3.2.2空间向量运算的坐标表示
- 格式:ppt
- 大小:1.50 MB
- 文档页数:11
空间向量的3种坐标运算洋葱数学【实用版】目录1.空间向量的概念及表示方法2.空间向量的坐标运算2.1 向量加法2.2 向量减法2.3 向量数量积3.空间向量的应用3.1 几何问题3.2 物理问题正文空间向量是具有大小和方向的量,可以用来表示空间中的点或者箭头。
在数学和物理学中,空间向量是一种重要的概念和工具,它可以用来解决许多实际问题。
空间向量的概念及表示方法空间向量通常用有序的三元组 (x, y, z) 来表示,其中 x, y, z 分别表示向量在 x, y, z 三个方向上的分量。
这个有序的三元组也可以用一个有序的列表或者一个箭头来表示。
例如,向量 (2, 3, 4) 表示一个向量,其分量分别为 2, 3, 4。
空间向量的坐标运算空间向量的坐标运算包括向量加法、向量减法和向量数量积。
2.1 向量加法向量加法是指将两个向量相加,得到一个新的向量。
向量加法的运算规则是:对于两个向量 A 和 B,它们的和是一个向量 C,其中 C 的分量为 A 和 B 对应分量之和。
例如,设向量 A = (2, 3, 4),向量 B = (1, 2, 3),则向量 A 和 B 的和为:C = (2 + 1, 3 + 2, 4 + 3) = (3, 5, 7)2.2 向量减法向量减法是指将两个向量相减,得到一个新的向量。
向量减法的运算规则是:对于两个向量 A 和 B,它们的差是一个向量 C,其中 C 的分量为 A 和 B 对应分量之差。
例如,设向量 A = (2, 3, 4),向量 B = (1, 2, 3),则向量 A 和 B 的差为:C = (2 - 1, 3 - 2, 4 - 3) = (1, 1, 1)2.3 向量数量积向量数量积是指两个向量的长度之积与它们之间的夹角的余弦值的乘积。
向量数量积的运算规则是:对于两个向量 A 和 B,它们的数量积是一个标量,可以用以下公式计算:A ·B = |A| * |B| * cos(θ)其中,|A| 和 |B| 分别表示向量 A 和 B 的长度,θ表示向量 A 和 B 之间的夹角。
3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。
空间向量的基本定理空间向量的基本定理是高中数学中的一个重要内容,它涉及到空间向量的表示、运算和应用。
本文将从以下几个方面介绍空间向量的基本定理:一、空间向量的概念和性质1.1 空间向量的定义空间向量是指空间中具有大小和方向的量,它可以用一个有向线段来表示。
有向线段的起点叫做向量的始点,终点叫做向量的终点,箭头表示向量的方向。
用字母 a, b, c 等表示向量,用 AB 表示以 A 为始点,B 为终点的向量。
1.2 空间向量的相等如果两个向量的长度相等且方向相同,那么这两个向量就是相等的。
相等的向量可以用平行移动的方法来判断,即如果一个向量平行移动后与另一个向量重合,那么这两个向量就是相等的。
例如,AB 和 CD 是相等的,因为 AB 平行移动后与 CD 重合。
1.3 空间向量的线性运算空间向量可以进行加法、减法和数乘三种线性运算,它们遵循以下法则:加法交换律:→a +→b =→b +→a加法结合律:(→a +→b )+→c =→a +(→b +→c )减法定义:→a −→b =→a +(−→b )数乘交换律:k →a =→ak 数乘结合律:(k 1k 2)→a =k 1(k 2→a )数乘分配律:(k 1+k 2)→a =k 1→a +k 2→a 和 k (→a +→b )=k →a +k →b空间向量的加法和减法可以用三角形法则或平行四边形法则来进行几何表示。
空间向量的数乘可以理解为对向量的长度和方向进行缩放,即数乘后的向量与原向量平行,长度为原长度与数乘因子的乘积,方向由数乘因子的正负决定。
例如,2→a 是 →a 的两倍长且同方向的向量,−12→b 是 →b 的一半长且反方向的向量。
二、空间坐标系和空间向量的坐标表示2.1 空间直角坐标系为了在空间中确定任意一点或任意一个向量的位置,我们需要建立一个参照系。
在数学中,我们常用空间直角坐标系来作为参照系。
空间直角坐标系由三条互相垂直且相交于原点 O 的坐标轴组成,分别称为 x 轴、y 轴和 z 轴。
3.2(3)空间向量的坐标表示(教案)西南模范中学 楼芸【教学目标】1.知识与技能: 掌握空间向量的坐标表示方法和空间向量的坐标表示的基本运算规律,掌握空间向量的数量积运算。
2.过程与方法:通过空间坐标系的建立和空间向量坐标运算规律的探索,发展学生的空间想象能力、探究能力,进一步熟悉类比、由一般到特殊、由直觉猜想到推理论证等思维方法,提高学生的科学思维素养。
3.情感态度与价值观:激发学生求知欲望和学习兴趣,使学生经历数学思维全过程,猜想到论证,从而获得数学学习的成就感。
学生遇到问题学会质疑,猜想和论证。
培养严谨的研究态度,教授他们“类比”的研究方法。
提高学生的空间想象力,培养学生探索精神和创新意识,让学生感受数学,体会数学美的魅力。
【重点难点】教学重点:空间向量的坐标表示与运算,空间向量数量积运算。
教学难点:空间向量数量积运算。
【教学环节设计】一课前复习1、前面几节课我们把向量的概念推广到了空间,在三维空间中认识了向量。
在空间建立了直角坐标系,实现了空间的点和有序数组之间的一一对应,实现了空间向量的坐标表示,和向量的加减运算以及找到了空间向量平行的充要条件。
今天我们将继续研究空间向量的数量积表示及运算。
2、回顾空间向量的坐标表示。
),,(,,,,,,,z y x a a z y x k z j y i x a a kj i z y x =++=记作坐标。
