空间向量的坐标表示及其运算
- 格式:ppt
- 大小:2.58 MB
- 文档页数:8
空间向量的坐标表示与计算空间向量是三维空间中的一个重要概念,可以用来表示空间中的一个点或者空间中的两个点之间的位移向量。
为了方便计算和表示,我们可以使用坐标表示来描述和计算空间向量。
一、空间向量的坐标表示在三维坐标系中,可以使用三个坐标轴(通常是x轴、y轴、z轴)来表示一个空间向量的坐标。
这三个坐标轴是相互垂直的,构成一个直角坐标系。
对于一个空间向量v,可以使用v的起点在坐标原点的坐标表示来表示该向量。
假设v的坐标表示为(x, y, z),其中x、y、z分别表示v在x轴、y轴、z轴上的坐标值。
例如,对于一个空间向量v,如果它的起点在坐标原点,终点的坐标分别为(3, 4, 5),那么可以表示为v = (3, 4, 5)。
二、空间向量的计算1. 向量的加法空间向量的加法是指将两个向量相加得到一个新的向量。
假设有两个向量a和b,它们的坐标表示分别为(a1, a2, a3)和(b1, b2, b3)。
那么它们的和向量c的坐标表示为(c1, c2, c3),其中c1 = a1 + b1,c2 = a2 + b2,c3 = a3 + b3。
+ b的坐标表示为(c1, c2, c3) = (1 + 4, 2 + 5, 3 + 6) = (5, 7, 9)。
2. 向量的减法空间向量的减法是指将一个向量减去另一个向量得到一个新的向量。
假设有两个向量a和b,它们的坐标表示分别为(a1, a2, a3)和(b1, b2, b3)。
那么它们的差向量c的坐标表示为(c1, c2, c3),其中c1 = a1 - b1,c2 =a2 - b2,c3 = a3 - b3。
例如,对于向量a = (1, 2, 3)和向量b = (4, 5, 6),它们的差向量c = a - b的坐标表示为(c1, c2, c3) = (1 - 4, 2 - 5, 3 - 6) = (-3, -3, -3)。
3. 向量的数量积空间向量的数量积是指将两个向量相乘得到一个标量(即一个数)。
向量的坐标表示与运算公式向量的坐标表示:1. 在二维平面中,一个向量可以用有序实数对 (x, y) 表示,其中 x 和 y 分别表示向量的横坐标和纵坐标。
2. 在三维空间中,一个向量可以用有序实数三元组 (x, y, z) 表示,其中 x、y 和 z 分别表示向量的三个坐标分量。
向量的运算公式:1. 向量的加法:- 定义:如果向量 A = (x₁, y₁) 和向量 B = (x₂, y₂),则 A + B = (x₁ + x₂, y₁ + y₂)。
- 几何意义:向量加法就是把两个向量的起点放在一起,然后把两个向量终点连起来的向量。
2. 向量的数乘:- 定义:对于任意实数 k,如果向量 A = (x, y),则 kA = (kx, ky)。
- 几何意义:数乘就是把向量按比例放大或缩小。
3. 向量的减法:- 定义:如果向量 A = (x₁, y₁) 和向量 B = (x₂, y₂),则 A - B = (x₁ - x₂, y₁- y₂)。
- 几何意义:向量减法就是从第一个向量的终点指向第二个向量的终点的向量。
4. 向量的数量积(点乘):- 定义:如果向量 A = (x, y) 和向量 B = (x', y'),则A · B = xx' + yy'。
- 几何意义:数量积等于两向量的长度之积和它们夹角的余弦值的乘积。
5. 向量的向量积(叉乘):- 定义:如果向量 A = (x, y) 和向量 B = (x', y'),则A × B 是一个垂直于A 和B 的向量,其大小等于A × B × sin(θ),其中θ 是 A 和 B 之间的夹角,方向按照右手定则确定。
- 几何意义:向量积表示一个向量相对于另一个向量的旋转。
以上是向量的基本坐标表示和运算公式,是解析几何和线性代数中的基础概念。
空间向量的坐标表示与几何应用在三维空间中,空间向量是研究物体运动和位置的重要工具。
为了准确地描述和计算空间向量,我们需要用坐标来表示它们。
本文将详细介绍空间向量的坐标表示方法,并探讨其在几何应用中的重要性。
一、坐标表示方法1. 直角坐标系直角坐标系是最常用的表示空间向量的方法。
在直角坐标系中,我们以三个相互垂直的坐标轴为基准,分别表示x、y、z三个方向。
一个空间向量可以通过三个坐标值(x,y,z)来表示,分别表示它在x轴、y 轴和z轴上的投影长度。
例如,对于一个空间向量v,在直角坐标系中,我们可以表示为v=(x,y,z)。
2. 球坐标系球坐标系是另一种表示空间向量的方法,它是通过一个原点、一个偏离原点的距离、一个与z轴的夹角和一个与x轴的投影角来确定一个空间向量的位置。
在球坐标系中,一个空间向量的坐标通常表示为(r,θ,φ),其中r表示向量到原点的距离,θ表示向量与z轴的夹角,φ表示向量在x-y平面上的投影与x轴的夹角。
