江苏省南通六校联考九年级数学试题
- 格式:doc
- 大小:426.00 KB
- 文档页数:10
2023年江苏省南通市中考数学联考试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知两圆的半径分别为6和8,圆心距为7,则两圆的位置关系是 ( )A .外离B .外切C .相交D .内切2.已钝角三角形三边长分别为 a 、b 、c (a>b> c ),外接圆半径和内切圆半径分别为 R 、r , 则能盖住这个三角形的圆形纸片的最小半径是( )A .RB .rC .2aD .2c 3.在△ABC 中,E 是 AB 上一点,AE=2,BE=3,AC= 4,在 AC 上取一点 D ,使△ADE ∽△ABC ,则 AD 的值是( )A .85 B .52 C .85或52 D .85或254.如图,OA 、OB 、OC 都是⊙O 的半径,∠ACB =∠CAB ,则下列结论错误的是( )A .∠AOB=∠BOCB .AB=BCC .AM=MCD .OM=MB 5.以固定的点A 为顶点,线段BC 为一边,可以作出的平行四边形的个数为( )A . 0B .1C .2D . 3 6.“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2”,这种说明问题的方式体现的数学思想方法叫做( )A .代入法B .换元法C .数形结合D .分类讨论7.如图,点A 是5×5网格图形中的一个格点(小正方形的顶点),图中每个小正方形的边长为1,以A 为直角顶点,面积等于导的格点等腰直角三角形(三角形的三个顶点都是格点)的个数是( )A .7个B .8个C .9个D .10个8.下列不等式的解法正确的是( )A .如果22x ->,那么1x <-B .如果3223x >-,那么0x < C .如果33x <-,那么1x >- D .如果1103x -<,那么0x > 9.一个暗箱里装有10个黑球,8个白球,12个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是( )A . 13B . 18C . 415D . 41110.如图,∠AOP=∠BOP ,PD ⊥OB ,PC ⊥OA ,则下列结论正确的是( )A .PD=PCB .PD ≠PCC .PD 、PC 有时相等,有时不等D .PD >PC11. 如图,由△ABC 平移而得的三角形有( )A . 8个B . 9个C . 10个D . 16个 12.下列时刻在电子表显示中成轴对称的为( )A .06:01:O6B .15:11:21C .08:10:13D .04:08:O4 13.下列说法:①直线向两方无限延伸,它无长短之分,但有粗细之别;②两条直线相交, 只有一个交点;③点a 在直线AB 外;④直线动经过点P .其中不正确的有( )A .1个B .2个C .3个D .4个二、填空题14.盒子里装有大小形状相同的3个白球和2个红球,搅匀后从中揍出一个球,放回搅匀后,再接出第二个球,则取出的恰是两个红球的概率是 .15.在△ABC 中,若∠A :∠B :∠C=1:2:3,则a :b :c= .16.已知平行四边形的一个锐角是52°,过这个锐角的顶点向对边作两条高,那么这两条高线的夹角是 .17.已知在一个样本中,50个数据分别在5个组内,第一,二,三,五组数据的个数分别为 2,8,15,5,则第四组的频数为 .18. 方程20x mx n ++=和方程20nx m χ++=仅有一个相同的根,则这个根是 .19.如图,在Rt △ABC 中,∠ACB=90°,AD=DB ,AB=5,则CD 的长是 .20.将正整数按如图所示的规律排列下去.若用有序数对(n ,m)表示第n 排,从左到右第m 个数,如(4,3)表示数9,则(7,2)表示的数是 . 21.若关于x 的不等式30x a -≤有且只有3 个正整数解,那么整数a 的最大值是 .22.当2009x =时,代数式2913x x --+的值为 . 23.说出一个可以用252x +表示结果的实际问题: . 24.按图示程序计算,若输入的 x 值为32则输出的结果为 .259的平方根是 ,64-的立方根是 .26.5的所有正整数之和为 . 三、解答题27.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数,从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程,实验中共摸200次,其中50次摸到红球.28.在Rt △ABC 中,∠C=90°,根据下列条件解直角三角形:(1)︒=∠=4520A c , (2)︒=∠=3036B a ,(3)19=a ,219=c (4)a =66,26=b29.如图所示,四边形ABCD 中,AB=CD,BC=AD,请你添一条辅助线,把它分成两个全等的三角形.你有几种添法?分别说明理由.30.如图,AB、AC表示两杂交叉的公路,现要在∠BAC的内部建一个物流中心,设计时要求该物流中心到两条公路的距离相等,且到公路交叉处点A 的距离为1000,请在图中作出物流中心的位置(用圆规、直尺作图,不写作法,但要保留作图痕迹).(1)若要以 1:50000的比例尺作设计图,求物流中心到公路交叉处点A 的图上距离;(2)在图中作出物流中心的位置.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.C4.D5.C6.C7.B .8.D9.C10.A11.B12.B13.C二、填空题14.42515.1 2 16.128°17.2018.119.2.520.2321.1122.200523.小明回家做数学作业用了x分钟,做语文作业用了25分钟,则252x+表示他这两门作业平均每门需要的时间答案不唯一,如:24.1225.26.3三、解答题27.设口袋中有x 个白球,30,200501010==+x x ,口袋中大约有30个白球. 28.(1)210==b a ,∠B=45°;(2)312=b ,324=c ,∠A=60°;(3)19=b ,∠A=∠B=45°;(4)∠A=30°,∠B=60°,212=c .29.连结AC 或连结BD ,都是根据SSS 说明三角形全等30.(1)10000.0250000=(米)= 2(厘米). 答:物流中心到公路交叉处A 点的图上距离为2厘米.(2)作∠BAC 的平分线AN ,在射线AN 上截取AP=2cm ,点 P 就是物流中心的位置,如图所示。
九年级数学南通试卷答案专业课原理概述部分一、选择题1. 下列哪个数是素数?()A. 21B. 37C. 39D. 272. 如果一个三角形的两边分别是8cm和15cm,那么第三边的长度可能是多少cm?()A. 7cmB. 17cmC. 23cmD. 25cm3. 下列哪个图形不是正多边形?()A. 矩形B. 正方形C. 正五边形D. 正六边形4. 下列哪个数是负数?()A. -5B. 0C. 3D. 85. 下列哪个分数是最简分数?()A. 2/4B. 3/6C. 5/7D. 8/12二、判断题1. 任何一个偶数都能被2整除。
()2. 两条对角线相等的四边形一定是矩形。
()3. 1是既不是质数也不是合数。
()4. 任何一个正数都有倒数。
()5. 两个负数相乘的结果是正数。
()三、填空题1. 最大的两位数是______。
2. 1千米等于______米。
3. 2的平方根是______。
4. 如果一个正方形的边长是6cm,那么它的面积是______平方厘米。
5. 下列数中,______是最大的质数。
四、简答题1. 请简述勾股定理的内容。
2. 请解释什么是算术平均数。
3. 请简述因式分解的意义。
4. 请解释什么是概率。
5. 请简述平行线的性质。
五、应用题1. 小明有一些糖果,他给了小红一半加两个,然后又给了小刚剩下的糖果的一半加两个。
小明还剩下两个糖果。
请问小明最初有多少糖果?2. 一个长方形的长是10cm,宽是5cm,请计算这个长方形的对角线长度。
3. 一个数加上20后等于它的3倍,请问这个数是多少?4. 一个班级有40名学生,其中有15名女生,请计算男生和女生的比例。
5. 一个等腰三角形的底边长是8cm,腰长是5cm,请计算这个三角形的周长。
六、分析题1. 已知一个正方形的对角线长度是10cm,请分析并计算这个正方形的面积。
2. 小华有一些红色和蓝色的球,红色球的数量是蓝色球的两倍。
如果小华把这些球平均分给5个朋友,每个朋友会得到4个球。
南通六校联考九年级数学试题本卷共150分,考试时间为120分钟.第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分.下列各题的四个选项中,只有一个选项是符合题意的)1.下列计算中,正确的是 ( )A .a 10÷a 5=a 2B .3a -2a=aC .a 3-a 3=1D .(a 2)3=a 52.下面右边的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的主视图是 ( )3.若两圆的半径分别为5cm 和3cm ,圆心距为1cm ,则这两个圆的位置关系是( )A .外切B .相交C .内切D .内含4.五名同学在“爱心捐助”活动中,捐款数额为4,5,6,7,5(单位:元),这组数据的中位数是 ( ) A .6 B .5 C .5.5 D . 6.5 5.如图5,点P 为反比例函数2y x=上的一动点,作PD x ⊥轴于点D ,POD △的面积为k ,则函数1y kx =-的图象为 ( )6.将矩形ABCD 沿着对角线折叠,使C 落在C ’处,BC ’ 交AD 于E ,下列结论不一定成立的是 ( ) A .AD=BC ′ B.EDB EBD ∠=∠ C .ABE ∆∽CBD ∆ D.EDAEABE =∠sinAC B O 第10题第Ⅱ卷(132分)二、填空题(本大题共12小题,第7~16小题每小题3分,第17~18小题每小题4分,共38分.把正确答案填在题中的横线上)7.分解因式:2812ax ax a -+= . 8.函数12-+=x x y 中自变量x 的取值范围是 . 9.在“北京”奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为4.581亿帕的钢材,那么用科学计数法(保留两位有效数字)表示为_____________________帕.10.如图,AB 是O 的弦,OC AB ⊥于C ,若23cm AB =,1cm OC =,则O 的半径长为____________cm .11.某公司成立3年以来,积极向国家上缴利税,由第一年的200万元增长到800万元,则平均每年增长的百分数是__________________.12.钟表的轴心到分针针端的长为5cm ,那么经过40分钟,分针针端转过的弧长是_______________________ cm.13.已知电流在一定时间段内正常通过电子元件的概率是0.5,如图所示,求A 、B 之间电流能够正常通过的概率是__________________.第13题图14.如图,O 为矩形ABCD 的中心,将直角三角板的直角顶点与O 点重合,转动三角 板使两直角边始终与BC 、AB 相交,交点分别为M 、N ,如果AB =4,AD =6, OM =x ,ON =y ,则y•与x 的关系是___________. 15.一个叫巴尔末的中学教师成功地从光谱数据59,1216,2125,3236,…中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按照这种规律,写出第n (n ≥1)个数据是____________________.16.线段OA 绕原点O 逆时针旋转90︒到OA '的位置,若A 点坐标为(1,3),则点A '的坐标为____________________.17.已知二次函数图像2(0)y ax bx c a =++≠向左平移2个单位,向下平移1个单位后得到二次函数22y x x =+的图像,则二次函数2(0)y ax bx c a =++≠的解析式为____________________. 18.二次函数x x y 2212+-=,当x 时,0<y ;且y 随x 的增大而减小.第14图题三.解答题 (本大题共10小题,共94分 ,其中19题每小题5分,共10分.) 19.(1)242(2cos 45sin 60)︒-︒+(2)化简:22(1)(2)4422a a a a a a a a a +-⎡⎤-÷⎢⎥-+--⎣⎦.20.(本题满分7分)解不等式组12221132x x x x -⎧->⎪⎪⎨-+⎪<⎪⎩,.并写出该不等式组的整数解.21.(本题满分7分)已知一元二次方程2(3)210m x mx m -+++=有两个不相等的实数根,并且这两个根又不互为相反数. (1)求m 的取值范围;(2)当m 在取值范围内取最小偶数时,求方程的根.4 3 2 1 22.(本题满分8分)一游客从某塔顶A望地面C 、D 两点的俯角分别为45︒、30︒,若C 、D 与塔底B 共线,CD =200米,求塔高AB ?23.(本题满分7分)如图,一个可以自由转动的均匀转盘被分成了4等份,每份内均标有数字.小明和小亮商定了一个游戏,规则如下:① 连续转动转盘两次;② 将两次转盘停止后指针所指区域内的数字相乘(当指针恰好停在分格线上时视为无效,重转);③ 若数字之积为奇数,则小明赢;若数字之积为偶数,则小亮赢.请用“列表”或“画树状图”的方法分析一下,这个游戏对双方公平吗?并说明理由.若不公平请你重新制定一个使双方公平的游戏规则.24.(本题满分8分)已知,如图,在Rt △ABC 中,∠ACB =900,AD 平分∠CAB 交BC 于点D ,过点C 作CE ⊥AD ,垂足为E ,CE 的延长线交AB 于点F ,过点E 作EG ∥BC 交AB 于点G ,16=⋅AD AE ,54=AB . (1)求AC 的长, (2)求EG 的长.25.(本题满分10分)如图,在ABC △中,AB AC =,以AB 为直径的圆O 交BC 于点D ,交AC 于点E ,过点D 作DF AC ⊥,垂足为F . (1)求证:DF 为O 的切线;(2)若过A 点且与BC 平行的直线交BE 的延长线于G 点,连结CG .当ABC △是等边三角形时,求AGC ∠的度数.A GF EC BO (第25题) D 第24题图G F E A CDB26.(本题满分10分)善于不断改进数学学习方法的小慧发现,对解数学题进行回顾反思,学习效果更好.某一天自习课小慧有20分钟时间可用于数学学习.假设小慧用于解题的时间x (单位:分钟)与学习收益量y 的关系如图1所示,用于回顾反思的时间x (单位:分钟)与学习收益量y 的关系如图2所示(其中OA 是抛物线的一部分,A 为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求小慧解题的学习收益量y 与用于解题的时间x 之间的函数关系式; (2)求小慧回顾反思的学习收益量y 与用于回顾反思的时间x 的函数关系式; (3)问小慧如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?yyOx21Ox25510 (第26题图(第26题图AAEDHBCGFO27.(本题满分12分)如图,矩形ABCD 中,边长AB=3,4tan 3ABD ∠=,两动点E 、F 分别从顶点B 、C 同时开始以相同速度在边BC 、CD 上运动,与△BCF 相应的△EGH 在运动过程中始终保持△EGH ≌△BCF ,对应边EG =BC ,B 、E 、C 、G 在同一直线上,DE 与BF 交于点O .(1)若BE =1,求DH 的长;(2)当E 点在BC 边上的什么位置时,△BOE 与△DOF 的面积相等?(3)延长DH 交BC 的延长线于M ,当E 点在BC 边上的什么位置时,DM=DE ?第27题图28.(本题满分15分)如图, ABO ∆中,O 是坐标原点,A (3,0),B (3,1)-.⑴①以原点O 为位似中心,将ABO ∆放大,使变换后得到的CDO ∆与ABO ∆的位似比为2:1, 且D 在第一象限内,则C 点坐标为( _______,_______); D 点坐标为( _______,_______ );②将DOC ∆沿OD 折叠,点C 落在第一象限的E 处,画出图形,并求出点E 的坐标; ⑵若抛物线2y ax bx =+ (0)a ≠过⑴中的E 、C 两点,求抛物线的解析式;⑶在⑵中的抛物线EC 段(不包括C 、E 点)上是否存在一点M ,使得四边形MEOC 面积最大?若存在,求出这个最大值,并求出此时M 点的坐标;若不存在,请说明理由。
