油温度(单位:℃)为f(x)=错误!x3-x2+8(0≤x≤5),那么,原油温度的瞬时变化率的最小值是()A.8 B.错误!C.-1 D.-8[答案] C[解析]瞬时变化率即为f′(x)=x2-2x为二次函数,且f′(x)=(x-1)2-1,又x∈[0,5],故x=1时,f′(x)min=-1.5.某厂生产某种产品x件的总成本:C(x)=1 200+错误!x3,又产品单价的平方与产品件数x成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为__________件.[答案]25[解析]设产品单价为a元,又产品单价的平方与产品件数x成反比,即a2x=k,由题知a=错误!。
生活中的优化问题举例
以下是一些生活中常见的优化问题举例:
1. 路线规划:对于一次旅行或者日常通勤,如何选择最短或最快的路线,以节省时间和资源。
2. 日程安排:如何合理分配时间,使得工作效率最大化,同时留出时间进行休息和娱乐。
3. 购物决策:在购买商品时,如何选择最佳的品牌、型号或价格,以满足需求并节约开支。
4. 饮食计划:如何合理安排饮食,以保证营养均衡,同时避免浪费和过量摄入。
5. 能源使用:如何优化能源的使用,例如合理设置空调温度、减少电器待机时间等,以节约能源成本并保护环境。
6. 个人理财:如何合理规划个人财务,包括投资、储蓄和债务,以实现财务增长并达到目标。
7. 旅游安排:在进行旅游计划时,如何选择最佳的目的地、交通方式、住宿和活动,以满足旅行的需求。
8. 学习方法:如何优化学习方法,例如选择适合个人的学习时间、学习环境和学习资源,以提高学习效率。
9. 生活习惯:如何培养健康的生活习惯,例如规律作息、科学饮食和适度运动,以改善身体健康。
10. 时间管理:如何合理分配时间,设置优先级和避免拖延,以提高工作和生活的效率。
高一数学生活中的优化问题举例试题1.某商品一件的成本为30元,在某段时间内,若以每件x元出售,可卖出(200﹣x)件,当每件商品的定价为元时,利润最大.【答案】115【解析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.解:利润为S(x)=(x﹣30)(200﹣x)=﹣x2+230x﹣6000,S′(x)=﹣2x+230,由S′(x)=0得x=115,这时利润达到最大.故答案为:115.点评:本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.2.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)函数关系式为,则使该生产厂家获取最大年利润的年产量为.【答案】9万件.【解析】求出函数的导函数,由导函数等于0求出极值点,结合实际意义得到使该生产厂家获取最大年利润的年产量.解:由,得:y′=﹣x2+81,由﹣x2+81=0,得:x1=﹣9(舍),x2=9.当x∈(0,9)时,y′>0,函数为增函数,当x∈(9,+∞)时,y′<0,函数为减函数,所以当x=9时,函数有极大值,也就是最大值,为(万元).所以使该生产厂家获取最大年利润的年产量为9万件.故答案为9万件.点评:本题考查了函数在某点取得极值的条件,考查了运用导函数判断原函数的单调性,此题是基础题.3.某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用y1和y2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站千米处.【答案】5【解析】由题意先解出土地占用费与运费关于车站距离的函数,将费用之和关于车站距离的函数关系式建立起来,再用基本不等式求解.解:设仓库建在离车站d千米处,由已知y1=2=,得k1=20,∴y1=,y 2=8=k2•10,得k2=,∴y2=d,∴y1+y2=+≥2=8.当且仅当=,即d=5时,费用之和最小.故应填5.点评:本题考查选定系数法求解析式,此法的特点是相关函数的解析式的形式已知.求最值时用到了基本不等式求最值.4.用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?【答案】当高为10,最大容积为19600.【解析】首先分析题目求长为90cm,宽为48cm的长方形铁皮做一个无盖的容器当容器的高为多少时,容器的容积最大.故可设容器的高为x,体积为V,求出v关于x的方程,然后求出导函数,分析单调性即可求得最值.解:根据题意可设容器的高为x,容器的体积为V,则有V=(90﹣2x)(48﹣2x)x=4x3﹣276x2+4320x,(0<x<24)求导可得到:V′=12x2﹣552x+4320由V′=12x2﹣552x+4320=0得x1=10,x2=36.所以当x<10时,V′>0,当10<x<36时,V′<0,当x>36时,V′>0,所以,当x=10,V有极大值V(10)=19600,又V(0)=0,V(24)=0,所以当x=10,V有最大值V(10)=19600故答案为当高为10,最大容积为19600.点评:此题主要考查函数求最值在实际问题中的应用,其中涉及到由导函数分类讨论单调性的思想,在高考中属于重点考点,同学们需要理解并记忆.5.设底为等边三角形的直棱柱的体积为V,那么其表面积最小时,底面边长为.【答案】【解析】设底边边长为a,高为h,利用体积公式V=Sh得出h,再根据表面积公式得S=,最后利用导函数即得底面边长.解:设底边边长为a,高为h,则V=Sh=a2×h,∴h==,则表面积为=,则,令可得,即a=.故答案为.点评:本小题主要考查棱柱、棱锥、棱台、棱柱、棱锥、棱台的侧面积和表面积、基本不等式等基础知识,考查运算求解能力,考查转化思想.属于基础题.6.如图,在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,最大容积是.【答案】16000cm3【解析】设箱底边长为xcm,结合题意可得容积V(x)=(60x2﹣x3)(0<x<60).再用导数工具研究V(x)在区间(0,60)上的单调性,可知当x=40时V(x)达到最大值.由此得到本题答案.