二、坐标表示的几何应用1. 向量的加法与减法通过坐标表示,我们可以方便地对空间向量进行加法与减法运算。
只需将对应坐标相加或相减即可得到结果。
例如,对于向量v=(x1,y1,z1)和向量w=(x2,y2,z2),它们的和可以表示为v+w=(x1+x2,y1+y2,z1+z2)。
2. 向量的数量积与夹角坐标表示还可以用于计算向量的数量积和夹角。
向量的数量积可以通过坐标之间的乘积运算得到。
例如,对于向量v=(x1,y1,z1)和向量w=(x2,y2,z2),它们的数量积可以表示为v·w=x1x2+y1y2+z1z2。
夹角可以通过向量的数量积公式求解:cosθ = (v·w) / (|v| |w|)其中,|v|和|w|分别表示向量v和w的模长。
3. 点与直线的相对位置通过点和直线的坐标表示,我们可以判断一个点与直线的相对位置关系。
以直线的方程和点的坐标为基础,我们可以计算点到直线的距离,从而判断点在直线上方、下方还是与直线相交。
空间向量的坐标表示与运算解析几何的高级技巧空间向量是解析几何中的重要内容,它涉及到向量的坐标表示和运算,具有广泛的应用。
本文将介绍空间向量的坐标表示以及相关的运算技巧。
一、坐标表示在三维空间中,任意向量可以用其在坐标系中的坐标表示。
一般来说,我们使用笛卡尔坐标系来表示空间向量。
在笛卡尔坐标系中,我们可以使用三个坐标轴x、y和z来表示向量的三个分量。
假设有一个向量A,其在坐标系中的坐标表示为A=(x, y, z)。
其中,x表示向量A在x轴上的分量,y表示向量A在y轴上的分量,z表示向量A在z轴上的分量。
二、向量的加法与减法空间向量的加法与减法与二维向量的加法与减法类似。
对于两个向量A=(x1, y1, z1)和B=(x2, y2, z2),它们的和向量C=A+B的坐标表示为C=(x1+x2, y1+y2, z1+z2);它们的差向量D=A-B的坐标表示为D=(x1-x2, y1-y2, z1-z2)。
向量的加法与减法可以通过将各个分量相加或相减得到。
这一点十分重要,因为在解析几何的问题中,我们经常需要对向量进行加法和减法运算。
三、数量积与向量积空间向量的数量积和向量积是解析几何中的两个重要运算,其定义如下:1. 数量积:对于两个向量A=(x1, y1, z1)和B=(x2, y2, z2),它们的数量积为AB=x1*x2+y1*y2+z1*z2。
2. 向量积:对于两个向量A=(x1, y1, z1)和B=(x2, y2, z2),它们的向量积为C=A×B=(y1*z2-y2*z1, z1*x2-z2*x1, x1*y2-x2*y1)。
数量积和向量积在解析几何的求解中具有重要的作用。
数量积可以用来求解两个向量的夹角,向量积可以用来求解平面的法向量以及计算平行四边形的面积。
四、向量的模长和单位向量向量的模长表示向量的大小,它可以通过向量的坐标表示进行计算。
对于一个向量A=(x, y, z),它的模长表示为|A|=√(x²+y²+z²)。
向量的坐标表示及其运算教案一、教学目标1. 了解向量的概念,掌握向量的坐标表示方法。
2. 掌握向量的线性运算,包括加法、减法、数乘和数量积。
3. 能够运用向量的坐标表示和运算解决实际问题。
二、教学内容1. 向量的概念:向量是有大小和方向的量。
2. 向量的坐标表示:在二维和三维空间中,向量可以用坐标表示。
二维空间中的向量:\( \vec{a} = (a_1, a_2) \)三维空间中的向量:\( \vec{a} = (a_1, a_2, a_3) \)3. 向量的加法:\( \vec{a} + \vec{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3) \)4. 向量的减法:\( \vec{a} \vec{b} = (a_1 b_1, a_2 b_2, a_3 b_3) \)5. 向量的数乘:\( k\vec{a} = (ka_1, ka_2, ka_3) \)6. 向量的数量积(点积):\( \vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3 \)三、教学方法1. 采用讲授法,讲解向量的概念、坐标表示和运算方法。
2. 利用多媒体课件,展示向量的图形,帮助学生直观理解向量的概念和运算。
3. 引导学生通过小组讨论,探讨向量运算的规律和应用。
4. 利用例题,讲解向量运算在实际问题中的应用。
四、教学步骤1. 导入新课:回顾初中阶段学习的向量知识,引出高中阶段向量学习的内容。
2. 讲解向量的概念,引导学生理解向量的本质。
3. 介绍向量的坐标表示方法,让学生掌握向量的坐标表示。
4. 讲解向量的加法、减法、数乘和数量积运算,让学生熟练掌握运算方法。
5. 利用多媒体课件,展示向量的图形,让学生直观理解向量的运算。