江苏省南通市部分学校联考2019-2020学年九年级上学期期中数学试卷 一、选择题(本大题共10小题,共30.0分) 1. 下列方程是一元二次方程的是( ) A. x(x −1)=x 2 B. x 2=0 C. x 2−2y =1 D. x =1x −1 2. 方程x(x −1)=5(x −1)的解是( )A. 1B. 5C. 1或5D. 无解3. 用配方法解方程2x 2+6x −5=0时,配方结果正确的是( )A. (x +32)2=194B. (x −32)2=194C. (x +23)2=194D. (x −23)2=194 4. 已知⊙O 的半径是10,OP =8,则点P 与⊙O 的位置关系是( )A. 点P 在圆内B. 点P 在圆上C. 点P 在圆外D. 不能确定5. 关于对称轴,有以下两种说法:①轴对称图形的对称轴有且只有一条;②如果两个图形关于某直线对称,那么所有各组对应点所连线段的垂直平分线重合.正确的判断是( )A. ①对,②错B. ①错,②对C. ①②都对D. ①②都错 6. 若2a =3b ,则a b =( )A. 52B. 53C. 23D. 32 7. 如图,⊙O 的直径AB =12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP ∶AP =1∶5,则CD 的长为( )A. 4√2B. 8√2C. 2√5D. 4√58. 如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,则在下列五个条件中:①∠AED =∠B ;②DE//BC ;③AD AC =AEAB ;④AD ⋅BC =DE ⋅AC ;⑤∠ADE =∠C ,能满足△ADE∽△ACB 的条件有( )A. 1个B. 2C. 3个D. 4个9.如图,在⊙O中,弦AC//半径OB,∠BOC=48°,则∠OAB的度数为()A. 24°B. 30°C. 50°D. 60°10.如图,AB为⊙O的直径,C为⊙O上一点,点D为半圆AB的中点,CD交AB于点E,若AC=8,BC=6,则BE的长为()C. 3√3D. 4.8A. 4.25B. 307二、填空题(本大题共8小题,共16.0分)11.把方程(x+1)(3x−2)=10化为一元二次方程的一般形式后为______.12.一元二次方程x2+px−2=0的一个根为2,则p的值______.13.根据《2017中国互联网络发展半部统计报告》,2017年我国网民规模增长趋于稳定,截至2017年12月,我国网民规模达到7.70亿,比上一年共计新增网民0.39亿人.下图是近6年我国网民规模增长情况统计图,根据图中数据,若2015年12月−2017年12月我国网民规模的年平均增长率为x,则依题意可列关于x的方程为______.14.已知两个相似多边形的一组对应边分别15cm和23cm,它们的周长差40cm,其中较大三角形的周长是_______cm.15.如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=______ .16.如图,在△ABC中,∠A=60°,⊙O为△ABC的外接圆.如果BC=2√3,那么⊙O的半径为_____.17.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是AD的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中结论正确的是________(只需填写序号).18.如图,⊙O是正方形ABCD的外接圆,AB=2,点E是劣弧AD上任意一点,CF⊥BE于点F.当点E从点A出发按顺时针方向运动到点D时,AF的取值范围是.三、解答题(本大题共10小题,共84.0分)19.解方程;(1)x2−8x+8=17x2(2)x2+4x−2=0k2=0有两个不相等的实数根.20.已知关于x的一元二次方程x2+(k+1)x+14(1)求k的取值范围;(2)当k取最小整数时,求此时方程的解.21.如图,在△ABC中,∠ABC=80°,∠BAC=40°.(1)尺规作图作出AB的垂直平分线DE,分别与AC、AB交于点D、E.并连结BD;(保留作图痕迹,不写作法)(2)证明:△ABC∽△BDC.22.如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.(1)求证:OD//AC;(2)若BC=8,DE=3,求⊙O的直径.23.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,求AD的长.24.如图,△ABC中,AB=AC,过点A作AD⊥BC于点D.(1)确定△ABC外接圆的圆心O,并画出△ABC的外接圆⊙O;(尺规作图,保留作图痕迹,不写作法)(2)若BC=4,∠BAC=45°,求⊙O的半径.25.已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.当P、Q两点中有一点到达终点,则同时停止运动.(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)如果P,Q分别从A,B同时出发,那么几秒后,PQ的长度等于2√10cm?(3)在(1)中,△PQB的面积能否等于7cm2?说明理由.26.某超市以每件40元的价格新进一批商品,已知销售价格不低于成本价,且物价部门规定销售这种产品的每件的利润不高于40%,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若销售该商品每天的利润为800元,求每件商品的销售价格x(元)的值.27.已知AB、CD是⊙O的两条弦,AB⊥CD于E,连接AD,过点B作BF⊥AD,垂足为F.(1)如图,连接AC、AG,求证:AC=AG;(2)连接BO并延长交AD于点H,若BH平分∠ABF,AG=4,圆O的半径为5,求tan D和AH的长.228.如图,在等腰△ABC中,AB=AC=9cm,BC=12cm,点D从B出发以每秒2cm的速度在线段BC上从B向C运动,点E同时从C出发以每秒2cm的速度在线段AC上从C向A运动,连∠BAC时,接AD、DE.设运动时间为t秒,当∠ADE=90°−12(1)证明:∠ADE=∠B;(2)求运动时间t的值.-------- 答案与解析 --------1.答案:B解析:解:A、由已知方程得到:−x=0,不是一元二次方程,故本选项不符合题意.B、该方程符合一元二次方程的定义,故本选项符合题意.C、该方程中含有两个未知数,属于二元二次方程,故本选项不符合题意.D、该方程不是整式方程,故本选项不符合题意.故选:B.根据一元二次方程的定义解答.一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.答案:C解析:本题考查的是用提取公因式法求一元二次方程的解,属于基础题,注意容易出现的错误是直接除以x−1,而出现失根.先把方程右边的因式移到左边,再提取公因式x−1,即可利用因式分解法求出x的值.解:原方程可化为x(x−1)−5(x−1)=0,即(x−1)(x−5)=0,解得x1=1,x2=5.故选:C.3.答案:A解析:本题考查了解一元二次方方程--配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.按照此步骤变形即可.解:2x2+6x−5=0,2x2+6x=5,x2+3x=52,(x+32)2=52+94,(x+32)2=194.故选A.4.答案:A解析:本题考查了点与圆的位置关系,注意掌握点和圆的位置关系与数量之间的等价关系是解决问题的关键.点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).解:∵OP=8,半径r=10,8<10,∴故点P与⊙O的位置关系是点在圆内.故选A.5.答案:B解析:本题主要考查的是轴对称的性质的有关知识,由题意利用轴对称的性质进行求解即可.解:①轴对称图形的对称轴不一定有且只有一条,例如圆的对称轴有无数条,故①错误;②如果两个图形关于某直线对称,那么所有各组对应点所连线段的垂直平分线重合,故②正确.故选B.6.答案:D解析:内项之积等于外项之积,依据比例的基本性质进行变形即可.本题主要考查了比例的性质,解题时注意:内项之积等于外项之积.解:∵2a=3b,∴ab =32,故选D.7.答案:D解析:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.先根据⊙O的直径AB=12求出OB的长,再根据BP:AP=1:5得出BP的长,进而得出OP的长,连接OC,根据勾股定理求出PC的长,再根据垂径定理即可得出结论.解:∵⊙O的直径AB=12,∴OB=12AB=6∵BP:AP=1:5,∴BP=16AB=2,∴OP=OB−BP=6−2=4,连接OC,∵CD⊥AB,∴CD=2PC,∠OPC=90°,∴PC=√OC2−OP2=√62−42=2√5,∴CD=2PC=4√5.故答案为D.8.答案:C解析:解:①∠B =∠AED ,∠A =∠A ,则可判断△ADE∽△ACB ,故①符合题意;②DE//BC ,则△ADE∽△ABC ,故②不符合题意,③AD AC =AE AB ,且∠A =∠A ,能确定△ADE∽△ACB ,故③符合题意;④由AD ⋅BC =DE ⋅AC 可得AD AC =DE BC ,此时不确定∠ADE =∠ACB ,故不能确定△ADE∽△ACB ;故④不符合题意,⑤∠ADE =∠C ,∠A =∠A ,则可判断△ADE∽△ACB ,故⑤符合题意;故选:C .根据相似三角形的判定定理对各条件进行逐一判断即可.本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.9.答案:A解析:解:∵AC//OB ,∴∠BOC =∠ACO =48°,∵OA =OC ,∴∠OAC =∠ACO =48°,∵∠CAB =12∠BOC =24°, ∴∠BAO =∠OAC −∠CAB =24°.故选:A .利用平行线的性质、等腰三角形的性质、圆周角定理求出∠OAC ,∠CAB 即可解决问题;本题考查圆周角定理,圆心角、弧、弦之间的关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.答案:B解析:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,也考查了勾股定理.连接OD ,作CH ⊥AB 于H ,如图,利用圆周角定理得到∠ACB =90°,则根据勾股定理可计算出AB =10,利用面积法计算出CH =245,再利用勾股定理计算出BH =185,接着证明△CHE∽△DOE ,根据相似的性质得到OE=2524EH,从而得到2524EH+EH+185=5,求得EH后计算EH+BH即可.解:连接OD,作CH⊥AB于H,如图,∵AB为⊙O的直径,∴∠ACB=90°,∴AB=√62+82=10,∵12CH⋅AB=12AC⋅BC,∴CH=6×810=245,在Rt△BCH中,BH=√62−(245)2=185,∵点D为半圆AB的中点,∴OD⊥AB,∴OD//CH,∴△CHE∽△DOE,∴EH:OE=CH:OD=245:5=24:25,∴OE=2524EH,∵2524EH+EH+185=5,∴EH=2435,∴BE=EH+BH=2435+185=307.故选B.11.答案:3x2+x−12=0解析:解:方程(x+1)(3x−2)=10,整理得:3x2+x−12=0,故答案为:3x2+x−12=0方程整理为一般形式即可.此题考查了一元二次方程的一般形式,其一般形式为ax2+bx+c=0(a≠0).12.答案:−1解析:解:把x=2代入方程x2+px−2=0得4+2p−2=0,解得p=−1.故答案为:−1.根据一元二次方程的解的定义把x=2代入方程x2+px−2=0得到关于P的一元一次方程,然后解此方程即可.本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.13.答案:6.89(1+x)2=7.70解析:此题主要考查了根据实际问题列一元二次方程,得到2017年网民规模的等量关系是解决本题的关键.根据相等关系:2017年的网民规模=2015年的网民规模×(1+年平均增长率)2,把相关数值代入即可.解:设2015年12月−2017年12月我国网民规模的年平均增长率为x,则依题意可列关于x的方程为:6.89(1+x)2=7.70.故答案为6.89(1+x)2=7.70.14.答案:115解析:本题主要考查相似多边形周长的比等于相似比,求出相似比是解题的关键.先求出两相似多边形的相似比是15:23,再根据相似比设出两多边形的周长为15x、23x,然后根据周长的差列方程求解即可.解:∵一组对应边分别是15cm和23cm,∴相似比k=15:23,设两多边形的周长分别是15x,23x,根据题意,得23x−15x=40,解得x=5,∴较大多边形的周长是23×5=115cm.故答案为115.15.答案:1:2解析:解:∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∴△BEF∽DAF,∴BE:AD=BF:FD=1:3,∴BE:BC=1:3,∴BE:EC=1:2.故答案为:1:2.根据平行四边形的性质可得AD=BC,AD//BC,由三角形相似可得BE:AD,进而得到BE:BC,由此可求出BE:EC.本题主要考查了相似三角形的判定及性质,有两角对应相等的两个三角形相似,相似三角形的三边对应成比例.16.答案:2解析:[分析]连接OC、OB,作OD⊥BC,利用圆心角与圆周角的关系得出∠BOC=120°,再利用含30°的直角三角形的性质解答即可.[详解]解:连接OC、OB,作OD⊥BC,∵∠A=60°,∴∠BOC=120°,∴∠DOC=60°,∠ODC=90°,∴OC=√32=√3√32=2,故答案为:2[点睛]此题考查三角形的外接圆与外心,关键是利用圆心角与圆周角的关系得出∠BOC=120°.17.答案:②③解析:此题是圆的综合题,其中涉及到切线的性质,圆周角定理,垂径定理,圆心角、弧、弦的关系定理,相似三角形的判定与性质,以及三角形的外接圆与圆心,平行线的判定,熟练掌握性质及定理是解决本题的关键.由于AC⏜与BD⏜不一定相等,根据圆周角定理可知①错误;连接OD,利用切线的性质,可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,可知②正确;先由垂径定理得到A为CF⏜的中点,再由C 为AD⏜的中点,得到CD⏜=AF⏜,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,由等角的余角相等可得出∠PCQ=∠PQC,得出CP= PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,可知③正确解:∵在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,∴AC⏜=CD⏜≠BD⏜,∴∠BAD≠∠ABC,故①错误;连接OD,则OD⊥GD,∠OAD=∠ODA,∵∠ODA+∠GDP=90°,∠EPA+∠EAP=∠EAP+∠GPD=90°,∴∠GPD=∠GDP;∴GP=GD,故②正确;∵弦CF⊥AB于点E,∴A为CF⏜的中点,即AF⏜=AC⏜,又∵C为AD⏜的中点,∴AC⏜=CD⏜,∴AF⏜=CD⏜,∴∠CAP=∠ACP,∴AP=CP.∵AB为圆O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,故③正确;故答案为②③.18.答案:√5−1≤AF≤2解析:【分析】本题主要考查勾股定理,圆周角定理及轨迹,可根据圆周角定理判定点F的轨迹为以BC 为直径的⊙O′,连接AO′交⊙O′于点M,根据勾股定理求解AO′的长,即可求AM的值,进而可求解AF的取值范围.