在空间直角坐标系中的)叫做向量那么有序实数组(,有对于空间任意向量轴方向相同的单位向量分别取与 推广:若),,(),,,(222111z y x Q z y x P ,则),,(121212z z y y x x ---= 而如果向量OP 的起点恰为坐标原点,则二、提出问题 我们知道,平面向量),,(),,(2211y x b y x a == 则2211y x y x b a +=∙ ,我们是如何得到这个计算公式的?基本单位向量j y i x b j y i x a j i2211,.,+=+= 则)(11y x +=∙∙)(22y x +=))(()()(1221221221j i y x y x j y y i x x∙+++=2121y y x x +那么空间向量的数量积的计算,有没有类似的公式?三、探求新知1、空间向量数量积的坐标表示1、设111(,,)a x y z =,222(,,)b x y z =∵ 111(,,)a x y z =,222(,,)b x y z = ∴)(111z y x ++=∙∙)(222z y x ++=))(())(())(()()()(122112211221221221221k j z y z y k i z x z x j i y x y x k z z j y y i x x∙++∙++∙++++=212121z z y y x x ++2、当a b =时,21212122z y x a a b a ++===∙ 所以212121z y x a ++=若),,(),,,(222111z y x Q z y x P ,则),,(121212z z y y x x ---=()()212212212)(z z y y x x -+-+-=3、我们知道,平面向量数量积有[]πθθ,0,cos ∈=∙b a b a (1)所以b a b a∙=θcos ,这个公式在空间中还成立吗?为什么?任意两个向量必然共面,所以仍然成立。
2020秋高中数学人教A版选修2-1学案:3.2.2空间向量与垂直关系含解析3。
2。
2空间向量与垂直关系自主预习·探新知情景引入1.两向量垂直时,它们所在的直线垂直吗?2.两平面的法向量垂直时,两平面垂直吗?3.怎样用直线的方向向量和平面的法向量来描述线面垂直关系?新知导学空间垂直关系的向量表示设直线l,m的方向向量分别为a=(a1,a2,a3),b=(b1,b2,b3),平面α,β的法向量分别为u=(u1,u2,u3),v=(v1,v2,v3),则位置关系向量关系向量运算关系坐标关系l⊥m__a⊥b____a·b=0__a1b1+a2b2+a3b3=0l⊥α__a∥u____a=λu,λ∈R__a1=λu1,a2=λu2,a3=λu3α⊥β__u⊥v__u·v=0u1v1+u2v2+u3v3=0预习自测1.设直线l1,l2的方向量分别为a=(-2,2,1),b=(3,-2,m),若l1⊥l2,则m等于(D)A.-2B.2C.6D.10[解析]l1⊥l2,则a⊥b,所以-6-4+m=0,∴m=10,故选D.2.若平面α,β垂直,则下面可以作为这两个平面的法向量的是(A)A.n1=(1,2,1),n2=(-3,1,1)B.n1=(1,1,2),n2=(-2,1,1)C.n1=(1,1,1),n2=(-1,2,1)D.n1=(1,2,1),n2=(0,-2,-2)3.(2019-2020学年北京市房山区期末检测)已知直线l的方向向量a=(-1,2,1),平面α的法向量b=(-2,4,2),则直线l 与平面α的位置关系是(B)A.l∥αB.l⊥αC.l⊂αD.l∈α[解析]∵直线l的方向向量a=(-1,2,1),平面α的法向量b=(-2,4,2),∴b=2a,∴则b与a共线,可得:l⊥a。
故选B.4.已知平面α和平面β的法向量分别为a=(1,1,2),b=(x,-2,3),且α⊥β,则x=__-4__.[解析]α⊥β,则a⊥b,∴x-2+6=0,∴x=-4。
3.2空间向量的坐标[读教材·填要点]1.定理1设e1,e2,e3是空间中三个两两垂直的单位向量,则(1)空间中任意一个向量v可以写成这三个向量的线性组合:v=xe1+ye2+ze3.(2)上述表达式中的系数x,y,z由v唯一决定,即:如果v=xe1+ye2+ze3=x′e1+y′e2+z′e3,则x=x′,y=y′,z=z′.2.定理2(空间向量基本定理)设e1,e2,e3是空间中三个不共面的单位向量,则(1)空间中任意一个向量v可以写成这三个向量的线性组合:v=xe1+ye2+ze3.(2)上述表达式中的系数x,y,z由v唯一决定,即:如果v=xe1+ye2+ze3=x′e1+y′e2+z′e3,则x=x′,y=y′,z=z′.3.空间向量运算的坐标公式(1) 向量的加减法:(x1,y1,z1)+(x2,y2,z2)=(x1+x2,y1+y2,z1+z2),(x1,y1,z1)-(x2,y2,z2)=(x1-x2,y1-y2,z1-z2).(2)向量与实数的乘法:a(x,y,z) =(ax,ay,az).(3)向量的数量积:(x1,y1,z1)·(x2,y2,z2)=x1x2+y1y2+z1z2.(4)向量v=(x,y,z)的模的公式:|v|=x2+y2+z2.(5)向量(x1,y1,z1),(x2,y2,z2)所成的角α的公式:cos α=x1x2+y1y2+z1z2x21+y21+z21x22+y22+z22.4.点的坐标与向量坐标(1)一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.(2)两点A (x 1,y 1,z 1),B (x 2,y 2,z 2)的距离d AB 为:d AB =x 2-x 12+y 2-y 12+z 2-z 12.(3)线段的中点坐标,等于线段两端点坐标的平均值.[小问题·大思维]1.空间向量的基是唯一的吗?提示:由空间向量基本定理可知,任意三个不共面向量都可以组成空间的一组基,所以空间的基有无数个,因此不唯一.2.命题p :{a ,b ,c }为空间的一个基底;命题q :a ,b ,c 是三个非零向量,则命题p 是q 的什么条件?提示:p ⇒q ,但qp ,即p 是q 的充分不必要条件.3.空间向量的坐标运算与坐标原点的位置是否有关系?提示:空间向量的坐标运算与坐标原点的位置选取无关,因为一个确定的几何体,其线线、线面、面面的位置关系是固定的,坐标系的不同,只会影响其计算的繁简.4.平面向量的坐标运算与空间向量的坐标运算有什么联系与区别?提示:平面向量与空间向量的坐标运算均有加减运算,数乘运算,数量积运算,其算理是相同的.