五、课后作业1. 填空题:向量\( \vec{a} = (2, 3) \) 的长度是_______。
向量\( \vec{a} = (1, 2) \) 与向量\( \vec{b} = (-1, 2) \) 垂直。
空间向量的表示与运算技巧在数学和物理学中,空间向量是描述三维空间中大小和方向的量。
它是由一组按照特定规则排列的数值组成,可以用于计算物体的位移、速度、加速度等各种物理量。
本文将介绍空间向量的表示和运算技巧。
一、空间向量的表示方法1. 直角坐标表示法直角坐标表示法是最常用的一种表示方法。
在三维直角坐标系中,一个空间向量可以用三个实数(x,y,z)表示,分别表示向量在x轴、y轴和z轴上的分量。
例如,向量A可以表示为A = (x,y,z)。
2. 分量表示法分量表示法将向量的分量按照一定顺序排列,形成一个有序数组。
例如,向量A可以表示为A = [x,y,z]。
3. 基向量表示法基向量表示法利用基向量来表示一个向量。
在三维空间中,通常使用标准单位向量i、j、k作为基向量。
例如,向量A可以表示为A =x*i + y*j + z*k。
二、空间向量的运算技巧1. 向量的加法向量的加法是将对应分量相加得到新的向量。
例如,向量A =(x1,y1,z1)和向量B = (x2,y2,z2),它们的和可以表示为A + B = (x1+x2, y1+y2, z1+z2)。
2. 向量的减法向量的减法是将对应分量相减得到新的向量。
例如,向量A =(x1,y1,z1)和向量B = (x2,y2,z2),它们的差可以表示为A - B = (x1-x2, y1-y2, z1-z2)。
3. 向量的数量积向量的数量积,又称为点积或内积,是将对应分量相乘后求和得到一个标量。
例如,向量A = (x1,y1,z1)和向量B = (x2,y2,z2),它们的数量积可以表示为A·B = x1*x2 + y1*y2 + z1*z2。
4. 向量的向量积向量的向量积,又称为叉积或外积,是通过对应分量的乘积得到一个新的向量。
向量A = (x1,y1,z1)和向量B = (x2,y2,z2)的向量积可以表示为A×B = (y1*z2 - z1*y2, z1*x2 - x1*z2, x1*y2 - y1*x2)。
空间向量的坐标和运算一、空间向量的坐标和运算1、空间直角坐标系在单位正方体$OABC$-$D$′$A$′$B$′$C$′中,以$O$点为原点,分别以射线$OA$,$OC$,$OD$′的方向为正方向,以线段$OA$,$OC$,$OD$′的长为单位长,建立三条数轴:$x$轴、$y$轴、$z$轴。
这时我们说建立了一个空间直角坐标系$Oxyz$,其中点$O$叫做坐标原点,$x$轴、$y$轴、$z$轴叫做坐标轴。
通过每两个坐标轴的平面叫做坐标平面,分别称为$xOy$平面、$yOz$平面、$xOz$平面。
2、空间向量的坐标一个向量在空间直角坐标系中的坐标等于表示向量的有向线段的终点坐标减去起点坐标。
如$A(x_1,y_1,z_1)$,$B(x_2,y_2,z_2)$,则$\overrightarrow{AB}=\overrightarrow{O B}-\overrightarrow{O A}$=$(x_2-x_1$,$y_2-y_1$,$z_2-z_1)$。
3、空间向量的坐标运算设$\boldsymbol a(x_1,y_1,z_1)$,$\boldsymbol b(x_2,y_2,z_2)$,则(1)$\boldsymbol a+\boldsymbol b$=$(x_1+x_2,y_1+y_2,z_1+z_2)$。
(2)$\boldsymbol a-\boldsymbol b$=$(x_1-x_2,y_1-y_2,z_1-z_2)$。
(3)$\boldsymbol a·\boldsymbol b$=$x_1x_2+y_1y_2+z_1z_2$。
(4)$|\boldsymbol a|=\sqrt{x^2_1+y^2_1+z^2_1}$。
(5)$λ\boldsymbol a=(λx_1,λy_1,λz_1)$。
4、空间向量平行(共线)与垂直的充要条件设非零向量$\boldsymbol a(x_1,y_1,z_1)$,$\boldsymbol b(x_2,y_2,z_2)$,则$\boldsymbol a∥\boldsymbolb\Leftrightarrow\frac{x_1}{x_2}=\frac{y_1}{y_2}=\frac{z_1}{z_2}=λ(λ∈\mathbf {R})$。