【解答】解:如图,∵CF⊥BE,∴∠CFB=90∘,∴点F的运动轨迹是以BC为直径的⊙O′,连接AO′交⊙O′于点M.在Rt△ABO′中,AO′=√22+12=√5,∴AM=√5−1,∴当点E从点A出发按顺时针方向运动到点D时,AF的最小值为√5−1,最大值为2,∴√5−1≤AF≤2.19.答案:解;(1)x2−8x+8=17x2整理得:2x2+x−1=0∵△=1−4×2×(−1)=9,∴x=−1±√92×2=−1±34,∴x1=−1,x2=12(2)x2+4x−2=0,配方得:x2+4x+4=6,即(x+2)2=6,解得:x1=−2+√6,x2=−2−√6.解析:(1)利用公式法求解即可;(2)利用配方法求解即可.此题考查了解一元二次方程−公式法、配方法,熟练掌握解一元二次方程的方法是解本题的关键.20.答案:解:∵关于x的一元二次方程x2+(k+1)x+14k2=0有两个不相等的实数根,∴△=(k+1)2−4×14k2>0,∴k>−1;2(2)∵k取最小整数,∴k=0,∴原方程可化为x2+x=0,∴x1=0,x2=−1.k2>0,解不等式即可;解析:(1)根据一元二次方程的定义和判别式的意义得到△=(k+1)2−4×14(2)根据k取最小整数,得到k=0,列方程即可得到结论.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.21.答案:(1)解:如图,DE为所求;(2)证明:∵DE是AB的垂直平分线,∴BD=AD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC−∠ABD=80°−40°=40°,∴∠DBC=∠BAC,∵∠C=∠C∴△ABC∽△BDC.解析:本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了相似三角形的判定.(1)利用基本作图作线段AB的垂直平分线;(2)先根据线段垂直平分线的性质得到BD=AD,则∠ABD=∠A=40°,再通过计算得到∠DBC=∠BAC,然后根据相似三角形的判定方法得到△ABC∽△BDC.22.答案:(1)证明:∵AB是⊙O的直径,∴∠C=90°,∵OD⊥BC,∴∠OEB=∠C=90°,∴OD//AC;(2)解:令⊙O的半径为r,则OE=r−3∵OD⊥BC根据垂径定理可得:BE=CE=12BC=4,在ΔOBE中由勾股定理得:r2=42+(r−3)2,解得:r=256,所以⊙O的直径为253.解析:本题考查了垂径定理、勾股定理、圆周角定理;熟练掌握圆周角定理和垂径定理,由勾股定理得出方程是解决问题(2)的关键.(1)由圆周角定理得出∠C=90°,再由垂径定理得出∠OEB=∠C=90°,即可得出结论;(2)令⊙O的半径为r,由垂径定理得出BE=CE=12BC=4,由勾股定理得出方程,解方程求出半径,即可得出⊙O的直径.23.答案:解:在△ABC中,∠C=90°,AC=8,BC=6∴AB=√AC2+BC2=√82+62=10∵∠A=∠A,∠AED=∠C,∴△ADE∽△ABC,则DEBC =ADAB,即36=AD10,∴AD=5.解析:本题考查了勾股定理的运用,相似三角形的判定及性质的运用,解答时求出△ADE∽△ABC是解答本题的关键.由勾股定理可以先求出AB的值,再证明△ADE∽△ABC,根据相似三角形的性质就可以求出结论.24.答案:解:(1)如图,⊙O为所作;(2)连接BO,CO,如图,∵∠A=45°,∴∠BOC=90°,∴△BOC是等腰直角三角形,∴BC=√2OB,∴OB=√22×4=2√2即⊙O的半径为2√2.解析:(1)利用等腰三角形的性质得到AD垂直平分BC,作AB的垂直平分线交AD于O,然后以O 点为圆心,OA为半径作圆即可;(2)连接BO,CO,如图,利用圆周角定理得到∠BOC=90°,则△BOC是等腰直角三角形,然后根据等腰直角三角形的性质计算出OB的长即可.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和圆周角定理.25.答案:解:(1)设经过x秒以后△PBQ面积为4cm2(0<x≤3.5)此时AP=xcm,BP=(5−x)cm,BQ=2xcm,由12BP·BQ=4,得12(5−x)×2x=4,整理得:x 2−5x +4=0, 解得:x =1或x =4(舍去);答:1秒后△PBQ 的面积等于4cm 2(2)PQ =2√10,则PQ 2=BP 2+BQ 2,即40=(5−t)2+(2t)2,解得:.则3秒后,PQ 的长度为2√10cm .(3)令S △PQB =7,即BP ×BQ2=7,(5−t)×2t2=7,整理得:t 2−5t +7=0,由于b 2−4ac =25−28=−3<0,则原方程没有实数根;或Q 到C 了,P 还在运动,(5−t)×7÷2=7,解得t =3(舍去).所以在(1)中,△PQB 的面积不能等于7cm 2.解析:此题主要考查了一元二次方程的应用以及勾股定理的应用,找到关键描述语“△PBQ 的面积等于4cm 2”“PQ 的长度等于2√10cm ”,得出等量关系是解决问题的关键.(1)经过x 秒钟,△PBQ 的面积等于4cm 2,根据点P 从A 点开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm/s 的速度移动,表示出BP 和BQ 的长可列方程求解;(2)利用勾股定理列出方程求解即可;(3)令S △PQB =7,根据三角形的面积公式列出方程,再根据b 2−4ac 得出原方程没有实数根,从而得出△PQB 的面积不能等于7cm 2.26.答案:解:(1)设y 与x 的函数解析式为y =kx +b ,将(40,100),(52,76)代入得,{40k +b =10052k +b =76, 解得{k =−2b =180, ∴y 与x 的函数关系式为y =−2x +180,∵40×(1+40%)=56,∴x 的取值范围是40⩽x ⩽56;(2)根据题意得,(x −40)(−2x +180)=800,整理得:x2−130x+4000=0,解得x1=50,x2=80(舍去),答:当每件销售价为50元时,每天的销售利润为800元.解析:本题考查了用待定系数法求一次函数的解析式,一元二次方程的应用.解题关键是掌握待定系数法.(1)利用待定系数法即可求得y与x的函数关系式;(2)根据“总利润=每件的利润×销售量”列出方程,解出方程后根据要求确定销售价即可.27.答案:(1)证明:如图1,连接CB,∵AB⊥CD,BF⊥AD,∴∠D+∠BAD=90°,∠ABG+∠BAD=90°,∴∠D=∠ABG,∵∠D=∠ABC,∴∠ABC=∠ABG,∵AB⊥CD,∴∠CEB=∠GEB=90°,在△BCE和△BGE中,{∠ABC=∠ABG BE=BE∠BEC=∠BEG,∴△BCE≌△BGE(ASA),∴CE=EG,∵AE⊥CG,∴AC=AG.(2)解:如图2,连接CO并延长交⊙O于M,连接AM,∵CM是⊙O的直径,∴∠MAC=90°,∵MC=5,AC=AG=4,∴AM=√CM2−AC2=√52−42=3,∴tanM=ACAM =43,∵∠D=∠M,∴tan∠D=tan∠M=43,∵AE⊥DE,∴tan∠BAD=34,∴NHAN =34,设NH=3a,则AN=4a,∴AH=√AN2+NH2=5a,∵HB平分∠ABF,NH⊥AB,HF⊥BF,∴HF=NH=3a,∴AF=8a,cos∠BAF=ANAH =4a5a=45,∴AB=AFcos∠BAF=10a,∴NB=6a,∴tan∠ABH=NHBN =3a6a=12,过点O作OP⊥AB垂足为点P,∴PB=12AB=5a,tan∠ABH=OPPB=12,∴OP=52aa,∵OB=OC=52,OP2+PB2=OB2,∴25a2+254a2=254,∴解得:a=√55,∴AH=5a=√5.解析:(1)首先得出∠D=∠ABG,进而利用全等三角形的判定与性质得出△BCE≌△BGE(ASA),则CE=EG,再利用等腰三角形的性质求出即可;(2)首如图2,连接CO并延长交⊙O于M,连接AM,先求出AM的长,再求出tan∠ABH=NHNB =3a6a=12,利用OP2+PB2=OB2,得出a的值进而求出答案.本题属于圆综合题,主要考查了垂径定理,圆周角定理,勾股定理解直角三角形,全等三角形的判定与性质知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考常考题型.28.答案:(1)证明:∵AB=AC,∴∠B=∠C=180°−∠BAC2,即∠B=90°−12∠BAC,∵∠ADE=90°−12∠BAC,∴∠ADE=∠B;(2)解:设运动t秒,BD=2tcm,CE=2tcm,∵∠B=∠ADE,∴∠BAD=∠CDE,∵∠B=∠C,∴△ABD∽△DCE,∴ABDC =BDCE,9 12−2x =2x2x.12−2x=9.解得x=1.5,答:运动时间为1.5秒.解析:本题考查了相似三角形的判定与性质,三角形内角和定理,等腰三角形的性质,利用相似三角形的相似比得出方程是解题关键.(1)根据三角形的内角和定理,等腰三角形的性质,可得答案;(2)先证明△ABD∽△DCE,得出ABDC =BDCE,根据运动t秒,BD=2tcm,CE=2tcm,可得方程,解方程即可得出答案.。
江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷一、选择题(本大题共10小题,每小题3分,共计30分,在每小题给出的四个选项中恰有一项是符合题目要求的)1.下列各点中,在反比例函数的图象上的是( )4y x =A. B. C. D.(14)--,(14)-,(2)-,2(2),-22.将抛物线向右平移2 个单位长度,再向下平移5 个单位长度,平移后的抛物线的2y x =解析式为( )A. B. C. D.2(2)5y x =+-2(2)5y x =++2(2)5y x =--2(2)5y x =-+3.如图,O 的半径为10,弦AB=16,点 M 是弦 AB 上的动点且点 M 不与点A 、B 重⊙合,则OM 的长不可能是( )A.5B.6C.8D.94.如图,等腰直角三角板ABC 的斜边AB 与量角器的直径重合,点D 是量角器上 120° 刻度线的外端点,连接CD 交AB 于点E ,则∠CEB 的度数是( )A.100°B.105°C.110°D.120°5.正方形网格中,如图放置,则=( )AOB ∠sin AOB ∠C. D.1226.如图,直线,直线m 、n 分别与直线a ,b ,c 相交于点A ,B ,C 和点D ,E ,F ,a ∥b ∥c 若AB =2,AC =5,DE =3,则EF =( )A.2.5B.4C.4.5D.7.57.已知点,,都在反比例函数的图象上,则,A (−4,y 1)B (−2,y 2)C (3,y 3)(0)ky k x =>y 1,的大小关系为( )y 2y 3 A. B. C. D.y 3<y 2<y 1y 2<y 3<y 1y 3<y 1<y 2y 2<y 1<y 38.如图,点D 在△ABC 的边AC 上,添加一个条件,不能判断△ABC 与△BDC 相似的是( )A.∠CBD =∠AB.C.∠CBA =∠C DBD.BC CD AC AB =BC CD AC BC=9.如图,∠B 的平分线 BE 与 BC 边上的中线 AD 互相垂直,并且 BE =AD =4,则BC 值为()A.7B.C. 6D.10.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,A 点坐标为,50-(,)对角线 AC 和 OB 相交于点D ,且AC OB =40.若反比例函数的图象经过 ∙(0)k y x x =<点D ,并与BC 的延长线交于点E ,则值等于()CDE S ∆A. 2 B.1.5 C.1 D.0.5二、(本大题共8小题,第11~12每小题3分,13~18每小题4分,共30分)11.抛物线y =2(x +1)2 +3的顶点坐标是.12.在Rt △ABC 中,∠C =90°,AC =5,BC =4,则tanA=.13.正八边形的中心角是 度.14.圆锥的底面半径是3,母线长为4,则圆锥的侧面积为.15.如图,△ABC 和△DEF 是以点O 为位似中心的位似图形,若 OA ∶AD =2∶3,则△ABC 与DEF 的面积比是 .16.如图,有一个测量小玻璃管口径的量具ABC ,AB 的长为18 mm ,AC 被分为60 等份.如果小玻璃管口径DE正好对应量具上20 等份处(DE ∥AB ),那么小玻璃管口径DE = mm.17. 已知,,若 m ≤n ,则实数 a 的23236m n a +=++22324m n a +=++值为.18. 线段AB =,M 为AB 的中点,动点 P 到点 M 的距离是1,连接 PB ,线段 PB绕点P 逆 时针旋转 90° 得到线段 PC ,连接 AC ,则线段 AC 长度的最小值是.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;(2)如图,在Rt △ABC 中,∠C =90°,AC ,BC ,解这个直角三角形.20.(本小题满分10分)如图,是三角形的外接圆,是的直径,AD ⊥BC 于点E .O ABC AD O (1)求证:;BAD CAD ∠=∠(2)若长为8,,求的半径长.BC 2DE =O 21.(本小题满分10分)如图,在平面直角坐标系 xOy 中,直线 y =2x +b 经过点 A (-2,0)与 y 轴交于点 B ,与反比例函数的图象交于点 C (m ,6),过 B 作 BD ⊥y 轴,交反比例函数(0)k y x x =>的图象于点D .连接AD 、CD .(0)k y x x=>(1)b =,k =,不等式 >2x +b (x >0)的解集是;k x(2)求△ACD 的面积.如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥BD,交AB于点E,(1) 求证:△ADE∽△ABD;(2)若AB=10,BE=3AE,求线段AD长.23.(本小题满分12分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,(1)求证:AC平分∠BAD;(2)若∠BAD=60°,AB=4,求图中阴影部分的面积.24.(本小题满分12分)某商品进货价为每件40 元,将该商品每件的售价定为50 元时,每星期可销售250 件.现在计划提高该商品的售价增加利润,但不超过58 元.市场调查反映:若该商品每件的售价在50元基础上每上涨1元,其每星期的销售量减少10 件.设该商品每件的售价上涨x元(x为整数且x≥0)时,每星期的销售量为y 件.(1)求y与x之间的函数解析式;(2)当该商品每件的售价定为多少元时,销售该商品每星期获得的利润最大?最大利润是多少?(3)若该商品每星期的销售利润不低于3000 元,求商品售价上涨x元的取值范围.在矩形ABCD 中,AB <BC ,AB =6,E 是射线CD 上一点,点C 关于BE 的对称点F 恰好落在射线DA 上.如图,当点 E 在CD 边上时,①若BC =10,DF 的长为;②若AF ·FD =9时,求 DF 的长;(2)作∠ABF 的平分线交射线 DA 于点M ,当 时,求 DF 的长.12MF BC =26.(本小题满分13分)在平面直角坐标系中,如果一个点的纵坐标比横坐标大k ,则称该点为“k 级差值点”.例如,(1,4)为“3级差值点” ,(﹣3,2)为“5级差值点”.(1) 点(x ,y )是“4级差值点”,则y 与x 的函数关系式是;(2) 若反比例函数的图象上只有一个“k 级差值点”(﹣3≤ k ≤2),t =4m +2k +4,求t 的取m y x=值范围;(3) 已知直线l : y =nx +3与抛物线y =a (x ﹣h )²+h +3交于A ,B 两点,且AB ≥3.若 k ≠3时,2直线 l 上无“k 级差值点”,求a 的取值范围.答案一、选择题1. A2. C3.A4.B4.B5.B6.C7.D8.B9.D 10.C二填空题、11. (-1,3)12.4 513. 4514. 12π15. 4∶2516.1218.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)19.