但空间向量要比平面向量多一竖坐标,竖坐标的处理方式与横、纵坐标是一样的.空间向量基本定理的应用空间四边形OABC 中,G ,H 分别是△ABC ,△OBC 的重心,设OA ―→=a ,OB ―→=b ,OC ―→=c ,试用向量a ,b ,c 表示向量OG ―→和GH ―→.[自主解答] ∵OG ―→=OA ―→+AG ―→, 而AG ―→=23AD ―→,AD ―→=OD ―→-OA ―→.∵D 为BC 的中点, ∴OD ―→=12(OB ―→+OC ―→)∴OG ―→=OA ―→+23AD ―→=OA ―→+23(OD ―→-OA ―→)=OA ―→+23·12(OB ―→+OC ―→)-23OA ―→=13(OA ―→+OB ―→+OC ―→)=13(a +b +c ). 而GH ―→=OH ―→-OG ―→,又∵OH ―→=23OD ―→=23·12(OB ―→+OC ―→)=13(b +c )∴GH ―→=13(b +c )-13(a +b +c )=-13a .∴OG ―→=13(a +b +c );GH ―→=-13a .本例条件不变,若E 为OA 的中点,试用a ,b ,c 表示DE ―→和EG ―→. 解:如图,DE ―→=OE ―→-OD ―→=12OA ―→-12(OB ―→+OC ―→) =12a -12b -12c . EG ―→=OG ―→-OE ―→=13(OA ―→+OB ―→+OC ―→)-12OA ―→ =-16OA ―→+13OB ―→+13OC ―→=-16a +13b +13c .用基表示向量时:(1)若基确定,要充分利用向量加法、减法的三角形法则和平行四边形法则,以及数乘向量的运算律进行.(2)若没给定基时,首先选择基,选择时,要尽量使所选的基向量能方便地表示其他向量,再就是看基向量的模及其夹角已知或易求.1.如图所示,已知平行六面体ABCD A 1B 1C 1D 1,设AB ―→=a ,AD ―→=b ,AA 1―→=c ,P 是CA 1的中点,M 是CD 1的中点.用基底{a ,b ,c }表示以下向量:(1)AP ―→;(2)AM ―→. 解:连接AC ,AD 1, (1)AP ―→=12(AC ―→+AA 1―→)=12(AB ―→+AD ―→+AA 1―→) =12(a +b +c ). (2)AM ―→=12(AC ―→+AD 1―→)=12(AB ―→+2AD ―→+AA 1―→) =12a +b +12c . 空间向量的坐标运算已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB ―→,b =AC ―→.(1)设|c |=3,c ∥BC ―→,求c .(2)若ka +b 与ka -2b 互相垂直,求k .[自主解答] (1)∵BC ―→=(-2,-1,2)且c ∥BC ―→, ∴设c =λBC ―→=(-2λ,-λ,2λ). ∴|c |=-2λ2+-λ2+2λ2=3|λ|=3.解得λ=±1,∴c =(-2,-1,2)或c =(2,1,-2). (2)∵a =AB ―→=(1,1,0),b =AC ―→=(-1,0,2), ∴ka +b =(k -1,k,2),ka -2b =(k +2,k ,-4). ∵(ka +b )⊥(ka -2b ),∴(ka +b )·(ka -2b )=0.即(k -1,k,2)·(k +2,k ,-4)=2k 2+k -10=0. 解得k =2或k =-52.本例条件不变,若将(2)中“互相垂直”改为“互相平行”,k 为何值? 解:∵ka +b =(k -1,k,2),ka -2b =(k +2,k ,-4),设ka +b =λ(ka -2b ),则⎩⎪⎨⎪⎧k -1=λk +2,k =λk ,2=-4λ,∴k =0.已知两个向量垂直(或平行)时,利用坐标满足的条件可得到方程(组)进而求出参数的值.这是解决已知两向量垂直(或平行)求参数的值的一般方法.在求解过程中一定注意合理应用坐标形式下的向量运算法则,以免出现计算错误.2.若a =(1,5,-1),b =(-2,3,5).分别求满足下列条件的实数k 的值: (1)(ka +b )∥(a -3b ); (2)(ka +b )⊥(a -3b ).解:ka +b =(k -2,5k +3,-k +5),a -3b =(1+3×2,5-3×3,-1-3×5)=(7,-4,-16). (1)若(ka +b )∥(a -3b ), 则k -27=5k +3-4=-k +5-16,解得k =-13.(2)若(ka +b )⊥(a -3b ),则(k -2)×7+(5k +3)×(-4)+(-k +5)×(-16)=0, 解得k =1063.点的坐标与向量坐标在直三棱柱ABO A 1B 1O 1中,∠AOB =π2,AO =4,BO =2,AA 1=4,D 为A 1B 1的中点,在如图所示的空间直角坐标系中,求DO ―→,A 1B ―→的坐标.[自主解答] (1)∵DO ―→=-OD ―→=-(OO 1―→+O 1D ―→) =-⎣⎢⎡⎦⎥⎤OO 1―→+12(OA ―→+OB ―→)=-OO 1―→-12OA ―→-12OB ―→.又|OO 1―→|=4,|OA ―→|=4,|OB ―→|=2, ∴DO ―→=(-2,-1,-4).(2)∵A 1B ―→=OB ―→-OA 1―→=OB ―→-(OA ―→+AA 1―→) =OB ―→-OA ―→-AA 1―→.又|OB ―→|=2,|OA ―→|=4,|AA 1―→|=4, ∴A 1B ―→=(-4,2,-4).用坐标表示空间向量的方法步骤为:3.如图所示,PA 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的中点,并且PA =AB =1.试建立适当的空间直角坐标系,求向量MN ―→的坐标.解:∵PA =AB =AD =1,PA ⊥平面ABCD ,AB ⊥AD , ∴AB ―→,AD ―→,AP ―→是两两垂直的单位向量.设AB ―→=e 1,AD ―→=e 2,AP ―→=e 3,以{e 1,e 2,e 3}为基底建立空间直角坐标系Axyz .