1.3 空间向量及其坐标的运算1.空间向量的坐标表示(1)设e1,e2,e3为有公共起点O的三个两两垂直的单位向量(我们称它们为单位正交基底),以e1,e2,e3的公共起点O为原点,分别以e1,e2,e3的方向为x轴、y轴、z轴的正方向建立空间直角坐标系Oxyz,那么对于空间任意一个向量p,一定可以把它平移,使它的起点与原点O重合,得到向量OP=p,由空间向量基本定理可知,存在有序实数组{x,y,z},使得p=xe1+ye2+ze3,我们把x,y,z称作向量p在单位正交基底e1,e2,e3下的坐标,记作p=(x,y,z),此时向量p的坐标恰是点P在空间直角坐标系Oxyz 中的坐标(x,y,z).(2)向量p的坐标是把向量p的起点平移到坐标原点O,则OP的终点P的坐标就是向量p的坐标,这样就把空间向量坐标化了.2.空间向量的坐标运算3.(1)空间向量a,b,其坐标形式为:a=(a1,a2,a3),b=(b1,b2,b3),则a+b=(a1+b1,a2+b2,a3+b3),a-b=(a1-b1,a2-b2,a3-b3),λa=(λa1,λa2,λa3),a·b=a1b1+a2b2+a3b3.(2)a·a=|a|2=222 123 a a a++.3.空间向量的平行、垂直及模、夹角设a=(a1,a2,a3),b=(b1,b2,b3),则【题型精讲】考点一坐标的运算【例1】(1)(2020·宜昌天问教育集团高二期末)设,x y R∈,向量(,1,1),b(1,,1),c(2,4,2)a x y===-,,ca c b⊥,则||a b+=()A.B C.3D.4(2)(2020·宜昌天问教育集团高二期末)已知空间向量()1,0,1a =,()1,1,b n =,3a b ⋅=则向量a 与bλ(0λ≠)的夹角为( )A .6πB .6π或56πC .3πD .3π或23π 【玩转跟踪】1.(2020·全国高二课时练习)下列向量中与向量()010a =,,平行的向量是( )A .()100b =,, B .()010c =-,,C .()111d =--,,D .()001e =-,,2.(2020·全国高二课时练习)已知向量()1,0,1a =,()2,0,2b =-,若()()2ka b a kb +⋅+=,则k 的值等于( )A .1B .35C .25D .153.(2020·广西北流市实验中学高一期中)在空间直角坐标系O ﹣xyz 中,点A (2,﹣1,3)关于yOz 平面对称的点的坐标是( )A .(2,1,3)B .(﹣2,﹣1,3)C .(2,1,﹣3)D .(2,﹣1,﹣3)4.(2020·全国高二课时练习)已知(1,1,2),(6,21,2)a b m λλ=+=-.(1)若//a b ,分别求λ与m 的值;(2)若||5a =,且与(2,2,)c λλ=--垂直,求a .考点二 坐标运算在几何中的运用【例2】(2020·全国高二课时练习)如图,在直三棱柱ABC -A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M ,N 分别是AA1,CB1的中点.(1)求BM ,BN 的长. (2)求△BMN 的面积.【玩转跟踪】1.(2020·天水市第一中学高二月考(理))如图,在空间直角坐标系中有直三棱柱111ABC A B C -,2CA CB=,13CC CB=,则直线1BC 与直线1AB 夹角的余弦值为( ).A. B.C. D .2352.(2020·全国高二课时练习) 在直三棱柱ABOA1B1 O1中,∠AOB =π2 ,AO =4,BO =2,AA1=4,D 为A1B1的中点,在如图所示的空间直角坐标系中,求1,DO A B 的坐标.考点三 最值问题【例3】(2020·全国高二课时练习)已知点()1,1,A t t t --,()2,,B t t ,则A ,B 两点的距离的最小值为( )B. C.D .35【玩转跟踪】1.(2020·江西高安中学高一期中(理))已知()1,2,3OA =,()2,1,2OB =,()1,1,2OP =,点Q 在直线OP上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为( )A .241,,33⎛⎫⎪⎝⎭B .448,,333⎛⎫ ⎪⎝⎭C .58,1,33⎛⎫ ⎪⎝⎭ D .258,,333⎛⎫ ⎪⎝⎭2.已知点(1,2,3)A ,(2,1,2)B ,(1,1,2)P ,(0,0,0)O ,点Q 在直线OP 上运动,当QA QB ⋅取得最小值时,点Q 的坐标为________________.。
第3讲 空间向量及其运算的坐标表示新课标要求①了解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示。
②掌握空间向量的线性运算及其坐标表示。
③掌握空间向量的数量积及其坐标表示。