(本小题满分10分)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;解:原式= (2)分211122-⨯-…………………………………………………………………… 4分11142=--…………………………………………………………………… 5分14=(2)解:在在Rt △ABC 中,∠C =90°………………………………………………………… 7分∴∠A =60°…………………………………………………………………… 8分∠B =90°-∠A =90°-60°=30°………………………………………………… 9分 (10)分2AB AC ==20.(本小题满分10分)解:(1)∵AD 是的 ⊙O 直径∵AD ⊥BC∴弧BD =弧CD ,…………………………………… 2分∴∠BAD =∠CAD …………………………………… 4分C BAtan BC A AC ==(2) 连接OC∵AD 是的 ⊙O 直径∵AD ⊥BC∴CE =BE =BC…………………………………… 5分12∵BC =8∴CE =4…………………………… 6分在Rt △OEC 中,由勾股定理得,222OE EC OC +=设圆的半径长为r ,∵DE =2∴…………………8分222(2)4r r -+=∴5r =∴⊙O 的半径长为5…………………10分21.(本小题满分10分)(1) b =4,k =6,0<x<1…………………6分 (2)在y =2x +4中,令x =0,则y =4,∴B (0,4) ,在中,令y =4则x =1.56(0)y x x=>∴ D (1.5,4),∴BD =1.5…………………8分∴S △ACD =S △ABD +S △BCD ==…………………10分111.54 1.56422⨯⨯+⨯⨯-()9222.(本小题满分10分)(1)证明:∵BD 是∠ABC 的平分线∴∠ABD =∠DBC……………………………1分∵DE ⊥BD∴∠BDE =90°∵∠C =90°∴∠ADE + ∠BDC =90°,∠CBD +∠BDC =90°∴∠CBD = ∠ADE ……………………………………3分∴∠ADE = ∠ABD ……………………………………4分又∵∠A =∠A∴△ADE ∽△ABD ………………………………5分(2)解:∵AB =10,BE =3AE∴AE =2.5,BE =7.5………………………………6分由(1)得△ADE ∽△ABD ,∴………………………………8分AD AE AB AD∴AD 2=AB ·AE =10×2.5=25∴AD =5∴线段AD 长为5.………………………………10分23. (本小题满分12分)(1)证明:如图1,连接OC ,∵CD 为⊙O 切线,∴OC ⊥CD………………………………1分∵AD ⊥CD∴OC // AD ………………………………2分∴∠OCA =∠CAD , ………………………………3分又∵OA =OC∴∠OCA =∠OAC ………………………………4分∴∠CAD =∠OAC ,………………………………5分∴AC 平分∠DAB . ………………………………6分(2)解:如图所示,过点O 作OE ⊥AC 于点E ,则AE =EC =AC ,12∵∠BAD =60°,AC 平分∠DAB∴∠CAB =30°,∠COB =2∠CAB =60°,………………………………8分在Rt △AOE 中,AO =AB =2,12∴OE =OA =1,AE 12=∴AC =2AE =………………………………10分∴AOC BOCS S S ∆=+阴影扇形=2160212360π⨯⨯⨯+……………………………12分23π24.(本小题满分12分)解:(1)由题意可得, y =250-10x=﹣10x+250,y 与x 之间的函数解析式是y =﹣10x +250;……………………………2分(2)设当该商品每件的售价上涨x 元时,销售该商品每星期获得的利润为w 元.由题意可得:w=……………………………4分(5040)(10250)x x +--+=2101502500x x -++=210(7.5)3062.5x --+∵,0≤x ≤25且x 为整数100-<∴当x =7或8时,w 取得最大值3060,此时50+x =57或58.……………………6分答:当该商品每件的售价为57或58元时,每星期获得的利润最大,最大利润为3060元.……………………………7分(3)由题意得:……………………………8分21015025003000x x -++=解得……………………………10分12510x x ==,当x =5或10时,此时50+x =55或60又∵售价不超过58元∴5≤x ≤8且x 为整数…………………………12分25.(本小题满分13分)(1) ①DF 的长为 2 …………………………2分②解:∵四边形ABCD 是矩形∴∠BCD =∠A =∠ABC =∠D = 90°,CD =AB =6由对称可知∠BFE =∠BCD =90°, BF =BC∴∠AFB +∠DFE =90°,∠DEF +∠DFE =90°,∴∠AFB =∠DEF又:∠D =∠A =90°∴△FAB ∽△EDF . ………………………4分∴………………………5分AFBADE FD =∴AB ·DE =AF .DF =9.又∵AB =6,∴DE =……………………………………………6分32∴CE =CD -DE =6 -=………………………7分3292(2)分两种情况讨论.①当点F 在线段 AD 上时,如图(1),过点M 作 MN ⊥BF 于点N ,则∠MNF =∠A =90°.又∵∠AFB =∠NFM∴△FMN ∽△FBA∴MN MF FNAB BF AF==又∵,BF =BC12MF BC =∴12MNMFFNAB BF AF ===∴MN =3,AF =2FN …………………………………………8分∵BM 平分∠ABF ,∠BNM =∠A =90°,∴AM = MN =3.∴AM +MF =2FN∴13()22BN FN FN++=∴13(6)22FN FN++=∴FN =4…………………………………………9分∴AD =BF =BC =6+4=10∴AF =8∴DF =AD - AF =10-8=2…………………………………10分②当点F 在线段 DA 的延长线上时如图(2),过点M 作 MN ⊥BF 于点 P .同①可得AM =MN =AB =3,BN =AB =6,BC = AD =10,12MF =BC =5,12∴AF =8,∴DF =18.综上可知,DF 的长为2或18.…………………………………13分26.(本小题满分13分)26.(1)…………………………………3分4y x =+(2)解:由题意得:mx kx =+∴20x kx m +-=∵图象上只有一个“k 级差值点”∴方程 有两个相等的实数根20x kx m +-=∴△=0∴240k m +=∴…………………………………4分24m k =-∵424t m k =++∴…………………………………5分224t k k =-++=2(1)5k --+当k =1时,t 有最大值5,当t =-3时,t 有最小值-11-11≤t ≤5…………………………………7分(3)由题意得若 k =3时,直线 l 上有“k 级差值点”∴y =x +3∴n =1…………………………………8分∴x +3= a (x -h )²+h +3∴x 1=h ,x 2=…………………………………9分1h a+∵AB ≥利用两点间距离公式或根据够勾股定理得出≥3即≥3………………………………11分12x x -1a ∴或,即………………………………13分103a <≤103a >≥-11,033a a ≥≥-≠。
九年级数学南通试卷答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是素数?()A. 21B. 37C. 39D. 272. 如果一个三角形的两边分别是8cm和15cm,那么第三边的长度可能是多少cm?()A. 7cmB. 17cmC. 23cmD. 25cm3. 一个等腰三角形的顶角是50度,那么它的底角是多少度?()A. 65度B. 70度C. 75度D. 80度4. 下列哪个图形是正方形?()A. 四边相等的四边形B. 四个角都是直角的四边形C. 对角线相等的四边形D. 四边相等且四个角都是直角的四边形5. 下列哪个数是负数?()A. -5B. 0C. 3D. 8二、判断题1. 任何两个奇数相加的和都是偶数。
()2. 任何一个大于2的偶数都可以表示为两个素数之和。
()3. 两条平行线之间的距离是恒定的。
()4. 任何一个三角形的内角和都是180度。
()5. 两个负数相乘的结果是正数。
()三、填空题1. 2的平方根是______。
2. 一个等边三角形的每个角都是______度。
3. 两个平行线之间的距离是______。
4. 如果一个数的平方是64,那么这个数是______。
5. 下列哪个数是合数?______四、简答题1. 解释什么是素数。
2. 解释什么是等腰三角形。
3. 解释什么是平行线。
4. 解释什么是负数。
5. 解释什么是因数和倍数。
五、应用题1. 计算下列各式的值:2^3 + 3^2 5。
2. 如果一个等边三角形的边长是10cm,计算它的周长。
3. 计算下列各式的值:(-3) (-2) + 4。
4. 如果一个数的平方是81,那么这个数的立方是多少?5. 找出下列数中的质数:2, 3, 4, 5, 6, 7, 8, 9, 10。
六、分析题1. 解释为什么两个负数相乘的结果是正数。
2. 解释为什么任何一个大于2的偶数都可以表示为两个素数之和。
七、实践操作题1. 画出一个等边三角形,并标出它的顶角和底角。
2022年江苏省南通市中考数学联考试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 四边形ABCD 中,∠A=600, ∠B =∠D=900 ,BC=2, CD=3,则AB 等于( )A . 4B . 5C . 23D .8332.下列图形中阴影部分面积相等的是( )A .①②B .②③C .①④D .③④ 3. ,则a +b b的值是( ) A .85 B .35 C .32 D .584.如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD BC ,于E F ,点,连结CE ,则CDE △的周长为( )A .5cmB .8cmC .9cmD .10cm5.下列语句中,不是命题的是( )A .三角形的内角和等于l80°B .有两边和一角对应相等的两个三角形全等C .如果∠1+∠2=90°,∠1+∠3=90°,那么∠2=∠3D .画△ABC 和△A ′B ′C ′,使△ABC ≌△A ′B ′C ′6.下列不等式变形正确的是( )A 由412x ->得41x >B .由24x -<得2x <-C .由02y >得2y >D .由53x >得35x > 7.在一个暗箱里放有a 个除颜色外其他完全相同的球,这a 个球中只有3个红球. 每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱. 通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( )A . 12B . 9C . 4D . 3 8.如图所示,已知∠1=∠2,AD=CB ,AC ,BD 相交于点0,MN 经过点O ,则图中全等三角形的对数为( )A .4对B .5对C .6对D .7对9.23,33和43分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,63也能按此规律进行“分裂”,则63“分裂”出的奇数中最大的是( )A .41B .39C .31D .29二、填空题10.如图,□ABCD 中,E 是BC 中点,F 是BE 中点,AE 与 DF 交于 H ,则:EFH ADH s S ∆∆的值是 .11.已知⊙O 的半径OA=1,弦 AB 、AC 23BAC 的度数为 . 12.28x x ++ =2(___)x +.13.从甲、乙两块棉花新品种对比试验地中,各随机抽取8株棉苗,量得高度的数据如下(单位:cm):甲:l0.2,9.5,10,10.5,10.3,9.8,9.6,10.1;乙:l0.3,9.9,10.1,9.8,10,10.4,9.7,9.8.经统计计算得2S 甲= ,2S 乙= .这说明甲块试验地的棉苗比乙块试验地的棉苗长得 .解答题14.已知等腰△ABC 中,AB=AC ,∠B=60°,则∠A =_________.15.在正数种运算“*”,其规则为a *b =11a b+,根据这个规则(1)*(1)0x x -+=的解为 . 16.已知三角形的三边长为 3、1x +,4,则x 的取值范围是 .17.如图,在△ABC 中,AD 是BC 边上的中线,若△ABC 的周长为20,BC=11,且△ABD 的周长比△ACD 的周长大3,则AB= ,AC= .6,318.如图. (1)用刻度尺量出下列线段的长度.AB= cm AC= cmBC= cmAD= cm AF G E D C B A DC= cmBD= cm(2)用“>”、“<”或“=”号填空.AB BC BC ACBC AD AD+BD AB AB+BC AC19.要锻造一个直径为12 cm ,高10 cm 的圆柱形零件,需要直径为16 cm 的圆柱形钢条 .cm三、解答题20.如图,它是实物与其三种视图,在三种视图中缺少一些线(包括实线和虚线),请将它们补齐,让其成为一个完整的三种视图.21.如图EG ∥AF.请你从下面三个条件中,选择两个作为已知条件,另一个作为结论,推出一个正确的命题(只需要写出一种情况).①AB = AC ;②DE = DF ;③BE = CF.已知:EG ∥AF , = , = .求证: .请证明上述命题.22.为了了解用电量的多少,某家庭在6月初连续几天观察电表的读数,显示如下表: 日期 1日 2日 3日 4日 5日 6日 7日 8日度数(千瓦时) 114 117 121 126 132 135 140 142则请你估计这个家庭六月份的总用电量是千瓦时.23.如图,AB∥CD,∠NCM=90°,∠NCB=30°,CM平分∠BCE,求∠B的大小.24.已知方程组3,51,ax byx cy+=⎧⎨-=⎩甲正确地解得2,3,xy=⎧⎨=⎩,而乙粗心地把c看错了,解得3,6,xy=⎧⎨=⎩,试求出a、b、c•的值.25.同时抛掷两枚普通的骰子. 把朝上的点数之和作为结果. 则所得的结果有几种可能性?如果掷出的结果是“8 点”,则甲胜,掷出的结果是“9 点”.则乙胜,他们的赢的机会相同吗?为什么?26.如图,四边形A′B′C′D′是由四边形ABCD旋转得到的,请找出旋转中心,并量出旋转角的度数.27.在社会实践活动中,某校甲、乙、丙三位同学共同调查了高峰时段宁波二环路十三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下.甲同学说:“二环路的车流量为每小时10000辆.”乙同学:“四环路比三环路每小时多2000辆.”丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍.”请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流晕各是多少.28.一正方形的面积为 10cm2,求以这个正方形的边为直径的圆的面积. (π取 3.14)29.2|1|(3)0+++=,求2a b cb c+-的值.30.连续 5 天测量某地每天的最高气温与最低气温,记录如下表所示:【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.A4.D5.D6.D7.A8.C9.A二、填空题10.111.1675°或15°12.16,413.0.105,0.055,不整齐14.60°15.x 16.0<x<617.18.(1)略 (2)>,<,>,>,>19.5.625三、解答题20.21.略.22.120度23.60°24.a=3,b=-1,c=325.它们的结果有36种可能;不同,甲赢的机会大,理由略26.略27.设高峰时段三环路,的车流量为每小时x 辆,则高峰时段四环路的车流量为每小时(2000x +)辆.根据题意,得3(2000)210000x x -+=⨯,解得11000x =, ∴200013000x +=辆.答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13 000辆. 28.7. 85cm 229.630.星期三的温差最大,星期一的温差最小。