法一:∵MN ―→=MA ―→+AP ―→+PN ―→=-12AB ―→+AP ―→+12PC ―→=-12AB ―→+AP ―→+12(PA ―→+AC ―→)=-12AB ―→+AP ―→+12(PA ―→+AB ―→+AD ―→)=12AD ―→+12AP ―→=12e 2+12e 3, ∴MN ―→=⎝ ⎛⎭⎪⎫0,12,12.法二:如图所示,连接AC ,BD 交于点O . 则O 为AC ,BD 的中点,连接MO ,ON , ∴MO ―→=12BC ―→=12AD ―→,ON ―→=12AP ―→,∴MN ―→=MO ―→+ON ―→ =12AD ―→+12AP ―→ =12e 2+12e 3. ∴MN ―→=⎝ ⎛⎭⎪⎫0,12,12.解题高手多解题条条大路通罗马,换一个思路试一试已知矩形ABCD ,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M ,N 分别为PC ,PD 上的点,且PM ―→=2MC ―→,N 为PD 的中点,求满足MN ―→=x AB ―→+y AD ―→+z AP ―→的实数x ,y ,z 的值.[解] 法一:如图所示,取PC 的中点E ,连接NE ,则MN ―→=EN ―→-EM ―→.∵EN ―→=12CD ―→=12BA ―→=-12AB ―→,EM ―→=PM ―→-PE ―→=23PC ―→-12PC ―→=16PC ―→,连接AC ,则PC ―→=AC ―→-AP ―→=AB ―→+AD ―→-AP ―→, ∴MN ―→=-12AB ―→-16(AB ―→+AD ―→-AP ―→)=-23AB ―→-16AD ―→+16AP ―→,∴x =-23,y =-16,z =16.法二:如图所示,在PD 上取一点F ,使PF ―→=2FD ―→,连接MF , 则MN ―→=MF ―→+FN ―→, 而MF ―→=23CD ―→=-23AB ―→,FN ―→=DN ―→-DF ―→=12DP ―→-13DP ―→=16DP ―→=16(AP ―→-AD ―→), ∴MN ―→=-23AB ―→-16AD ―→+16AP ―→.∴x =-23,y =-16,z =16.法三:MN ―→=PN ―→-PM ―→=12PD ―→-23PC ―→=12(PA ―→+AD ―→)-23(PA ―→+AC ―→) =-12AP ―→+12AD ―→-23(-AP ―→+AB ―→+AD ―→)=-23AB ―→-16AD ―→+16AP ―→,∴x =-23,y =-16,z =16.[点评] 利用基向量表示空间中某一向量的方法步骤为: ①找到含有空间向量的线段为一边的一个封闭图形;②结合平行四边形法则或三角形法则,用基向量表示封闭图形的各边所对应的向量; ③写出结论.1.已知空间四边形OABC ,其对角线为AC ,OB ,M ,N 分别是OA ,BC 的中点,点G 是MN 的中点,则OG ―→等于( )A.16OA ―→+13OB ―→+13OC ―→B.14(OA ―→+OB ―→+OC ―→)C.13(OA ―→+OB ―→+OC ―→)D.16OB ―→+13OA ―→+13OC ―→ 解析:如图,OG ―→=12(OM ―→+ON ―→)=12OM ―→+12×12(OB ―→+OC ―→) =14OA ―→+14OB ―→+14OC ―→ =14(OA ―→+OB ―→+OC ―→). 答案:B2.已知a =(1,-2,1),a +b =(-1,2,-1),则b 等于( ) A .(2,-4,2) B .(-2,4,-2) C .(-2,0,-2) D .(2,1,-3)解析:b =(a +b )-a=(-1,2,-1)-(1,-2,1)=(-2,4,-2). 答案:B3.a =(2x,1,3),b =(1,-2y,9),如果a 与b 为共线向量,则( ) A .x =1,y =1 B .x =12,y =-12C .x =16,y =-32D .x =-16,y =32解析:∵a =(2x,1,3)与b =(1,-2y,9)共线,故有2x 1=1-2y =39,∴x =16,y =-32.答案:C4.已知点A (-1,3,1),B (-1,3,4),D (1,1,1),若AP ―→=2PB ―→,则|PD ―→|的值是________. 解析:设点P (x ,y ,z ),则由AP ―→=2PB ―→, 得(x +1,y -3,z -1)=2(-1-x,3-y,4-z ),则⎩⎪⎨⎪⎧x +1=-2-2x ,y -3=6-2y ,z -1=8-2z ,解得⎩⎪⎨⎪⎧x =-1,y =3,z =3,即P (-1,3,3), 则|PD ―→|=-1-12+3-12+3-12=12=2 3. 答案:2 35.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB ―→与CA ―→的夹角θ的大小是________.解析:AB ―→=(-2,-1,3),CA ―→=(-1,3,-2),cos 〈AB ―→,CA ―→〉=-2×-1+-1×3+3×-214·14=-714=-12, ∴θ=〈AB ―→,CA ―→〉=120°. 答案:120°6.已知PA 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的三等分点且|PN ―→|=2|NC ―→|,|AM ―→|=2|MB ―→|,PA =AB =1,求MN ―→的坐标.解:法一:∵PA =AB =AD =1,且PA 垂直于平面ABCD ,AD ⊥AB ,∴可设DA ―→=i ,AB ―→=j ,AP ―→=k ,以i ,j ,k为单位正交基底建立如图所示的空间直角坐标系.∵MN ―→=MA ―→+AP ―→+PN ―→ =-23AB ―→+AP ―→+23PC ―→=-23AB ―→+AP ―→+23(-AP ―→+AD ―→+AB ―→)=13AP ―→+23AD ―→=13k +23(-DA ―→) =-23i +13k ,∴MN ―→=⎝ ⎛⎭⎪⎫-23,0,13.