知识梳理1.空间向量运算的坐标表示若a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则: (1)a +b =(a 1+b 1,a 2+b 2,a 3+b 3); (2)a -b =(a 1-b 1,a 2-b 2,a 3-b 3); (3)λa =(λa 1,λa 2,λa 3)(λ∈R ); (4)a ·b =a 1b 1+a 2b 2+a 3b 3;(5)a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ); (6)a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0; (7)|a |=a ·a =a 21+a 22+a 23;(8)cos 〈a ,b 〉=a ·b|a ||b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. 2.空间中向量的坐标及两点间的距离公式在空间直角坐标系中,设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则: (1)AB →=(a 2-a 1,b 2-b 1,c 2-c 1);(2)d AB =|AB→|= (a 2-a 1)2+(b 2-b 1)2+(c 2-c 1)2 .名师导学【例1-1】(武汉期末)点(1P ,2,3)-关于xOz 平面对称的点的坐标是( ) A .(1,2,3)B .(1,2-,3)-C .(1-,2,3)-D .(1-,2-,3)【分析】点(1P ,2,3)-关于xOz 平面对称的点,即x ,z 不变,y 变为相反数. 【解答】解:点(1P ,2,3)-关于xOz 平面对称的点,即x ,z 不变,y 变为相反数,∴点(1P ,2,3)-关于xOz 平面对称的点的坐标是(1,2-,3).故选:B .【变式训练1-1】(河南月考)在空间直角坐标系Oxyz 中,点(1,2-,4)关于y 轴对称的点为( ) A .(1-,2-,4)- B .(1-,2-,4)C .(1,2,4)-D .(1,2,4)【分析】空间直角坐标系中,点关于y 轴对称,则y 值不变,x 和z 的值改变符号.【解答】解:空间直角坐标系Oxyz 中,点(1P ,2-,4)关于y 轴对称的点为(1P '-,2-,4)-. 故选:A .【例2-1】(钦州期末)已知(1a =,2,1),(2b =,4-,1),则2a b +等于( ) A .(4,2-,0)B .(4,0,3)C .(4-,0,3)D .(4,0,3)-【分析】利用向量坐标运算性质即可得出.【解答】解:22(1a b +=,2,1)(2+,4-,1)(4=,0,3), 故选:B .【例2-2】(济南模拟)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求a 与b 夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求k 的值; (3)设|c |=3,c ∥BC→,求c .【分析】对于(1)直接套两向量的夹角公式即可;对于(2)将向量垂直,转化为数量积为0求解;对于(3)利用共线向量求解.【解答】 (1)∵a =AB →=(1,1,0),b =AC →=(-1,0,2),∴a ·b =1×(-1)+1×0+0×2=-1,|a |=2,|b |=5,cos 〈a ,b 〉=a ·b |a ||b |=-1010. (2)k a +b =k (1,1,0)+(-1,0,2)=(k -1,k,2), k a -2b =k (1,1,0)-2(-1,0,2)=(k +2,k ,-4). ∵(k a +b )⊥(k a -2b ), ∴(k -1)(k +2)+k 2-8=0,即2k 2+k -10=0,得k =2或k =-52.(3)∵c ∥BC→,又BC →=(-2,-1,2),∴设c =(-2λ,-λ,2λ),又|c |=3, ∴(-2λ)2+(-λ)2+(2λ)2=9,得λ=±1. ∴c =(-2,-1,2)或c =(2,1,-2).【变式训练2-1】(菏泽期末模拟)已知a =(2,-1,3),b =(0,-1,2).求:(1)a +b ; (2)2a -3b ; (3)a ·b ;(4)(a +b )·(a -b ).【分析】利用空间向量坐标运算公式计算即可. 【解答】(1)∵a =(2,-1,3),b =(0,-1,2).∴a +b =(2+0,-1-1,3+2)=(2,-2,5).(2)2a -3b =2(2,-1,3)-3(0,-1,2)=(4,-2,6)+(0,3,-6)=(4,1,0). (3)a ·b =(2,-1,3)·(0,-1,2)=2×0+(-1)×(-1)+3×2=7. (4)∵|a |=22+(-1)2+32=14, |b |=02+(-1)2+22=5, ∴(a +b )·(a -b )=a 2-b 2=14-5=9.【变式训练2-2】(烟台期末)已知A (1,0,0),B (0,-1,1),若OA →+λOB →与OB →(O 为坐标原点)的夹角为120°,则λ的值为( )A.66 B .