九年级数学南通试卷上册【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a√32. 下列函数中,哪个函数在其定义域内是增函数?()A. y = -x^2B. y = x^3C. y = -xD. y = 1/x3. 在直角坐标系中,点P(2, -3)关于原点的对称点是()。
A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)4. 若一组数据从小到大排列,中位数为10,众数为12,则这组数据可能的个数是()。
A. 5B. 6C. 7D. 85. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若sinA = 3/5,cosB = 4/5,则三角形ABC的类型是()。
A. 钝角三角形B. 锐角三角形C. 直角三角形D. 不能确定二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 平方根的定义是:如果一个数x的平方等于a,那么x是a的平方根。
()3. 两个锐角互余。
()4. 在同一平面内,平行线的性质是:同位角相等,内错角相等,同旁内角互补。
()5. 任何有理数都可以表示为分数的形式。
()三、填空题(每题1分,共5分)1. 如果一个正方形的对角线长为10cm,那么它的面积是______cm²。
2. 函数y = 2x + 3的图像是一条______。
3. 在三角形ABC中,若∠A = 60°,∠B = 70°,则∠C =______°。
4. 如果一组数据为2, 3, 5, 5, 6, 6, 7,那么这组数据的平均数是______。
5. 若一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的面积是______cm²。
四、简答题(每题2分,共10分)1. 简述勾股定理的内容。
2. 什么是函数的单调性?3. 如何计算一组数据的众数?4. 什么是锐角三角函数?5. 简述平行线的性质。
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.方程2310x x --=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定2.如图,已知点A 是第一象限内横坐标为2的一个定点,AN x ⊥轴于点M ,交直线33y x =-于点N ,若点P 是线段ON 上的一个动点,30APB ∠=,BA PA ⊥,点P 在线段ON 上运动时,A 点不变,B 点随之运动,当点P 从点O 运动到点N 时,则点B 运动的路径长是( )A 433B 233C .2D .433.下列命题正确的是( )A .对角线相等四边形是矩形B .相似三角形的面积比等于相似比C .在反比例函数3y x=-图像上,y 随x 的增大而增大 D .若一个斜坡的坡度为1:3304.下列说法正确的是( )A .可能性很大的事情是必然发生的B .可能性很小的事情是不可能发生的C .“掷一次骰子,向上一面的点数是6”是不可能事件D .“任意画一个三角形,其内角和是180︒”5.方程()()2230m m x m x ++-+=是关于x 的一元二次方程,则m 的值是( ) A .2m =-B .2m =C .2m =±D .不存在6.如图,在矩形ABCD 中,6AB =,8BC =,过对角线交点O 作EF AC ⊥交AD 于点E ,交BC 于点F ,则DE 的长是( )A .1B .74C .2D .1257.如图,在△ABC 中,∠ACB =90°,AC =3,BC =1.将△ABC 绕点A 逆时针旋转,使点C 的对应点C '在线段AB 上.点B '是点B 的对应点,连接B 'B ,则线段B 'B 的长为( )A .2B .3C .1D .258.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,若∠BAD=48°,则∠DCA 的大小为( )A .48B .42C .45D .249.已知反比例函数2y x=-,则下列结论正确的是( )A .点(1,2)在它的图象上B .其图象分别位于第一、三象限C .y 随x 的增大而减小D .如果点()P m n ,在它的图象上,则点(),Q n m 也在它的图象上10.二次函数y =()21x ++2的顶点是( )A .(1,2)B .(1,−2)C .(−1,2)D .(−1,−2) 11.抛物线y =x 2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为( )A .2y x 4x 3=++B .2y x 4x 5=++C .2y x 4x 3=-+D .2y x 4x 5=--12.如图,O 是坐标原点,菱形OABC 顶点A 的坐标为()3,4-,顶点C 在x 轴的负半轴上,反比例函数k y x=的图象经过顶点B ,则k 的值为( )A .12-B .20-C .32-D .36-二、填空题(每题4分,共24分)13.若ABC A B C '''∽△△,50A ∠=︒,100C '∠=︒,则B '∠的度数为__________14.如图,在△ABC 中,∠ACB =90°,点G 是△ABC 的重心,且AG ⊥CG ,CG 的延长线交AB 于H .则S △AGH :S △ABC 的值为 ____.15.如图,在平行四边形ABCD 中,E 为CB 延长线上一点,且BE :CE =2:5,连接DE 交AB 于F ,则ADF BEF :S S =_____________16.如图,在边长为2的正方形ABCD 中,以点D 为圆心,AD 长为半径画AC ,再以BC 为直径画半圆,若阴影部分①的面积为S 1,阴影部分②的面积为S 2,则图中S 1﹣S 2的值为_____.(结果保留π)17.如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是______ .18.一个不透明的口袋中装有3个红球和9个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为__________.三、解答题(共78分)19.(8分)综合与探究:如图所示,在平面直角坐标系中,直线2y x =+与反比例函数()0k y k x=>的图象交于(),3A a ,()3,B b -两点,过点A 作AC x ⊥轴于点C ,过点B 作BD x ⊥轴于点D .(1)求a ,b 的值及反比例函数的函数表达式;(2)若点P 在线段AB 上,且ACP BDP S S ∆∆=,请求出此时点P 的坐标;(3)小颖在探索中发现:在x 轴正半轴上存在点M ,使得MAB ∆是以A ∠为顶角的等腰三角形.请你直接写出点M 的坐标.20.(8分)如图,△ABC 中(1)请你利用无刻度的直尺和圆规在平面内画出满足PB 2+PC 2=BC 2的所有点P 构成的图形,并在所作图形上用尺规确定到边AC 、BC 距离相等的点P .(作图必须保留作图痕迹)(2)在(1)的条件下,连接BP ,若BC =15,AC =14,AB =13,求BP 的长.21.(8分)已知二次函数y =﹣x 2+bx +c 的图象经过点A (﹣1,0),C (0,3).(1)求二次函数的解析式;(2)在图中,画出二次函数的图象;(3)根据图象,直接写出当y ≤0时,x 的取值范围.22.(10分) (1)计算:182(22)+⋅-(2)解方程:(3)260x x x -+-=23.(10分)如图,已知直线y=﹣x+4与反比例函数k y x=的图象相交于点A (﹣2,a ),并且与x 轴相交于点B .(1)求a 的值;(2)求反比例函数的表达式;(3)求△AOB 的面积.24.(10分)如图,破残的圆形轮片上,弦AB 的垂直平分线交AB 于C ,交弦AB 于D .(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)若AB =24cm ,CD =8cm ,求(1)中所作圆的半径.25.(12分)已知关于x 的方程()22120mx m x m --+-=. (1)当m 取何值时,方程有两个不相等的实数根;(2)若1x 、2x 为方程的两个不等实数根,且满足2212122x x x x +-=,求m 的值.26.教练想从甲、乙两名运动员中选拔一人参加射击锦标赛,故先在射击队举行了一场选拔比赛.在相同的条件下各射靶5次,每次射靶的成绩情况如图所示.甲射靶成绩的条形统计图 乙射靶成绩的折线统计图(1)请你根据图中的数据填写下表:平均数 众数 方差 甲__________ 6 0.4 乙 6__________ __________ (2)根据选拔赛结果,教练选择了甲运动员参加射击锦标赛,请给出解释.参考答案一、选择题(每题4分,共48分)1、A【分析】此题考查一元二次方程解的情况的判断.利用判别式24b ac ∆=-来判断,当>0∆时,有两个不等的实根;当0∆=时,有两个相等的实根;当∆<0时,无实根;【详解】题中224(3)4(1)940b ac ∆=-=--⨯-=+>,所以次方程有两个不相等的实数根,故选A ;2、D【分析】根据题意利用相似三角形可以证明线段o n B B 就是点B 运动的路径(或轨迹),又利用o n AB B ∆∽AON ∆求出线段o n B B 的长度,即点B 运动的路径长.【详解】解:由题意可知,2OM =,点N 在直线y x =上,AN x ⊥轴于点M ,则OMN ∆为顶角30度直角三角形,23ON ==. 如下图所示,设动点P 在O 点(起点)时,点B 的位置为o B ,动点P 在N 点(终点)时,点B 的位置为n B ,连接o n B B , ∵o AO AB ⊥,n AN AB ⊥∴o n OAN B AB ∠=∠又∵tan 30o AB AO =•,tan 30n AB AN =•∴::tan 30o n AB AO AB AN ==(此处也可用30°角的Rt )∴o n AB B ∆∽AON ∆,且相似比为tan30,∴44tan 30333o n B B ON =•== 现在来证明线段o n B B 就是点B 运动的路径(或轨迹).如图所示,当点P 运动至ON 上的任一点时,设其对应的点B 为i B ,连接AP ,i AB ,o i B B∵o AO AB ⊥,i AP AB ⊥∴o i OAP B AB ∠=∠又∵tan 30o AB AO =•,tan 30i AB AP =•∴::o i AB AO AB AP =∴o i AB B ∆∽AOP ∆∴o i AB B AOP ∠=∠又∵o n AB B ∆∽AON ∆∴o n AB B AOP ∠=∠∴o i o n AB B AB B ∠=∠∴点i B 在线段o n B B 上,即线段o n B B 就是点B 运动的路径(或轨迹).综上所述,点B 运动的路径(或轨迹)是线段o n B B ,其长度为43. 故选:D【点睛】本题考查坐标平面内由相似关系确定的点的运动轨迹,难度很大.本题的要点有两个:首先,确定点B 的运动路径是本题的核心,这要求考生有很好的空间想象能力和分析问题的能力;其次,由相似关系求出点B 运动路径的长度,可以大幅简化计算,避免陷入坐标关系的复杂运算之中.3、D【分析】根据矩形的判断定理、相似三角形的性质、反比例函数的性质、坡度的定义及特殊的三角函数值解答即可.【详解】对角线相等的平行四边形是矩形,故A 错误;相似三角形的面积比等于相似比的平方,故B 错误;在反比例函数3y x=-图像上,在每个象限内,y 随x 的增大而增大,故C 错误;若一个斜坡的坡度为tan 坡角,该斜坡的坡角为30,故D 正确. 故选:D【点睛】本题考查的是矩形的判断定理、相似三角形的性质、反比例函数的性质、坡度的定义及特殊的三角函数值,熟练的掌握各图形及函数的性质是关键.4、D【分析】了解事件发生的可能性与必然事件、不可能事件、可能事件之间的关系.【详解】解:A 错误.可能性很大的事件并非必然发生,必然发生的事件的概率为1;B 错误.可能性很小的事件指事件发生的概率很小,不可能事件的概率为0;C 错误.掷一枚普通的正方体骰子,结果恰好点数“6”朝上的概率为16.为可能事件. D 正确.三角形内角和是180°.故选:D .【点睛】本题考查事件发生的可能性,注意可能性较小的事件也有可能发生;可能性很大的事也有可能不发生.5、B【分析】根据一元二次方程的定义进行求解即可. 【详解】由题知:220m m ⎧=⎨+≠⎩,解得22m m =±⎧⎨≠-⎩, ∴2m =故选:B .【点睛】本题考查了利用一元二次方程的定义求参数的值,熟知一元二次方程的定义是解题的关键.6、B【分析】连接CE ,由矩形的性质得出90ADC ∠=,6CD AB ==,8AD BC ==,OA OC =,由线段垂直平分线的性质得出AE CE =,设DE x =,则8CE AE x ==-,在Rt CDE ∆中,由勾股定理得出方程,解方程即可.【详解】如图:连接CE ,∵四边形ABCD 是矩形,∴90ADC ∠=,6CD AB ==,8AD BC ==,OA OC =,∵EF AC ⊥,∴AE CE =,设DE x =,则8CE AE x ==-,在Rt CDE ∆中,由勾股定理得:()22268x x +=-, 解得:74x =, 即74DE =;故选B .【点睛】本题考查了矩形的性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,由勾股定理得出方程是解题的关键.7、D【分析】先由勾股定理求出AB ,然后由旋转的性质,得到3AC AC '==,4B C BC ''==,得到2BC '=,即可求出BB '.【详解】解:在△ABC 中,∠ACB =90°,AC =3,BC =1.∴33345AB =+=,由旋转的性质,得3AC AC '==,4B C BC ''==,90AC B ''∠=︒,∴532BC '=-=,在Rt BC B ''∆中,由勾股定理,得222425BB '=+=故选:D.【点睛】本题考查了旋转的性质,勾股定理解直角三角形,解题的关键是熟练掌握旋转的性质和勾股定理,正确求出边的长度. 8、B【详解】解:连接BD ,∵AB 是⊙O 的直径,∴∠ADB=90°,∴∠ABD=90°−∠BAD=42°,∴∠DCA=∠ABD=42°故选B9、D【分析】根据反比例函数图象上点的坐标特征以及反比例函数的性质解答即可.【详解】解:∵20k =-<∴图象在二、四象限,y 随x 的增大而增大,选项A 、B 、C 错误;∵点()P m n ,在函数的图象上,∴mn 2=-∵点(),Q n m 横纵坐标的乘积2nm mn ==-∴则点(),Q n m 也在函数的图象上,选项D 正确.故选:D .【点睛】本题考查的知识点是反比例函数的的性质,掌握反比例函数图象的特征及其性质是解此题的关键.10、C【分析】因为顶点式y=a (x-h )2+k ,其顶点坐标是(h ,k ),即可求出y=()21x ++2的顶点坐标.【详解】解:∵二次函数y=()21x ++2是顶点式,∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.11、A【分析】抛物线平移不改变a 的值.【详解】原抛物线的顶点为(0,0),向左平移2个单位,再向下平移1个单位,那么新抛物线的顶点为(﹣2,﹣1),可设新抛物线的解析式为:y=(x ﹣h )2+k ,代入得:y=(x+2)2﹣1=x 2+4x+1.故选A .12、C【分析】根据点C 的坐标以及菱形的性质求出点B 的坐标,然后利用待定系数法求出k 的值即可.【详解】∵()34A -,, ∴22345OA =+=,∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为358--=-,故B 的坐标为:()84-,, 将点B 的坐标代入k y x =得,48k =-, 解得:32k =-.故选:C .【点睛】本题考查了菱形的性质以及利用待定系数法求反比例函数解析式,解答本题的关键是根据菱形的性质求出点B 的坐标.