解:设箱底边长为xcm,则箱高h=,∴箱子容积V(x)=x2h=(60x2﹣x3)(0<x<60).求导数,得V′(x)=60x﹣x2,令V′(x)=60x﹣x2=0,解得x=0(不合题意,舍去),x=40,∵x∈(0,40)时,V′(x)>0;x∈(40,60)时,V′(x)<0∴V(x)在区间(0,40)上为增函数,区间(40,60)上为减函数由此可得V(x)的最大值是V(40)=16000.故答案为:16000cm3.点评:本题以一个实际问题为例,求铁箱的容积最大值.着重考查了函数模型及其应用和利用导数研究函数的单调性、求最值等知识,属于中档题.7.做一个无盖的圆柱形水桶,若要使体积是27π,且用料最省,则圆柱的底面半径为.【答案】3【解析】设圆柱的高为h,半径为r则由圆柱的体积公式可得,πr2h=27π,即,要使用料最省即求全面积的最小值,而S=πr2+2πrh==全面积(法一)令S=f(r),结合导数可判断函数f(r)的单调性,进而可求函数取得最小值时的半径=πr2+2πrh==,利用基本不等式可求用料最小时的r(法二):S全面积解:设圆柱的高为h,半径为r则由圆柱的体积公式可得,πr2h=27π=πr2+2πrh==S全面积(法一)令S=f(r),(r>0)=令f′(r)≥0可得r≥3,令f′(r)<0可得0<r<3∴f(r)在(0,3)单调递减,在[3,+∞)单调递增,则f(r)在r=3时取得最小值=πr2+2πrh==(法二):S全面积==27π当且仅当即r=3时取等号当半径为3时,S最小即用料最省故答案为:3点评:本题主要考查了圆柱的体积公式及表面积的最值的求解,解答应用试题的关键是要把实际问题转化为数学问题,根据已学知识进行解决.8.横梁的强度和它的矩形横断面的宽成正比,并和矩形横断面的高的平方成正比,要将直径为d的圆木锯成强度最大的横梁,则横断面的宽是.【答案】d.【解析】据题意横梁的强度同它的断面高的平方与宽x的积成正比(强度系数为k,k>0)建立起强度函数,求出函数的定义域,再利用求导的方法求出函数取到最大值时的横断面的值.解:如图所示,设矩形横断面的宽为x,高为y.由题意知,当xy2取最大值时,横梁的强度最大.∵y2=d2﹣x2,∴xy2=x(d2﹣x2)(0<x<d).令f(x)=x(d2﹣x2)(0<x<d),得f′(x)=d2﹣3x2,令f′(x)=0,解得x=或x=﹣(舍去).当0<x<时,f′(x)>0;当<x<d时,f′(x)<0,因此,当x=时,f(x)取得极大值,也是最大值.故答案为:d.点评:考查据实际意义建立相关的函数,再根据函数的特征选择求导的方法来求最值.9.用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?【答案】当高为10,最大容积为19600.【解析】首先分析题目求长为90cm,宽为48cm的长方形铁皮做一个无盖的容器当容器的高为多少时,容器的容积最大.故可设容器的高为x,体积为V,求出v关于x的方程,然后求出导函数,分析单调性即可求得最值.解:根据题意可设容器的高为x,容器的体积为V,则有V=(90﹣2x)(48﹣2x)x=4x3﹣276x2+4320x,(0<x<24)求导可得到:V′=12x2﹣552x+4320由V′=12x2﹣552x+4320=0得x1=10,x2=36.所以当x<10时,V′>0,当10<x<36时,V′<0,当x>36时,V′>0,所以,当x=10,V有极大值V(10)=19600,又V(0)=0,V(24)=0,所以当x=10,V有最大值V(10)=19600故答案为当高为10,最大容积为19600.点评:此题主要考查函数求最值在实际问题中的应用,其中涉及到由导函数分类讨论单调性的思想,在高考中属于重点考点,同学们需要理解并记忆.10.如图所示,设铁路AB=50,B、C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A到C最省?【答案】即在离点B距离为的点M处修筑公路至C时,货物运费最省.【解析】由已知,我们可计算出公路上的运费和铁路上的运费,进而得到由A到C的总运费,利用导数法,我们可以分析出函数的单调性,及函数的最小值点,得到答案.解:设M为AB上的一点,且MB=x,于是AM上的运费为2(50﹣x),MC上的运费为4,则由A到C的总运费为p(x)=2(50﹣x)+4(0≤x≤50).p′(x)=﹣2+,令p′(x)=0,解得x1=,x2=﹣(舍去).当x<时,p′(x)<0;当x>时,p′(x)>0,故当x=时,p(x)取得最小值.即在离点B距离为的点M处修筑公路至C时,货物运费最省.点评:本题考查的知识点是导数在最大值最小值问题中的应用,函数最值的应用,其中根据已知条件求出函数的解析式,并确定函数的单调性是解答本题的关键.。
练习3.圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?
例3.磁盘的最大存储量问题
计算机把数据存储在磁盘上。
磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区。
磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域。
磁道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit)。
为了保障磁盘的分辨率,磁道之间的宽度必需大于m,每比特所占用的磁道长度不得小于n。
为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数。
问题:现有一张半径为R的磁盘,它的存储区是半径介于r与R之间的环形区域.(1)是不是r越小,磁盘的存储量越大?
(2)r为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?
例4.汽油的使用效率何时最高
我们知道,汽油的消耗量w(单位:L)与汽车的速度v(单位:km/h)之间有一定的关系,汽油的消耗量w是汽车速度v的函数.根据你的生活经验,思考下面两个问题:
(1)是不是汽车的速度越快,汽车的消耗量越大?
(2)“汽油的使用率最高”的含义是什么?这节课你学到了什么?把它写下来!。