-66C .±66D .±6【分析】利用向量数量积的计算公式变形和已知条件,将坐标带代入计算即可. 【解答】∵OA →+λOB →=(1,-λ,λ),OB →=(0,-1,1),∴cos 120°=(OA →+λOB →)·OB →|OA →+λOB →||OB →|=2λ2λ2+1×2=-12,可得λ<0,解得λ=-66. 【例3-1】(淄博调研)已知△ABC 的三个顶为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( )A .2B .3C .4D .5【分析】先求出BC 中点D 的坐标,再代入两点间距离公式即可计算. 【解答】∵B (4,-3,7),C (0,5,1),∴BC 边上的中点D (2,1,4).又A (3,3,2), ∴|AD |=(2-3)2+(1-3)2+(4-2)2=3.【变式训练3-1】(温州期中)点(1M -,2,3)是空间直角坐标系Oxyz 中的一点,点M 关于x 轴对称的点的坐标为 ,||OM = .【分析】点(a ,b ,)c 关于x 轴对称的点的坐标为(a ,b -,)c -,利用两点间距离公式能求出||OM . 【解答】解:点(1M -,2,3)是空间直角坐标系Oxyz 中的一点, 点M 关于x 轴对称的点的坐标为(1-,2-,3)-,||(OM =-.故答案为:(1-,2-,3)-名师导练A 组-[应知应会]1.(安徽期末)空间直角坐标系中,点(2P ,1-,3)关于点(1M -,2,3)的对称点Q 的坐标为(( ) A .(4,1,1)B .(4-,5,3)C .(4,3-,1)D .(5-,3,4)【分析】利用对称的性质和中点坐标公式直接求解.【解答】解:设空间直角坐标系中,点(2P ,1-,3)关于点(1M -,2,3)的对称点Q 的坐标为(a ,b ,)c , 则212122332abc +⎧=-⎪⎪-+⎪=⎨⎪+⎪=⎪⎩,解得4a =-,5b =,3c =, Q ∴点坐标为(4-,5,3).故选:B .2.(金牛区校级期中)点(3A ,2,1)关于xOy 平面的对称点为( ) A .(3-,2-,1)- B .(3-,2,1)C .(3,2-,1)D .(3,2,1)-【分析】根据点(A a ,b ,)c 关于xOy 平面的对称点为(A a ',b ,)c -,写出即可. 【解答】解:点(3A ,2,1)关于xOy 平面的对称点为(3A ',2,1)-.3.(东阳市校级月考)已知点(1A ,2-,3),则点A 关于原点的对称点坐标为( ) A .(1-,2,3)B .(1-,2,3)-C .(2,1-,3)D .(3-,2,1)-【分析】点(a ,b ,)c 关于原点对称的点的坐标为(a -,b -,)c -. 【解答】解:点(1A ,2-,3),∴点A 关于原点的对称点坐标为(1-,2,3)-.故选:B .4.(茂名期末)已知向量(1,1,2)a =--及(4,2,0)b =-则a b +等于( ) A .(3-,1,2)-B .(5,5,2)-C .(3,1-,2)D .(5-,5-,2)【分析】根据空间向量的坐标运算,求和即可. 【解答】解:由向量(1,1,2)a =--,(4,2,0)b =-, 所以(3a b +=-,1,2)-. 故选:A .5.(高安市校级期末)已知空间向量()()()1,,1,3,1,,,0,0,,(a x b y c z a b c xyz =-==+=则的值为 ) A .2±B .2-C .2D .0【分析】利用空间向量运算法则、向量相等的性质直接求解.【解答】解:空间向量(1a =-,x ,1),(3b =,1,)y ,(c z =,0,0),a b c +=, (2∴,1x +,1)(y z +=,0,0),∴21010z x y =⎧⎪+=⎨⎪+=⎩,解得1x =-,1y =-,2z =, (1)(1)22xyz ∴=-⨯-⨯=.故选:C .6.(丰台区期末)已知(2AB =,3,1),(4AC =,5,3),那么向量(BC = ) A .(2-,2-,2)- B .(2,2,2) C .(6,8,4)D .(8,15,3)【分析】利用向量BC AC AB =-即可得出.【解答】解:向量(4BC AC AB =-=,5,3)(2-,3,1)(2=,2,2),7.(多选)(三明期末)如图,在长方体1111ABCD A B C D -中,5AB =,4AD =,13AA =,以直线DA ,DC ,1DD 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则( )A .点1B 的坐标为(4,5,3)B .点1C 关于点B 对称的点为(5,8,3)- C .点A 关于直线1BD 对称的点为(0,5,3) D .