法二:设DA ―→=i ,AB ―→=j ,AP ―→=k ,以i ,j ,k 为单位正交基底建立如图所示的空间直角坐标系,过M 作AD 的平行线交CD 于点E ,连接EN .∵MN ―→=ME ―→+EN ―→=AD ―→+13DP ―→=-DA ―→+13(DA ―→+AP ―→)=-i +13(i +k )=-23i +13k ,∴MN ―→=⎝ ⎛⎭⎪⎫-23,0,13.一、选择题1.已知a ,b ,c 是不共面的三个向量,则能构成空间的一个基的一组向量是( ) A .3a ,a -b ,a +2b B .2b ,b -2a ,b +2a C .a,2b ,b -cD .c ,a +c ,a -c解析:对于A ,有3a =2(a -b )+a +2b ,则3a ,a -b ,a +2b 共面,不能作为基;同理可判断B 、D 错误.答案:C2.以正方体ABCD A 1B 1C 1D 1的顶点D 为坐标原点,如图建立空间直角坐标系,则与DB 1―→共线的向量的坐标可以是( )A .(1,2,2)B .(1,1,2)C .(2,2,2)D .(2,2,1)解析:设正方体的棱长为1,则由图可知D (0,0,0),B 1(1,1,1), ∴DB 1―→=(1,1,1),∴与DB 1―→共线的向量的坐标可以是(2,2,2). 答案:C3.空间四边形OABC 中,OA ―→=a ,OB ―→=b ,OC ―→=c ,点M 在OA 上,且OM ―→=2MA ―→,N 为BC 中点,则MN ―→为( )A.12a -23b +12c B .-23a +12b +12cC.12a +12b -23c D.23a +23b -12c 解析:MN ―→=MA ―→+AB ―→+BN ―→ =13OA ―→+OB ―→-OA ―→+12(OC ―→-OB ―→) =-23OA ―→+12OB ―→+12OC ―→=-23a +12b +12c .答案:B4.若a =(1,λ,2),b =(2,-1,2),且a 与b 的夹角的余弦值为89,则λ=( )A .2B .-2C .-2或255D .2或-255解析:因为a ·b =1×2+λ×(-1)+2×2=6-λ,又因为a ·b =|a ||b |·cos〈a ,b 〉=5+λ2·9·89=835+λ2,所以835+λ2=6-λ.解得λ=-2或255.答案:C 二、填空题5.已知a =(2,-1,3),b =(-4,2,x ),c =(1,-x,2),若(a +b )⊥c ,则x =________. 解析:∵a +b =(-2,1,x +3), ∴(a +b )·c =-2-x +2(x +3)=x +4. 又∵(a +b )⊥c , ∴x +4=0,即x =-4. 答案:-46.已知向量a =(2,-1,3),b =(-1,4,-2),c =(7,0,λ),若a ,b ,c 三个向量共面,则实数λ=________.解析:由a ,b ,c 共面可得c =xa +yb , ∴⎩⎪⎨⎪⎧7=2x -y ,0=-x +4y ,λ=3x -2y ,解得λ=10.答案:107.若a =(x,2,2),b =(2,-3,5)的夹角为钝角,则实数x 的取值X 围是________. 解析:a ·b =2x -2×3+2×5=2x +4,设a ,b 的夹角为θ,因为θ为钝角,所以cosθ=a ·b|a ||b |<0,又|a |>0,|b |>0,所以a ·b <0,即2x +4<0,所以x <-2,所以实数x 的取值X 围是(-∞,2).答案:(-∞,-2)8.已知M 1(2,5,-3),M 2(3,-2,-5),设在线段M 1M 2上的一点M 满足M 1M 2―→=4MM 2―→,则向量OM ―→的坐标为________.解析:设M (x ,y ,z ),则M 1M 2―→=(1,-7,-2),MM 2―→=(3-x ,-2-y ,-5-z ).又∵M 1M 2―→=4MM 2―→,∴⎩⎪⎨⎪⎧1=43-x ,-7=4-2-y ,-2=4-5-z ,∴⎩⎪⎨⎪⎧x =114,y =-14,z =-92.答案:⎝⎛⎭⎪⎫114,-14,-92三、解答题9.已知△ABC 三个顶点的坐标分别为A (1,2,3),B (2,-1,5),C (3,2,-5). (1)求△ABC 的面积; (2)求△ABC 中AB 边上的高.解:(1)由已知得AB ―→=(1,-3,2),AC ―→=(2,0,-8), ∴|AB ―→|= 1+9+4=14, |AC ―→|=4+0+64=217,AB ―→·AC ―→=1×2+(-3)×0+2×(-8)=-14,cos 〈AB ―→,AC ―→〉=AB ―→·AC ―→|AB ―→|·|AC ―→|=-1414×217=-14217,sin 〈AB ―→,AC ―→〉=1-1468=2734. ∴S △ABC =12|AB ―→|·|AC ―→|·sin〈AB ―→,AC ―→〉=12×14×217×2734=321. (2)设AB 边上的高为CD , 则|CD ―→|=2S △ABC |AB ―→|=3 6.10.如图,在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是⎝⎛⎭⎪⎫32,12,0,点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°.(1)求向量OD ―→的坐标;(2)设向量AD ―→和BC ―→的夹角为θ,求cos θ的值.解:(1)如图所示,过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD = 3.∴DE =CD ·sin 30°=32. OE =OB -BD ·cos 60°=1-12=12,∴D 点坐标为⎝ ⎛⎭⎪⎫0,-12,32,即向量OD ―→的坐标为⎝ ⎛⎭⎪⎫0,-12,32.(2)依题意:OA ―→=⎝ ⎛⎭⎪⎫32,12,0,OB ―→=(0,-1,0),OC ―→=(0,1,0). 所以AD ―→=OD ―→-OA ―→=⎝ ⎛⎭⎪⎫-32,-1,32,BC ―→=OC ―→-OB ―→=(0,2,0). 设向量AD ―→和BC ―→的夹角为θ,则 cos θ=AD ―→·BC―→|AD ―→|·|BC ―→|=⎝ ⎛⎭⎪⎫-32×0+-1×2+32×0⎝ ⎛⎭⎪⎫-322+-12+⎝ ⎛⎭⎪⎫322·02+22+02=-210=-105.∴cos θ=-105.。
