S偶
an1
性质4:(2)若项数为奇数2n-1,则 S2n-1=(2n- 1)an (an为中间项),
此时有:S偶-S奇= an ,
S奇 S偶
n n1
Sn 性质5: { } 为等差数列. n
两等差数列前n项和与通项的关系
性质6:若数列{an}与{bn}都是等差数列,且 a n S 2 n 1 前n项的和分别为Sn和Tn,则 bn T2 n 1
等差数列{an}前n项和的性质 在等差数列{an}中,其前n项的和为Sn,则有 性质1:Sn,S2n-Sn,S3n-S2n, …也是等差数列 ,公差为 n2d 性质2:若Sm=p,Sp=m(m≠p),则Sm+p= - (m+p) 性质3:若Sm=Sp (m≠p),则 Sp+m= 0 性质4:(1)若项数为偶数2n,则 S2n=n(a1+a2n)=n(an+an+1) (an,an+1为中 间两项), S奇 an 此时有:S偶-S奇= nd ,
2: 若数列{an}的前n项和Sn满足 Sn=an2+bn,试判断{an}是否是等差数列 。 3、设等差数列{an}的前n项和为Sn, 已知a3=12, S12>0, S13<0。 (1)求公差d的取值范围; (2)指出S1 , S2, … , S12中哪个值最大,
95 25a 5b 1、 设Sn=an2+bn, 则有: 。 200 64a 8b
等差数列{an}前n项和的性质 例8.设等差数列的前n项和为Sn,已知 a3=12,S12>0,S13<0. (1)求公差d的取值范围; (2)指出数列{Sn}中数值最大的项,并说明 理由. a1+2d=12 解:(1)由已知得 12a1+6×11d>0