点C 关于平面11ABB A 对称的点为(8,5,0) 【分析】利用空间点的对称性即可得出.【解答】解:由图形及其已知可得:点1B 的坐标为(4,5,3),点1(0C ,5,3)关于点B 对称的点为(4-,5,3)-,点A 关于直线1BD 对称的点为1(0C ,5,3),点(0C ,5,0)关于平面11ABB A 对称的点为(8,5,0). 因此ACD 正确. 故选:ACD .8.(公安县期末)在空间直角坐标系中,已知两点(5P ,1,)a 与(5Q ,b ,4)关于坐标平面xOy 对称,则a b += .【分析】根据空间直角坐标系坐标的对称的结论:点(x ,y ,)z 关于平面xoy 对称的点坐标为(x ,y ,)z -,可知答案.【解答】解:在空间直角坐标系中,两点(5P ,1,)a 与(5Q ,b ,4)关于坐标平面xOy 对称,1b ∴=,4a =-, 413a b ∴+=-+=-. 故答案为:3-.9.(温州期末)在平面直角坐标系中,点(1,2)A -关于x 轴的对称点为(1,2)A '--,那么,在空间直角坐标系中,(1B -,2,3)关于x 轴的对称轴点B '坐标为 ,若点(1C ,1-,2)关于xOy 平面的对称点为点C ',则||B C ''= .【分析】在空间直角坐标系中,(1B -,2,3)关于x 轴的对称轴点B '坐标为横坐标不变,纵坐标和竖坐标变为原不的相反数,若点(1C ,1-,2)关于xOy 平面的对称点为点C ',横、纵坐标均不变,竖坐标变为原不的相反数,再由两点间距离公式能求出||B C ''.【解答】解:在空间直角坐标系中,(1B -,2,3)关于x 轴的对称轴点B '坐标为(1-,2-,3)-, 若点(1C ,1-,2)关于xOy 平面的对称点为点C ', 则(1C ',1-,2)-,||B C ''∴故答案为:(1-,2-,3)-.10.(浙江期中)空间直角坐标系O xyz -中,点(1M ,1-,1)关于x 轴的对称点坐标是 ;||OM = .【分析】根据空间直角坐标系中,点(M x ,y ,)z 关于x 轴的对称点坐标是(M x ',y -,)z -; 以及两点间的距离公式,计算即可.【解答】解:空间直角坐标系O xyz -中,点(1M ,1-,1)关于x 轴的对称点坐标是(1M ',1,1)-;||OM .故答案为:(1,1,1)-11.(兴庆区校级期末)已知(2a =,3-,1),(2b =,0,3),(1c =,0,2),则68a b c +-= . 【分析】进行向量坐标的加法和数乘运算即可.【解答】解:68(2,3,1)6(2,0,3)8(1a b c +-=-+-,0,2)(6=,3-,3). 故答案为:(6,3-,3).12.(辽阳期末)已知向量(2,3,1)a =-,(1,2,4)b =-,则a b += . 【分析】利用空间向量坐标运算法则直接求解. 【解答】解:(2,3,1)a =-,(1,2,4)b =-,∴(1a b +=-,1,5).故答案为:(1-,1,5).13.(越秀区期末)已知点(1A ,2,0)和向量(3a =,4,12)-,若2AB a =,则点B 的坐标是 . 【分析】设(B x ,y ,)z ,由向量坐标运算法则和向量相等的定义得(1x -,2y -,)(6z =,8,24)-,由此能求出B 点坐标.【解答】解:点(1A ,2,0)和向量(3a =,4,12)-,2AB a =, 设(B x ,y ,)z ,则(1x -,2y -,)(6z =,8,24)-, 解得7x =,10y =,24z =-,∴点B 的坐标(7,10,24)-.故答案为:(7,10,24)-.14.(黄浦区校级月考)已知向量(7,1,5),(3,4,7)a b =-=-,则||a b += 【分析】先利用向量坐标运算法则求出a b +,由此能求出||a b +. 【解答】解:向量(7,1,5),(3,4,7)a b =-=-,∴(4a b +=,3,12), ∴||16913a b +=+.故答案为:13.15.(青铜峡市校级月考)已知点A ,B 关于点(1P ,2,3)的对称点分别为A ',B ',若(1A -,3,3)-,(3A B ''=,1,5),求点B 的坐标.【分析】由题意可知AB B A A B ''''==-,且P 是线段AA '和BB '的中点,根据向量坐标运算性质即可得出. 【解答】解:由题意可知AB B A A B ''''==-,且P 是线段AA '和BB '的中点, 设(B x ,y ,)z ,则(1,3,3)(3,1,5)(3,1,5)AB x y z =+-+=-=--- 所以133135x y z +=-⎧⎪-=-⎨⎪+=-⎩,解得428x y z =-⎧⎪=⎨⎪=-⎩.∴点B 的坐标为(4-,2,8)-.16.