典例分析
例 2 (1)三个数成等差数列,其和为 9,前两项之积为后一项的 6 倍,求这三个数; (2)四个数成递增等差数列,中间两项的和为 2,首末两项的积为-8,求这四个数.
解:(1)设这三个数依次为 a-d,a,a+d,则
a-d+a+a+d=9, a-da=6a+d,
解得
a=3, d=-1.
∴这三个数为 4,3,2.
都插入3个数, 使它们和原数列的数一起构成一个新的等差数列{bn }.
(1)求数列{bn}的通项公式;
(2)b29是不是数列{an }的项? 若是, 它是{an }的第几项? 若不是, 说明理由.
解1:
解2:
由(1)知,b29 2 29 58, 令an 2 8(n 1) 58,
解得n 8
思考:其他条件不变,若 am+an=ap+aq,能得到 m+n=p+q 吗?
反例: 常数列
推广:(1)特别地,当 m+n=2k(m, n, k∈N*)时,am+an=2ak.
(2)对有穷等差数列,与首末两项“等距离”的两项之和等于 首末两项的和,即 a1+an=a2+an-1=…=ak+an-k+1=….
解: 设数列{bn}的公差为 d,
由题意知,b1 a1 2, b5 a2 2 8 10,
由b5 10 b1 4d 2 4d, 解得d 2
d 8 d d
31
k 1
所以bn 2 (n 1) 2 2n
所以,数列{bn}的通项公式是 bn 2n.
典例分析
例4 已知等差数列{an}的首项a1 2,公差d 8,在{an}中每相邻两项之间
A.14
B.21
C.28
D.35
3.已知数列{an}是等差数列,若a4+a8=20,a7=12,则a4= 6 .