3.2 空间向量的基本定理与空间向量的坐标表示一、空间向量的基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在唯一的有序实数组x 、y 、z 使.zc yb xa p ++=二、空间向量的坐标表示1.单位正交基底,如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常用{i ,j ,k}表示.2.空间直角坐标系.在空间选一点O 和一个单位正交基底{i ,j ,k}.以点O 为原点,分别以i ,j ,k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴,这样我们就建立了一个空间直角坐标系Oxyz ,其中点0叫原点,向量i ,j ,k 都叫坐标向量,经过每两个坐标轴的平面叫做坐标平面,它们分别是xOy 平面,xO z 平面,yoz 平面.3.空间直角坐标系的画法,作空间直角坐标系Oxyz 时,一般使用,135o xOy =∠.90 =∠yOz在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指能指向z 轴的正方向,则称此坐标系为右手直角坐标系,一般使用的坐标系都是右手直角坐标系.4.空间向量的坐标表示. 给定一个空间直角坐标系和向量a ,其坐标向量为i,j ,k ,若,321k a j a i a a ++=则有序数组),,(321a a a 叫做向量a 在此直角坐标系中的坐标,上式可简记作).,,(321a a a a =在空间直角坐标系Oxyz 中,对于空间任一点A ,对应一个向量:,.OA 若,0zk yj xi ++=则有序数组(x ,y ,z)叫点A 在此空间直角坐标系中的坐标,记为A (x ,y ,z ),其中x 叫做点A 的横坐标,y 叫点A 的纵坐标,z 叫点A 的竖坐标.写点的坐标时,三个坐标之间的顺序不可颠倒.5.空间任一点P 的坐标的确定.过P 作面xOy 的垂线,垂足为P 1,在面xOy 中,过P 1分别作x 轴、y 轴的垂线,垂足分别为A 、C ,则|,||,|AP y PC x ==.||PP z =如图3 -2 -2.[注意](1)空间相等向量的坐标是唯一的;(2)当向量与坐标轴或坐标平面平行(或垂直)时,向量的坐标有一定特点,请同学们思考. 三、空间向量的坐标运算空间向量加法、减法、数量积、平行、垂直的坐标运算都类似于平面内向量的这些坐标运算.设),,,(),,,(321321b b b b a a a a ==则).,,(332211b a b a b a b a +++=+ ).,,(332211b a b a b a b a ---=-).)(,,(321R a a a a ∈=λλλλλ⋅++=⋅332211b a b a b a b a),(,,//332211R b a b a b a b a ∈===⇔λλλλ或332211b a b a b a ==).0(321=/b b b .0332211=++⇔⊥b a b a b a b a典例分类考点1 空间向量的基本定理[例1] 已知{a ,b ,c}是空间向量的一个基底,从a ,b ,c 中选出哪一个向量,一定可以与向量b a q b a P -=+=,构成空间的另一个基底?[例2] 如图3-2 -3,在平行六面体D C B A ABCD ''''-中,='==A A b A a .D ,P c ,是A C ' 的中点,M 是D C '的中点,N 是D C ''的中点,点Q 是A C '上的点,且:CQ ,1:4='A Q 用基底{a ,b ,c}表示以下向量:;)1( ;)2( ;)3( )4(考点2空间向量的坐标表示[例3] 已知在正四棱锥P- ABCD 中,0为底面中心,底面边长和高都是2,E 、F 分别是侧棱PA 、PB 的中点,分别按照下列要求建立空间直角坐标系,写出点A 、B 、C 、 D 、P 、E 、F 的坐标.考点3 空间向量的坐标运算[例4] 已知A 、B 、C 三点的坐标分别为A (2,-1,2),B(4,5,-1),C( -2,2,3),分别求点D 的坐标,使:);(21)1(-= ⋅-=)(21)2([例5] 在棱长为1的正方体1111D C B A ABCD -中,E 、F 分别是BD D D 、1的中点,G 在棱CD 上,且H CD CG ,41=是G C l 的中点.利用空间向量解决下列问题: (1)求EF 与C B 1所成的角; (2)求EF 与G C 1所成角的余弦值; (3)求F 、H 两点间的距离.学业水平测试1、设,,,a c z c b y b a x +=+=+=且{a ,b ,c}是空间的一个基底,给出下列向量组:},,,{x b a ①,,{y x ②},,,{},z c b z ③},,,{c b a y x ++④其中可以作为空间的基底的向量组有( ).A.l 个 B .2个 C.3个 D .4个2),9,2,1(),3,1,2(.y b x a -==如果a 与b 为共线向量,则( ).1,1.==y x A 21,21.-==y x B 23,61.-==y x C 23,61.=-=y x D 3.已知),3,2,4(),4,1,6(),11,2,1(C B A --则△ABC 是( ).A .锐角三角形B .等腰三角形C .直角三角形D .钝角三角形 4.若),1,sin 2,cos 2(),1,sin 3,cos 3(θθααB A 则||的取值范围是( ).]5,0.[A ]5,1.[B )5,1(⋅C )5,0(⋅D5.已知点),1,1,1()4,3,1()1,3,1(D B A 、、--若,2=则||的值是 6.