二、填空题(每题4分,共24分)13、30【分析】先根据三角形相似求A '∠,再根据三角形内角和计算出B '∠的度数.【详解】解:如图:∵∠A=50°,ABC A B C '''∽△△,∴50A A '∠=∠=︒∵100C '∠=︒,∴1801805010030B A C '''∠=︒-∠-∠=︒-︒-︒=︒故答案为30.【点睛】本题考查了相似三角形的性质:相似三角形的对应角相等.14、1:6【分析】根据重心的性质得到2CG HG =,求得13AHG ACH S S =,根据CH 为AB 边上的中线,于是得到12ACH ABC S S =,从而得到结论.【详解】∵点G 是△ABC 的重心,∴2CG HG =,∴13HG CH =, ∴13AHG ACH S S =, ∵CH 为AB 边上的中线,∴12ACH ABC S S =, ∴1132AHG ABC SS =⨯, ∴:?1:6AHG ABC S S =,故答案为:1:6.【点睛】本题考查了三角形的重心:三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.15、9:4【分析】先证△ADF ∽△BEF ,可知2:(:)ADF BEF S S AD BE ∆∆= ,根据BE :CE =2:5和平行四边形的性质可得AD:BE 的值,由此得解.【详解】解:∵BE :CE=2:5,∴BE :BC=2:3 ,即BC :BE=3:2 ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴AD :BE=3:2,△ADF ∽△BEF ,∴2:(:)9:4ADF BEF S S AD BE ∆∆==.故答案为:9:4.【点睛】本题考查相似三角形的性质和判定,平行四边形的性质.熟记相似三角形的面积比等于相似比的平方是解决此题的关键. 16、12π 【分析】如图,设图中③的面积为S 1.构建方程组即可解决问题.【详解】解:如图,设图中③的面积为S1.由题意:2132231··241··12S SS Sππ⎧+=⎪⎪⎨⎪+=⎪⎩,可得S1﹣S2=12π,故答案为12π.【点睛】本题考查扇形的面积、正方形的性质等知识,解题的关键是学会利用参数构建方程组解决问题.17、1 3【解析】画树状图得:∵共有6种等可能的结果,转盘所转到的两个数字之积为奇数的有2种情况,∴转盘所转到的两个数字之积为奇数的概率是:21 63=.故答案是:1 3 .【点睛】此题考查了列表法或树状图法求概率.注意此题属于放回实验,用到的知识点为:概率=所求情况数与总情况数之比.18、1 4【分析】直接利用概率公式求解即可求得答案.【详解】∵一个不透明的口袋中装有3个红球和9个黄球,这些球除了颜色外无其他差别,∴从中随机摸出一个小球,恰好是红球的概率为:31 394=+.故答案为:14. 【点睛】 本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共78分)19、(1)1a =,1b =-,3y x =;(2)点P 的坐标为()0,2;(3)()1M + 【分析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a ,b ,最后用待定系数法求出反比例函数解析式;(2)设点(),p p P x y ,用三角形的面积公式得到()()111322p p AC x DB x ⋅-=⋅+求解即可得出结论; (3)设出点M 坐标,表示出MA 2=(m-1)2+9,AB 2=32,根据等腰三角形的性质建立方程求解即可得出结论. 【详解】解:(1)∵直线2y x =+与反比例函数()0k y k x =>的图象交与(),3A a ,()3,B b -两点 ∴23a +=,32b -+=.∴1a =,1b =-.∴()1,3A ,()3,1B --.∵点()1,3A 在反比例函数k y x =上, ∴133k =⨯=. ∴反比例函数的函数表达式为3y x =. (2)设点(),p p P x y ,∵()1,3A ,∴()1,0C .∴3AC =.∵()3,1B --,∴()3,0D -.∴1BD =,∵ACP BDP S S ∆∆= ∴()()111322p p AC x DB x ⋅-=⋅+. 解得:0p x =,∴2p y =.∴点P 的坐标为()0,2.(3)设出点M 坐标为(m,0),∴MA 2=(m-1)2+9,AB 2=(1+3)2+(3+1)2=32,∵MAB ∆是以A ∠为顶角的等腰三角形∴AM=AB,故(m-1)2+9=32解得m=123+或m=123-(舍去)∴()123,0M +【点睛】此题主要考查反比例函数与一次函数综合,解题的关键是熟知待定系数法求解析式、三角形的面积公式及等腰三角形的性质.20、(1)见解析;(2)BP =35【分析】(1)根据PB 2+PC 2=BC 2得出P 点所构成的圆以BC 为直径,根据垂直平分线画法画出O 点,补全⊙O ,再作∠ACB 的角平分线与⊙O 的交点即是P 点.(2)设⊙O 与AC 的交点为H ,AH =x ,得到AH 、BH ,根据题意求出OP ∥AC ,即可得出OP ⊥BH ,BQ =12BH ,OQ=12CH ,求出PQ ,根据勾股定理求出BP. 【详解】(1)如图:(2)由(1)作图,设⊙O 与AC 的交点为H ,连接BH ,∴∠BHC =90°∵BC =15,AC =14,AB =13设AH =x ∴HC =14-x∴22222131514BH x x =-=-(-)解得:x =5∴AH=5∴BH=12.连接OP,由(1)作图知CP平分∠BCA ∴∠PCA=∠BCP又∵OP=OC∴∠OPC=∠BCP∴∠OPC=∠PCA∴OP∥CA∴OP⊥BH 与点Q∴BQ=12BH=6又BO=15 2∴OQ=9 2∴PQ=3∴BP=35.【点睛】此题主要考查了尺规作图中垂直平分线,角平分线及圆的画法和相似比及勾股定理等知识,解题的关键是构建直角三角形及找到关键相似三角形.21、(1)y=﹣x2+2x+1;(2)该函数图象如图所示;见解析(1)x的取值范围x≤﹣1或x≥1.【分析】(1)用待定系数法将A(﹣1,0),C(0,1)坐标代入y=﹣x2+bx+c,求出b和c即可.(2)利用五点绘图法分别求出两交点,顶点,以及与y轴的交点和其关于对称轴的对称点,从而绘图即可.(1)根据A,B,C三点画出函数图像,观察函数图像即可求出x的取值范围.【详解】解:(1)∵二次函数y=﹣x2+bx+c的图象经过点A(﹣1,0),C(0,1),∴103b c c --+=⎧⎨=⎩,得23b c =⎧⎨=⎩, 即该函数的解析式为y =﹣x 2+2x+1;(2)∵y =﹣x 2+2x+1=﹣(x ﹣1)2+4,∴该函数的顶点坐标是(1,4),开口向上,过点(﹣1,0),(1,0),(0,1),(2,1),该函数图象如右图所示;(1)由图象可得,当y≤0时,x 的取值范围x≤﹣1或x ≥1.【点睛】本题考查二次函数综合问题,结合待定系数法求二次函数解析式以及二次函数性质和二次函数图像的性质进行分析.22、(1)22+(2)x 1=3,x 2=﹣2.【分析】(1)根据二次根式的运算法则,合并同类二次根式计算即可得答案;(2)把原方程整理为一元二次方程的一般形式,再利用十字相乘法解方程即可.【详解】(1)原式=32222-22=.(2)(3)260x x x -+-=x 2-x-6=0(x ﹣3)(x+2)=0解得:x 1=3,x 2=﹣2.【点睛】本题考查二次根式的运算及解一元二次方程,一元二次方程的常用解法有:直接开平方法、公式法、配方法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.23、(1)a=6;(2)12yx=-;(3)1【解析】(1)把A的坐标代入直线解析式求a;(2)把求出的A点坐标代入反比例解析式中求k,从而得解析式;求B点坐标,结合A点坐标求面积.【详解】解:(1)将A(﹣2,a)代入y=﹣x+4中,得:a=﹣(﹣2)+4,所以a=6(2)由(1)得:A(﹣2,6)将A(﹣2,6)代入kyx=中,得到:62k=-,即k=﹣1所以反比例函数的表达式为:(3)如图:过A点作AD⊥x轴于D;∵A(﹣2,6)∴AD=6在直线y=﹣x+4中,令y=0,得x=4 ∴B(4,0),即OB=4∴△AOB的面积S=12OB×AD=12×4×6=1.考点:反比例函数综合题.24、(1)答案见解析;(2)13cm【分析】(1)根据垂径定理,即可求得圆心;(2)连接OA,根据垂径定理与勾股定理,即可求得圆的半径长.【详解】解:(1)连接BC,作线段BC的垂直平分线交直线CD与点O,以点O为圆心,OA长为半径画圆,圆O即为所求;(2)如图,连接OA∵OD ⊥AB∴AD=12AB=12cm 设圆O 半径为r ,则OA=r ,OD=r-8直角三角形AOD 中,AD 2+OD 2=OA 2∴122+(r-8)2=r 2∴r=13∴圆O 半径为13cm【点睛】本题考查了垂径定理的应用,解答本题的关键是熟练掌握圆中任意两条弦的垂直平分线的交点即为圆心.25、(1)当14m >-且0m ≠时,方程有两个不相等的实数根;(221 【分析】(1)由方程有两个不相等的实数根,可得24b ac =-⊿>0,继而求得m 的取值范围; (2)由根与系数的关系,可得12x x +和12x x ,再根据已知得到方程并解方程即可得到答案.【详解】(1)关于x 的方程()22120mx m x m --+-= a m =,()21b m =--,2c m =-,∵方程有两个不相等的实数根,∴()()2242142b ac m m m ⎡⎤=-=----⎣⎦⊿>0, 解得:14m >-, ∵二次项系数0a ≠,∴0m ≠, ∴当14m >-且0m ≠时,方程有两个不相等的实数根; (2)∵12x x 、为方程的两个不等实数根, ∴122m 1b x x a m -+=-=,122c m x x a m -==,∴()()222212121212322m 132m x x x x x x x x m m --⎛⎫+-=+-=-= ⎪⎝⎭,解得:11m ,21m =(不合题意,舍去),∴1m =.【点睛】本题考查了根的判别式以及根与系数的关系.注意当24b ac =-⊿>0时,方程有两个不相等的两个实数根;注意若12x x 、是一元二次方程20ax bx c ++=(a ≠0)的两根时,12b x x a +=-,12c x x a=. 26、(1)【答题空1】6 6 2.8(2)利用见解析. 【分析】(1)先求出甲射击成绩的平均数,通过观察可得到乙的众数,再根据乙的平均数结合方差公式求出乙射击成绩的方差即可;(2)根据平均数和方差的意义,即可得出结果.【详解】解:(1)5676665x ++++==甲,乙的众数为6, 2S 乙 ()()()()()2222213666667686 2.85⎡⎤=⨯-+-+-+-+-=⎣⎦. (2)因为甲、乙的平均数与众数都相同,甲的方差小,所以更稳定,因此甲的成绩好些.【点睛】本题考查了平均数、众数、方差的意义等,解题的关键是要熟记公式,在进行选拔时要结合方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.。
九年级数学南通试卷上册【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个等腰三角形的底边长是8cm,腰长是10cm,那么这个三角形的周长是?A. 16cmB. 26cmC. 28cmD. 36cm3. 一个正方形的对角线长是10cm,那么这个正方形的面积是?A. 50cm²B. 100cm²C. 200cm²D. 50√2cm²4. 下列哪个数是9的倍数?A. 63B. 65C. 67D. 695. 下列哪个数是10的倍数?A. 123B. 130C. 132D. 135二、判断题(每题1分,共5分)1. 任何偶数都是2的倍数。
()2. 两个锐角相加一定大于90度。
()3. 任何奇数乘以奇数都是奇数。
()4. 两个负数相乘一定是正数。
()5. 任何数乘以0都等于0。
()三、填空题(每题1分,共5分)1. 2的平方根是______。
2. 一个等边三角形的周长是18cm,那么它的边长是______cm。
3. 一个长方形的长是10cm,宽是5cm,那么它的面积是______cm²。
4. 下列哪个数是4的倍数?______5. 下列哪个数是5的倍数?______四、简答题(每题2分,共10分)1. 请简述平行四边形的性质。
2. 请简述勾股定理的内容。
3. 请简述因式分解的意义。
4. 请简述概率的意义。
5. 请简述等差数列的定义。
五、应用题(每题2分,共10分)1. 一个长方形的长是15cm,宽是8cm,求它的面积。
2. 一个等腰三角形的底边长是12cm,腰长是15cm,求它的周长。
3. 已知一个数的平方是36,求这个数。
4. 一个数加上它的2倍等于30,求这个数。
5. 一个数减去它的1/3等于20,求这个数。
六、分析题(每题5分,共10分)1. 分析并解答:已知一个长方体的长、宽、高分别是10cm、6cm、4cm,求它的体积。
南通初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.1415926B. √2C. 0.33333...D. 22/72. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 83. 如果一个数的平方等于其本身,那么这个数可能是:A. 1B. -1C. 0D. 1或-14. 一个圆的半径是5,求这个圆的面积。
A. 25πB. 50πC. 75πD. 100π5. 绝对值不大于5的所有整数的和是多少?A. 0B. 5C. 10D. 156. 下列哪个代数式是二次根式?A. √xB. √x + 1C. √(x + 1)D. x√17. 已知a=2,b=-3,求代数式a-b的值。
A. -1B. 5C. 7D. 98. 一个数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。
求第10项的值。
A. 143B. 144C. 145D. 1469. 一个函数f(x)=2x+3,求f(-2)的值。
A. -1B. -3C. -5D. -710. 下列哪个方程有实数解?A. x^2 + 4x + 4 = 0B. x^2 - 4x + 3 = 0C. x^2 + x + 1 = 0D. x^2 - x - 6 = 0二、填空题(每题4分,共20分)11. 一个数的相反数是-5,这个数是_________。
12. 如果一个数的立方根等于它自己,那么这个数可以是_________。
13. 一个数的平方根是4,那么这个数是_________。
14. 一个多项式f(x)=x^2-5x+6,求f(7)的值。
15. 一个数列的前三项为2, 3, 5,从第四项开始,每一项都是前三项的和,求第5项的值。
三、解答题(每题10分,共50分)16. 解方程:3x - 7 = 2x + 5。
17. 证明:勾股定理。
18. 求函数y = x^2 - 4x + 4在x=2时的值。