(福建期中)已知空间三点(1A -,2,1),(0B ,1,2)-,(3C -,0,2) (1)求向量AB AC 与的夹角的余弦值,(2)若向量3AB AC AB k AC -+与向量垂直,求实数k 的值.【分析】(1)(1AB =,1-,3)-,(2AC =-,2-,1),计算可得cos ,||||AB ACAB AC AB AC <>=.(2)向量3AB AC AB k AC-+与向量垂直,可得22(3)()3(31)0AB AC AB k AC AB k AB AC k AC -+=+--=,即可得出.【解答】解:(1)(1AB =,1-,3)-,(2AC =-,2-,1),2||1AB ==||3AC =.2233AB AC =-+-=-.∴cos ,||||3AB AC AB AC AB AC -<>===.(2)向量3AB AC AB k AC -+与向量垂直,∴22(3)()3(31)0AB AC AB k AC AB k AB AC k AC -+=+--=,311(31)(3)90k k ⨯+-⨯--=,解得2k =.17.(扶余县校级月考)(Ⅰ)设向量(3a =,5,4)-,(2b =,0,3),(0c =,0,2),求:()a b c -+、68a b c +-. (Ⅱ)已知点(1A ,2-,0)和向量(1a =-,2,3)求点B 坐标,使向量AB 与a 同向,且||214AB =. 【分析】(Ⅰ)利用空间向量运算法则能求出()a b c -+、68a b c +-.(Ⅱ)点(1A ,2-,0)和向量(1a =-,2,3),设点(B x ,y ,)z ,由向量AB 与a 同向,且||214AB =列出方程组能求出点B 坐标.【解答】解:(Ⅰ)向量(3a =,5,4)-,(2b =,0,3),(0c =,0,2),∴()(3a b c -+=,5,4)(2--,0,5)(1=,5,9)-.68(3a b c +-=,5,4)(12-+,0,18)(0-,0,16)(15=,5,2)-.(Ⅱ)点(1A ,2-,0)和向量(1a =-,2,3),设点(B x ,y ,)z , 向量AB 与a 同向,且||214AB =,∴120123x y z -+⎧==>⎪-=, 解得1x =-,2y =,6z =,∴点B 坐标为(1-,2,6).B 组-[素养提升]1.(襄阳期中)已知向量a ,b ,c 是空间的一个单位正交基底,向量a b +,a b -,c 是空间的另一个基底,若向量p 在基底a ,b ,c 下的坐标为(3,2,1),则它在a b +,a b -,c 下的坐标为( ) A .15(,,1)22B .51(,1,)22C .15(1,,)22D .51(,,1)22【分析】可设向量(1a =,0,0),(0b =,1,0),(0c =,0,1);由此求出向量a b +、a b -,再设()()p x a b y a b zc =++-+,列方程组求出x 、y 和z 即可.【解答】解:设向量(1a =,0,0),(0b =,1,0),(0c =,0,1); 则向量(1a b +=,1,0),(1a b -=,1-,0), 又向量(3p =,2,1),不妨设()()p x a b y a b zc =++-+, 则(3,2,1)(x y =+,x y -,)z , 即321x y x y z +=⎧⎪-=⎨⎪=⎩, 解得52121x y z ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,所以向量p 在a b +,a b -,c 下的坐标为5(2,12,1).故选:D .2. (安庆质检)已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)若AP →∥BC →,且|AP →|=214,求点P 的坐标;11 / 11 (2)求以AB →,AC →为邻边的平行四边形的面积.【解析】(1)∵AP →∥BC →,∴设AP →=λBC →,又BC →=(3,-2,-1),∴AP →=(3λ,-2λ,-λ),又|AP →|= 9λ2+4λ2+λ2=214,得λ=±2, ∴AP →=(6,-4,-2)或AP →=(-6,4,2). 又A (0,2,3),设P (x ,y ,z ),∴⎩⎪⎨⎪⎧x -0=6,y -2=-4,z -3=-2或⎩⎪⎨⎪⎧ x -0=-6,y -2=4,z -3=2,得⎩⎪⎨⎪⎧ x =6,y =-2,z =1或⎩⎪⎨⎪⎧x =-6,y =6,z =5.∴P (6,-2,1)或(-6,6,5).(2)∵AB →=(-2,-1,3),AC →=(1,-3,2), cos 〈AB →,AC →〉=AB →·AC →|AB →||AC →|=-2+3+614×14=12,∴∠BAC =60°.∴以AB →,AC →为邻边的平行四边行的面积 S =|AB →||AC →|sin 60°=14×32=7 3.。