如图3 -2 -4,四棱锥P - OABC 的底面为一矩形,PO ⊥平面OABC ,设,,b OC a OA ==F E c 、,=分别是PC 和PB 的中点,试用a ,b ,c 表示 :.AE 、7.如图3 -2 -6所示,已知PA ⊥平面ABCD ,M 、N 分别是AB 、PC 的中点,并且PA= AD ,四边形ABCD 为正方形,以A 为原点建立如图3 -2 -6所示的空间直角坐标系,求.的坐标表示.8.如图3 -2 -7.ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB,△OAC.△ODE,△ODF 都是正三角形.(1)证明直线BC//EF ;(2)求棱锥F- OBED 的体积.9.如图3 -2 -9所示,在正方体 ABCD 1111D C B A 中,E 是棱1DD 的中点.(1)求直线BE 和平面11A ABB 所成的角的正弦值;(2)在棱11D C 上是否存在一点F ,使//1F B 平面?1BE A 证明你的结论.能力测试一、选择题1.以下四个命题中正确的是( ).A .空间的任何一个向量都可用其他三个向量表示B .若},,{c b a 为空间向量的一组基底,则},,{a c c b b a +++构成空间向量的另一组基底C .△ABC 为直角三角形的充要条件是0=⋅AC ABD .任何三个不共线的向量都可构成空间向量的一组基底2.已知向量),2,0,1(),0,1,1(-==b a 且b ka +与b a -2互相垂直,则k 值是( ).1.A 51.B 53.C 57.D3.已知),cos ,1,(sin ),sin ,1,(cos αααα==b a 则向量b a +与b a -的夹角是( ).90.A 60.B 30.C 0.D4.已知),2,12,6(),2,0,1(λμλ-=+=b a 若,//b a 则λ与μ的值分别为( ).21,51.A 21,51.--B 2,5.C 2,5.--D 5.已知点),4,1,6(),3,2,4(),11,2,1(--C B A 则△ABC 的形状是( ).A .等腰三角形B .等边三角形C .直角-角形D .等腰直角三角形6.已知),2,4,2()0,2,0()1,0,3(---C B A 、、则△ABC 是( ).A .等边三角形 C .直角三角形B .等腰三角形 D .以上都不对 7.已知),4,2,3()2,2,2()1,1,1(C B A 、、则△ABC 的面积为( ).3.A 32.B 6.C 26.D8.在棱长为1的正方体1111D C B A ABCD -中,M ,N 分别为11B A 和1BB 的中点,那么直线AM 与CN 所成的角的余弦值为( ).23.A 1010.B 53.C 52.D二、填空题(本大题共4小题,每小题5分,共20分.答案须填在题中横线上) 9.已知向量),2,,2(),,4,2(y b x a ==若,6=a 且a ⊥b ,则y x +的值为 10.已知空间三点),3,2,2()4,0,1()1,1,1(--C B A 、、则与的夹角θ的大小是 11.已知向量=-=b a ),1,1,0(29||),0,1,4(=+b a λ且,0>λ则=λ12.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C-AB-D 的余弦值为N M 、,33分别是AC 、BC 的中点,则EM 、AN 所成角的余弦值等于三、解答题(本大题共4小题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤) 13.如图3-2 -11,在平行六面体ABCD ABCD -中,E ,F ,G 分别是DC DD AD ,,的中点,请选择恰当的基底向量证明:;//)1(AC EG (2)平面EFG∥平面.ABC14.如图3-2 -12,在正方体1111D C B A ABCD -中,E 、F 分别是DC BB 、1的中点,求证:⊥F D 1平面ADE.15.如图3-2 -13,在三棱锥P- ABC 中,D AC AB ,=为BC 的中点,PO ⊥平面ABC ,垂足0落在线段AD上,已知.2,3,4,8====OD AO PO BC (1)证明:;BC AP ⊥(2)在线段AP 上是否存在点M ,使得二面角A-MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由.16、如图3-2 -14,在四棱锥P- ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,=∠=BAD AB ,2.60o(1)求证:BD ⊥平面PAC ;(2)若,AB PA =求PB 与AC 所成角的余弦值; (3)当平面PBC 与平面PDC 垂直时,求PA 的长.。
空间向量建系右手定则1. 引言空间向量建系右手定则是在三维空间中确定坐标系的方向时使用的一种方法。
它是基于右手定则的原理,用于确定坐标系的正方向和坐标轴的顺序。
在物理学、几何学和工程学等领域中广泛应用。
2. 右手定则在三维空间中,我们可以使用右手定则确定坐标系的方向。
右手定则是指,当我们将右手的拇指指向坐标系的正方向时,四指的弯曲方向表示坐标轴的顺序。
2.1 建立坐标系首先,我们需要确定一个基准向量作为坐标系的第一个轴。
通常选择一个与现实世界中的某个物理量相关的向量,比如重力加速度向量。
2.2 拇指指向正方向将右手的拇指指向我们选定的基准向量所表示的方向。
这个方向通常是一个已知的向量,比如重力加速度向量的方向是向下的。
2.3 四指的弯曲方向表示坐标轴的顺序接下来,将四指弯曲,指向的方向表示坐标系的第二个轴的方向。
这个方向通常是与基准向量垂直的向量,可以通过叉乘运算得到。
最后,剩下的一个指向的方向表示坐标系的第三个轴的方向,可以通过再次进行叉乘运算得到。
3. 空间向量的表示在建立坐标系后,我们可以使用空间向量来表示三维空间中的点、向量和物体。
空间向量由三个分量组成,分别表示在坐标系的三个轴上的投影。
3.1 点的表示对于一个三维空间中的点,可以使用一个位置向量来表示。
这个位置向量的三个分量分别表示点在坐标系的三个轴上的投影。