南通市初三数学下学期期中联考试卷(含答案解析)南通市初三数学下学期期中联考试卷(含答案解析) 一、选择题(共10小题,每小题3分,共30分.).1.的绝对值是().A. B. C. D.22.下列运算正确的是().A. B.C. D.3.关于x的方程的解为正实数,则m的取值范围是().A.m≥2 B.m≤2 C.m>2 D.m<24.下列函数的图像在每一个象限内,值随值的增大而增大的是().A. B. C. D.5.直线一定经过点().A.(1,0) B.(1,k) C. (0,k) D.(0,-1)6.若点 P(,-2)在第四象限,则的取值范围是().A.-2<<0 B.0<<2 C.>2 D.<0 7.在平面直角坐标系中,将抛物线绕着它与轴的交点旋转180°,所得抛物线的解析式是().A. B.C. D.8.现定义运算“★”,对于任意实数a、b,都有a★b= ,如:4★5= ,若x★2=6,则实数x的值是()A. 或B.4或C.4或D. 或29.如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数为()A.5n B.5n-1C.6n-1 D.2n2+110.如图,将边长为的正六边形A1 A2 A3 A4 A5 A6在直线上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为().A. B.C. D.二、填空题(共8小题,每小题3分,共24分,请将答案填在答题卡上).11.因式分解:.12.我市在临桂新区正在建设的广西桂林图书馆、桂林博物馆、桂林大剧院及文化广场,建成后总面积达163500平方米,将成为我市“文化立市”和文化产业大发展的新标志,把163500平方米用科学记数法可表示为平方米.13.某一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为.14.如图,已知菱形ABCD的边长为5,对角线AC,BD相交于点O,BD=6,则菱形ABCD的面积为.15.如图,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A、B两点,点P在优弧AB上,且与点A、B不重合,连结PA、PB.则∠APB的大小为°.(第15题)16.如图,等腰梯形ABCD中,AB∥DC,BE∥AD, 梯形ABCD的周长为26,DE=4,则△BEC的周长为.17.双曲线、在第一象限的图像如图,,过上的任意一点,作轴的平行线交于,交轴于,若,则的解析式是.18.若,,,… ;则的值为.(用含的代数式表示)三、解答题:本大题共10小题,共96分.请在题后空白区域内作答,解答时应写出文字说明、证明过程或演算步骤.19.(本题满分7分)计算:20.(本题满分7分)解二元一次方程组:21.(本题满分7分).如图,A、B是⊙O上的两点,∠AOB=120°,C是弧的中点,求证四边形OACB是菱形.22.(本题满分8分)如图,平面直角坐标系中,直线与x轴交于点A,与双曲线在第一象限内交于点B,BC⊥x轴于点C,OC=2AO.求双曲线的解析式.23.(本题满分10分)为落实校园“阳光体育”工程,某校计划购买篮球和排球共20个.已知篮球每个80元,排球每个60元.设购买篮球x 个,购买篮球和排球的总费用y元.(1)求y与x之间的函数关系式;(2)如果要求篮球的个数不少于排球个数的3倍,应如何购买,才能使总费用最少?最少费用是多少元?24.(本题满分8分)“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是.25.(本题满分10分)某市为争创全国文明卫生城,市政府对市区绿化工程投入的资金是万元,投入的资金是2420万元,且从到,两年间每年投入资金的年平均增长率相同. (1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在需投入多少万元?26.(本题满分12分)如图,在锐角△ABC中,AC是最短边;以AC中点O为圆心, AC长为半径作⊙O,交BC于E,过O 作OD∥BC交⊙O于D,连结AE、AD、DC.(1)求证:D是的中点;(2)求证:∠DAO =∠B +∠BAD;(3)若,且AC=4,求CF的长.27.(本题满分13分)四边形ABCD是矩形,点P是直线AD与BC外的任意一点,连接PA、PB、PC、PD.请解答下列问题:(1)如图(1),当点P在线段BC的垂直平分线MN上(对角线AC与BD的交点Q除外)时,证明△PAC≌△PDB;(2)如图(2),当点P在矩形ABCD内部时,求证:PA2+PC2=PB2+PD2;(3)若矩形ABCD在平面直角坐标系xoy中,点B的坐标为(1,1),点D的坐标为(5,3),如图(3)所示,设△PBC 的面积为y,△PAD的面积为x,求y与x之间的函数关系式.28.(本题满分14分)已知二次函数的图象如图.(1)求它的对称轴与轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与轴,轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.南通市初三数学下学期期中联考试卷(含答案解析)参考答案及评分标准:证明:(1)∵AC是⊙O的直径∴AE⊥BC …………1分∵OD∥BC∴AE⊥OD …………2分∴D是的中点…………3分(2)方法一:如图,延长OD交AB于G,则OG∥BC …4分∴∠AGD=∠B∵∠ADO=∠BAD+∠AGD …………5分又∵OA=OD∴∠DAO=∠ADO∴∠DAO=∠B +∠BAD …………6分方法二:如图,延长AD交BC于H …4分则∠ADO=∠AHC∵∠AHC=∠B +∠BAD …………5分∴∠ADO =∠B +∠BAD又∵OA=OD∴∠DAO=∠B +∠BAD …………6分(3)∵AO=OC ∴∵ ∴ …………7分∵∠ACD=∠FCE ∠ADC=∠FEC=90°∴△ACD∽△FCE …………………8分∴ 即: …………10分∴CF=2 …………12分27.(1)证明:作BC的中垂线MN,在MN上取点P,连接PA、PB、PC、PD,如图(1)所示,∵MN是BC的中垂线,所以有PA=PD,PC=PB,又四边形ABCD是矩形,∴AC=DB∴△PAC≌△PDB(SSS)……………3分(2)证明:过点P作KG//BC ,如图(2)∵四边形ABCD是矩形,∴AB⊥BC,DC⊥BC∴AB⊥KG,DC⊥KG,∴在Rt△PAK中,PA2=AK2+PK2同理,PC2=CG2+PG2 ;PB2= BK2+ PK2,PD2=+DG2+PG2PA2+PC2= AK2+PK2+ CG2+PG2,,PB2+ PD2= BK2+ PK2+DG2+PG2AB⊥KG,DC⊥KG,AD⊥AB ,可证得四边形ADGK是矩形,∴AK=DG,同理CG=BK ,∴AK2=DG2,CG2=BK2∴PA2+PC2=PB2+PD2 ……………6分(3)∵点B的坐标为(1,1),点D的坐标为(5,3)∴BC=4,AB=2 ∴ =4×2=8作直线HI垂直BC于点I,交AD于点H①当点P在直线AD与BC之间时即x+y=4,因而y与x的函数关系式为y=4-x (8)分②当点P在直线AD上方时,即y -x =4,因而y与x的函数关系式为y=4+x (10)分③当点P在直线BC下方时,即x - y =4,因而y与x的函数关系式为y=x-4 ……………12分28.(本题满分14分)解: (1)由得…………2分∴D(3,0)…………4分(2)方法一:如图1, 设平移后的抛物线的解析式为…………5分则C OC=令即得…………6分∴A ,B∴ ………7分……………………8分即:得 (舍去) ……………9分∴抛物线的解析式为……………10分方法二:∴顶点坐标设抛物线向上平移h个单位则得到 ,顶点坐标……………………5分∴平移后的抛物线: ……………………6分当时,∴ A B ……………………7分∵∠ACB=90° ∴△AOC∽△COB∴ OA?OB……………………8分解得, …………9分∴平移后的抛物线: …………10分(3)方法一:如图2, 由抛物线的解析式可得A(-2 ,0),B(8,0) ,C(4,0) ,M …………11分过C、M作直线,连结CD,过M作MH垂直y轴于H则在Rt△COD中,CD= =AD∴点C在⊙D上…………………12分……13分∴△CDM是直角三角形,∴CD⊥CM∴直线CM与⊙D相切…………14分方法二:如图3, 由抛物线的解析式可得A(-2 ,0),B(8,0) ,C(4,0) ,M …………11分作直线CM,过D作DE⊥CM于E, 过M作MH垂直y轴于H 则 ,由勾股定理得∵DM∥OC∴∠MCH=∠EMD∴Rt△CMH∽Rt△DME …………12分∴ 得…………13分由(2)知∴⊙D的半径为5本文由一线教师精心整理/word可编辑∴直线CM与⊙D相切…………14分11 / 11。
江苏省南通市通州区2024届中考联考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是()A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为22.如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③3.由五个相同的立方体搭成的几何体如图所示,则它的左视图是( )A.B.C.D.4.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是()A.43B.35C.53D.345.如图,半径为1的圆O1与半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是()A.1 B.2 C.3 D.46.下列等式正确的是()A.x3﹣x2=x B.a3÷a3=aC.231(2)(2)2-÷-=-D.(﹣7)4÷(﹣7)2=﹣727.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁8.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A.(2017,0)B.(2017,12)C.(2018,3)D.(2018,0)9.点A、C为半径是4的圆周上两点,点B为AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为()A.7或22B.7或23C.26或22D.26或2310.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=2x(x>0)的图象上,则△OAB的面积等于()A.2 B.3 C. 4 D.6二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是_____.12.若m、n 是方程x2+2018x﹣1=0 的两个根,则m2n+mn2﹣mn=_________.13.对于函数y= 2x,当函数y﹤-3时,自变量x的取值范围是____________ .14.已知点(﹣1,m)、(2,n )在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a____0(用“>”或“<”连接).15.如图,A、B是双曲线y=kx上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若D为OB的中点,△ADO的面积为3,则k的值为_____.16.如图,已知点A是反比例函数2yx=-的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为______.三、解答题(共8题,共72分)17.(8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.①若该公司当月卖出3部汽车,则每部汽车的进价为万元;②如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)18.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:此次共调查了名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.19.(8分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A、B、C、D,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为,图①中的a的值为;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.20.(8分)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.求证:AB=DC;试判断△OEF的形状,并说明理由.21.(8分)如图,在矩形ABCD中,AB═2,3,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB 是否平分∠AEC ,并说明理由;(3)如图③,在(2)的条件下,连接EP 并廷长交AB 的廷长线于点F ,连接AP ,不添加辅助线,△PFB 能否由都经过P 点的两次变换与△PAE 组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)22.(10分)计算:2cos30°+27-33--(12)-2 23.(12分)如图1,在直角梯形ABCD 中,动点P 从B 点出发,沿B→C→D→A 匀速运动,设点P 运动的路程为x ,△ABP 的面积为y ,图象如图2所示.(1)在这个变化中,自变量、因变量分别是 、 ;(2)当点P 运动的路程x =4时,△ABP 的面积为y = ;(3)求AB 的长和梯形ABCD 的面积.24.如图,在平面直角坐标系中,圆M 经过原点O ,直线364y x =--与x 轴、y 轴分别相交于A ,B 两点.(1)求出A ,B 两点的坐标;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在圆M 上,开口向下,且经过点B ,求此抛物线的函数解析式;(3)设(2)中的抛物线交轴于D 、E 两点,在抛物线上是否存在点P ,使得S △PDE =110S △ABC ?若存在,请求出点P 的坐标;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A,B、D错误;故选C.考点:方差;加权平均数;中位数;众数.2、D【解题分析】分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【题目详解】分两种情况讨论:①当点P顺时针旋转时,BP2增加到2,再降到02,图象③符合;②当点P逆时针旋转时,BP2降到0,再增加到22,图象①符合.故答案为①或③.故选D.【题目点拨】本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.3、D【解题分析】找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中.【题目详解】解:从正面看第一层是二个正方形,第二层是左边一个正方形.故选A.【题目点拨】本题考查了简单组合体的三视图的知识,解题的关键是了解主视图是由主视方向看到的平面图形,属于基础题,难度不大.4、D【解题分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.【题目详解】∵CD是AB边上的中线,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=6384 BCAC==,∴tan∠ACD的值34.故选D.【题目点拨】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.5、C【解题分析】分析:过O1、O2作直线,以O1O2上一点为圆心作一半径为2的圆,将这个圆从左侧与圆O1、圆O2同时外切的位置(即圆O3)开始向右平移,观察图形,并结合三个圆的半径进行分析即可得到符合要求的圆的个数.详解:如下图,(1)当半径为2的圆同时和圆O1、圆O2外切时,该圆在圆O3的位置;(2)当半径为2的圆和圆O1、圆O2都内切时,该圆在圆O4的位置;(3)当半径为2的圆和圆O1外切,而和圆O2内切时,该圆在圆O5的位置;综上所述,符合要求的半径为2的圆共有3个.故选C.点睛:保持圆O1、圆O2的位置不动,以直线O1O2上一个点为圆心作一个半径为2的圆,观察其从左至右平移过程中与圆O1、圆O2的位置关系,结合三个圆的半径大小即可得到本题所求答案.6、C【解题分析】直接利用同底数幂的乘除运算法则以及有理数的乘方运算法则分别计算得出答案.【题目详解】解:A、x3-x2,无法计算,故此选项错误;B、a3÷a3=1,故此选项错误;C、(-2)2÷(-2)3=-12,正确;D、(-7)4÷(-7)2=72,故此选项错误;故选C.【题目点拨】此题主要考查了同底数幂的乘除运算以及有理数的乘方运算,正确掌握相关运算法则是解题关键.7、A【解题分析】根据方差的概念进行解答即可.