3.2 向量的表示对于一个三维空间中的向量,可以使用一个方向向量来表示。
这个方向向量的三个分量分别表示向量在坐标系的三个轴上的投影。
3.3 物体的表示对于一个三维空间中的物体,可以使用一个位移向量来表示。
这个位移向量的三个分量分别表示物体在坐标系的三个轴上的位移。
4. 应用举例4.1 机械工程在机械工程中,空间向量建系右手定则被广泛应用于机械结构的设计和分析。
通过确定坐标系的方向,可以准确描述机械零件的位置、速度和加速度等物理量。
4.2 物理学在物理学中,空间向量建系右手定则用于描述物体的运动和力学性质。
向量知识点总结在数学和物理学中,向量是一种具有大小和方向的量。
它在许多领域中都有广泛应用,包括几何、力学、电磁学等。
本文将总结向量的基本概念、运算法则以及一些常见应用。
1. 向量的基本概念向量由大小和方向两个要素组成。
我们通常用箭头(→)来表示向量,如AB→。
向量可以用坐标表示,也可以用矩阵表示。
2. 向量的表示方法2.1 坐标表示:向量的坐标表示为(x, y, z),分别代表向量在x、y、z轴上的投影长度。
2.2 矩阵表示:向量也可以用矩阵表示,如A = [a1, a2, a3],其中a1、a2、a3为向量在不同轴上的分量。
3. 向量的运算法则3.1 向量的加法:当两个向量的方向相同时,它们的加法就是将两个向量的对应分量相加,如A + B = (x1 + x2, y1 + y2, z1 + z2)。
3.2 向量的减法:向量的减法是指将被减向量的分量取相反数后与减向量相加,如A - B = (x1 - x2, y1 - y2, z1 - z2)。
3.3 向量的数量乘法:向量的数量乘法是指将向量的每个分量都与一个常数相乘,如kA = (kx, ky, kz),其中k为常数。
3.4 向量的点积:向量的点积是指两个向量对应分量乘积的和,如A · B = x1x2 + y1y2 + z1z2,结果是一个标量。
3.5 向量的叉积:向量的叉积是指两个向量相乘得到一个新的向量,如A × B = (y1z2 - y2z1, z1x2 - z2x1, x1y2 - x2y1)。
4. 向量的性质4.1 平行向量:如果两个向量的方向相同或相反,则它们是平行向量。
4.2 垂直向量:如果两个向量的点积为0,则它们是垂直向量。
4.3 单位向量:向量的长度称为其模,单位向量是模为1的向量。
5. 向量的应用5.1 几何:向量在几何中有广泛的应用,如表示线段、直线、平面的方向和距离等。
5.2 力学:向量在力学中用于描述力和速度等物理量。
向量的坐标运算公式向量的坐标运算是数学中的重要概念,它可以帮助我们描述和解决各种实际问题。
在这篇文章中,我们将深入探讨向量的坐标运算,从而更好地理解和应用它们。
让我们来了解一下什么是向量。
向量是具有大小和方向的量,通常用箭头表示。
在二维空间中,一个向量可以由它在水平轴上的坐标和垂直轴上的坐标表示。
例如,向量v可以表示为(vx, vy),其中vx 是水平方向上的坐标,vy是垂直方向上的坐标。
接下来,我们来看一下向量的加法运算。
当我们将两个向量相加时,只需要将它们对应的坐标相加即可。
例如,如果有两个向量a和b,它们的坐标分别为(ax, ay)和(bx, by),那么它们的和向量c的坐标可以表示为(cx, cy),其中cx = ax + bx,cy = ay + by。
除了加法运算,我们还可以进行向量的数乘运算。
数乘运算指的是将一个向量与一个标量相乘,即将向量的每个坐标都乘以这个标量。
例如,如果有一个向量a,它的坐标为(ax, ay),而一个标量k,那么将向量a与标量k相乘得到的新向量b的坐标可以表示为(bx, by),其中bx = k * ax,by = k * ay。
我们还可以进行向量的减法运算。
向量的减法运算可以看作是向量加法运算的逆运算。
当我们将一个向量b从另一个向量a中减去时,只需要将b的坐标的相反数加到a的坐标上即可。
例如,如果有两个向量a和b,它们的坐标分别为(ax, ay)和(bx, by),那么它们的差向量c的坐标可以表示为(cx, cy),其中cx = ax - bx,cy = ay - by。
我们来讨论一下向量的模。
向量的模表示向量的长度,可以通过勾股定理计算得到。
在二维空间中,一个向量的模等于它的坐标的平方和的平方根。
例如,如果有一个向量a,它的坐标为(ax, ay),那么它的模表示为|a| = √(ax^2 + ay^2)。
通过以上的讨论,我们对向量的坐标运算有了更深入的了解。
引言概述:空间向量是三维空间中的各种几何对象的表示方式,它具有方向和大小的特征。
在本文中,我们将继续探讨空间向量的基本知识点,包括向量的基本概念、向量的表示方式、向量的运算法则、向量的线性相关性以及向量的投影等内容。
正文内容:1.向量的基本概念1.1向量的定义1.2向量的方向1.3向量的大小1.4向量的起点和终点1.5零向量和单位向量2.向量的表示方式2.1分量表示法2.2坐标表示法2.3点表示法2.4i、j、k向量表示法2.5综合表示方式的应用3.向量的运算法则3.1向量的加法3.2向量的减法3.3向量的数量积(内积)3.4向量的向量积(外积)3.5向量的混合积4.向量的线性相关性4.1线性相关和线性无关的概念4.2判断向量线性相关性的方法4.3线性相关性的应用5.向量的投影5.1向量的投影定义5.2向量的投影计算方法5.3向量的正交与投影的关系5.4向量的投影在几何问题中的应用5.5向量投影的几何意义总结:空间向量是三维空间中的重要工具,可以表示各种几何对象。
本文从向量的基本概念开始介绍,包括向量的定义、方向、大小、起点和终点等方面。
然后,我们针对不同的向量表示方法进行了详细的阐述,包括分量表示法、坐标表示法、点表示法和i、j、k向量表示法等。
接着,我们介绍了向量的运算法则,包括向量的加法、减法、数量积、向量积和混合积。
然后,我们讨论了向量的线性相关性以及判断线性相关性的方法。
我们详细介绍了向量的投影,包括定义、计算方法、与正交的关系以及在几何问题中的应用。
通过本文的学习,读者能够对空间向量的基本知识有一个全面的了解,并能够熟练运用这些知识解决几何问题。