【题目详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【题目点拨】本题考查了方差,解题的关键是掌握方差的定义进行解题.8、C【解题分析】本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为2,纵坐标为3,点F滚动7次时的横坐标为8,纵坐标为3,所以点F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.【题目详解】.解:∵正六边形ABCDEF一共有6条边,即6次一循环;∴2017÷6=336余1,∴点F滚动1次时的横坐标为2,纵坐标为3,点F滚动7次时的横坐标为8,纵坐标为3,∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,∴点F滚动2107次时的横坐标为2017+1=2018,纵坐标为3,∴点F滚动2107次时的坐标为(2018,3),故选C.【题目点拨】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型.9、C【解题分析】过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=12OB=2,如图②,BD=6,求得OD、OE、DE的长,连接OD,根据勾股定理得到结论.【题目详解】过B作直径,连接AC交AO于E,∵点B为AC的中点,∴BD⊥AC,如图①,∵点D恰在该圆直径上,D为OB的中点,∴BD=12×4=2,∴OD=OB-BD=2,∵四边形ABCD是菱形,∴DE=12BD=1,∴OE=1+2=3,连接OC,∵CE=2222=43=7OC OE--,在Rt△DEC中,由勾股定理得:DC=2222=(7)1=22CE DE++;如图②,OD=2,BD=4+2=6,DE=12BD=3,OE=3-2=1,由勾股定理得:2222=41=15OC OE--2222=3(15)=26DE CE++.故选C.【题目点拨】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.10、B【解题分析】作BD⊥x轴于D,CE⊥x轴于E,∴BD∥CE,∴CE AE AC BD AD AB==,∵OC是△OAB的中线,∴12 CE AE ACBD AD AB===,设CE=x,则BD=2x,∴C的横坐标为2x,B的横坐标为1x,∴OD=1x,OE=2x,∴DE=OE-OD=2x﹣1x=1x,∴AE=DE=1x,∴OA=OE+AE=213x x x +=,∴S△OAB=12OA•BD=12×32xx⨯=1.故选B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、(2n﹣1,2n﹣1).【解题分析】解:∵y=x-1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,∴B n坐标(2n-1,2n-1).故答案为(2n-1,2n-1).12、1【解题分析】根据根与系数的关系得到m+n=﹣2018,mn=﹣1,把m2n+mm2﹣mn分解因式得到mn(m+n﹣1),然后利用整体代入的方法计算.【题目详解】解:∵m、n 是方程x2+2018x﹣1=0 的两个根,则原式=mn(m+n﹣1)=﹣1×(﹣2018﹣1)=﹣1×(﹣1)=1,故答案为:1.【题目点拨】本题考查了根与系数的关系,如果一元二次方程ax2+bx+c=0 的两根分别为与,则解题时要注意这两个关系的合理应用.13、-23<x<0【解题分析】根据反比例函数的性质:y随x的增大而减小去解答. 【题目详解】解:函数y= 2x 中,y 随x 的增大而减小,当函数y ﹤-3时 223? x 3x -∴- 又函数y= 2x中,x 0≠ 203x ∴-<< 故答案为:-23<x<0. 【题目点拨】此题重点考察学生对反比例函数性质的理解,熟练掌握反比例函数性质是解题的关键.14、>;【解题分析】∵2y ax 2ax 1=--=a(x-1)2-a-1,∴抛物线对称轴为:x=1,由抛物线的对称性,点(-1,m )、(2,n )在二次函数2y ax 2ax 1=--的图像上,∵|−1−1|>|2−1|,且m >n ,∴a>0.故答案为>15、1.【解题分析】过点B 作BE ⊥x 轴于点E ,根据D 为OB 的中点可知CD 是△OBE 的中位线,即CD=BE ,设A (x ,),则B (2x ,),故CD=,AD=﹣,再由△ADO 的面积为1求出k 的值即可得出结论.解:如图所示,过点B 作BE ⊥x 轴于点E ,∵D 为OB 的中点,∴CD 是△OBE 的中位线,即CD=BE .设A(x,),则B(2x,),CD=,AD=﹣,∵△ADO的面积为1,∴AD•OC=3,(﹣)•x=3,解得k=1,故答案为1.16、2 yx =【解题分析】∵点A是反比例函数2yx=-的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO与△ODB中,∵∠ACO=∠ODB,∠CAO=∠BOD,AO=BO,∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),∵mn=﹣2,∴n(﹣m)=2,∴点B所在图象的函数表达式为2yx =,故答案为:2yx =.三、解答题(共8题,共72分)17、解:(1)22.1.(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:21-[27-0.1(x-1)]=(0.1x+0.9)(万元),当0≤x≤10,根据题意,得x·(0.1x+0.9)+0.3x=12,整理,得x2+14x-120=0,解这个方程,得x1=-20(不合题意,舍去),x2=2.当x>10时,根据题意,得x·(0.1x+0.9)+x=12,整理,得x2+19x-120=0,解这个方程,得x1=-24(不合题意,舍去),x2=3.∵3<10,∴x2=3舍去.答:要卖出2部汽车.【解题分析】一元二次方程的应用.(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2=22.1.,(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.18、(1)200;(2)见解析;(3)126°;(4)240人.【解题分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数【题目详解】(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:24100×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.【题目点拨】此题考查扇形统计图和条形统计图,看懂图中数据是解题关键19、(1)50、2;(2)平均数是7.11;众数是1;中位数是1.【解题分析】(1)根据A等级人数及其百分比可得总人数,用C等级人数除以总人数可得a的值;(2)根据平均数、众数、中位数的定义计算可得.【题目详解】(1)本次抽查测试的学生人数为14÷21%=50人,a%=1250×100%=2%,即a=2.故答案为50、2;(2)观察条形统计图,平均数为1492081274650⨯+⨯+⨯+⨯=7.11.∵在这组数据中,1出现了20次,出现的次数最多,∴这组数据的众数是1.∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,∴882+=1,∴这组数据的中位数是1.【题目点拨】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.20、(1)证明略(2)等腰三角形,理由略【解题分析】证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)△OEF 为等腰三角形理由如下:∵△ABF ≌△DCE ,∴∠AFB=∠DEC .∴OE=OF .∴△OEF 为等腰三角形.21、(1)作图见解析;(2)EB 是平分∠AEC ,理由见解析; (3)△PFB 能由都经过P 点的两次变换与△PAE 组成一个等腰三角形,变换的方法为:将△BPF 绕点B 顺时针旋转120°和△EPA 重合,①沿PF 折叠,②沿AE 折叠.【解题分析】【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;(2)先求出DE=CE=1,进而判断出△ADE ≌△BCE ,得出∠AED=∠BEC ,再用锐角三角函数求出∠AED ,即可得出结论;(3)先判断出△AEP ≌△FBP ,即可得出结论.【题目详解】(1)依题意作出图形如图①所示;(2)EB 是平分∠AEC ,理由:∵四边形ABCD 是矩形,∴∠C=∠D=90°,CD=AB=2,3,∵点E 是CD 的中点,∴DE=CE=12CD=1, 在△ADE 和△BCE 中,90AD BC C D DE CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ADE ≌△BCE ,∴∠AED=∠BEC ,在Rt△ADE中,AD=3,DE=1,∴tan∠AED=ADDE=3,∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,∴BE平分∠AEC;(3)∵BP=2CP,BC=3=,∴323在Rt△CEP中,tan∠CEP=CPCE3∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在Rt△ABP中,tan∠BAP=BPAB3∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∴△AEP≌△FBP,∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.【题目点拨】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP≌△△FBP是解本题的关键.22、37【解题分析】根据实数的计算,先把各数化简,再进行合并即可.【题目详解】原式=234+-7【题目点拨】此题主要考查实数的计算,解题的关键是熟知特殊三角函数的化简与二次根式的运算.23、(1)x ,y ;(2)2;(3)AB =8,梯形ABCD 的面积=1.【解题分析】(1)依据点P 运动的路程为x ,△ABP 的面积为y ,即可得到自变量和因变量;(2)依据函数图象,即可得到点P 运动的路程x =4时,△ABP 的面积;(3)根据图象得出BC 的长,以及此时三角形ABP 面积,利用三角形面积公式求出AB 的长即可;由函数图象得出DC 的长,利用梯形面积公式求出梯形ABCD 面积即可.【题目详解】(1)∵点P 运动的路程为x ,△ABP 的面积为y ,∴自变量为x ,因变量为y .故答案为x ,y ;(2)由图可得:当点P 运动的路程x =4时,△ABP 的面积为y =2.故答案为2; (3)根据图象得:BC =4,此时△ABP 为2,∴12AB •BC =2,即12×AB ×4=2,解得:AB =8; 由图象得:DC =9﹣4=5,则S 梯形ABCD =12×BC ×(DC +AB )=12×4×(5+8)=1. 【题目点拨】本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.24、(1)A (﹣8,0),B (0,﹣6);(2)21462y x x =---;(3)存在.P 点坐标为(﹣,-1)或(﹣4,-1)或(﹣,1)或(﹣4,1)时,使得110PDE ABC S S ∆∆=. 【解题分析】分析:(1)令已知的直线的解析式中x=0,可求出B 点坐标,令y=0,可求出A 点坐标;(2)根据A 、B 的坐标易得到M 点坐标,若抛物线的顶点C 在⊙M 上,那么C 点必为抛物线对称轴与⊙O 的交点;根据A 、B 的坐标可求出AB 的长,进而可得到⊙M 的半径及C 点的坐标,再用待定系数法求解即可;(3)在(2)中已经求得了C 点坐标,即可得到AC 、BC 的长;由圆周角定理:∠ ACB=90°,所以此题可根据两直角三角形的对应直角边的不同来求出不同的P 点坐标.本题解析:(1)对于直线364y x =--,当0x =时,6y =-;当0y =时, 所以A (﹣8,0),B (0,﹣6);(2)在Rt △AOB 中,,∵∠AOB=90°,∴AB 为⊙M 的直径,∴点M 为AB 的中点,M (﹣4,﹣3),∵MC ∥y 轴,MC=5,∴C (﹣4,2),设抛物线的解析式为y=a(x+4)²+2, 把B (0,﹣6)代入得16a+2=﹣6,解得a=12-, ∴抛物线的解析式为21(4)2y x =-+ ,即21462y x x =---; (3)存在.当y=0时,21(4)22y x =-++ ,解得x ,=﹣2,x ,=﹣6, ∴D (﹣6,0),E (﹣2,0),18202ABC ACM BCM S S S CM ∆∆∆=+=⨯⨯=, 设P (t ,2142t t ---6), ∵110PDE ABC S S ∆∆= ∴211(26)4622t t -+---=110⨯20, 即|21462t t ---|=1,当21462t t ---=-1,解得14t =-,24t =-,此时P 点坐标为(﹣,-1)或(﹣4,-1);当214612t t ---=时 ,解得1t =﹣,2t =﹣4﹣;此时P 点坐标为(﹣,1)或(﹣4,1).综上所述,P点坐标为(﹣6,-1)或(﹣46,-1)或(﹣2,1)或(﹣42,1)时,使得110PDE ABCS S∆∆=.点睛:本题考查了二次函数的综合应用及顶点式求二次函数的解析式和一元二次方程的解法,本题的综合性较强,注意分类讨论的思想应用.。
九年级数学南通试卷上册【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a√32. 下列函数中,哪个函数在其定义域内是增函数?()A. y = -x^2B. y = x^3C. y = 1/xD. y = -2x3. 若一个三角形的两边长分别为3和4,那么第三边的长度可能是()。
A. 1B. 5C. 6D. 74. 下列数列中,哪个数列是等差数列?()A. 1, 3, 5, 7, 9B. 2, 4, 8, 16, 32C. 1, 4, 9, 16, 25D. 1, 2, 4, 8, 165. 若一个圆的半径为r,则它的周长为()。
A. 2rB. 2πrC. πr^2D. 4r二、判断题(每题1分,共5分)1. 两个负数相乘的结果是正数。
()2. 方程x^2 5x + 6 = 0的解是x = 2和x = 3。
()3. 若一个三角形的两个内角分别为30°和60°,则它是等边三角形。
()4. 任何数乘以0的结果都是0。
()5. 两个正方形的面积相等,则它们的边长也相等。
()三、填空题(每题1分,共5分)1. 若一个正方形的边长为4,则它的面积为______。
2. 下列函数中,哪个函数在其定义域内是减函数?y = ______。
3. 若一个三角形的两边长分别为5和12,那么第三边的长度可能是______。
4. 下列数列中,哪个数列是等比数列?______5. 若一个圆的半径为3,则它的面积为______。
四、简答题(每题2分,共10分)1. 解释什么是等差数列。
2. 解释什么是等比数列。
3. 解释什么是正比例函数。
4. 解释什么是反比例函数。
5. 解释什么是勾股定理。
五、应用题(每题2分,共10分)1. 一个正方形的边长为6,求它的对角线长。
2. 解方程x^2 7x + 10 = 0。
2019-2020学年九年级(上)期中数学试卷一.选择题(共10小题)1.下列方程中,是关于x的一元二次方程的为()A.x+y=3 B.3x+y2=2 C.2x﹣x2=3 D.x(x2﹣2)=0 2.方程x2﹣3x=0解为()A.x=0 B.x=3 C.x=0或x=3 D.x=0且x=3 3.用配方法解方程x2﹣2x﹣4=0,配方正确的是()A.(x﹣1)2=3 B.(x﹣1)2=4 C.(x﹣1)2=5 D.(x+1)2=3 4.已知点A与⊙O在同一平面内,⊙O的半径是3,且点A到圆心O的距离是4,则点A与⊙O的位置关系是()A.点A在⊙O外B.点A在⊙O内C.点A在⊙O上D.不能确定5.下列说法正确的是()A.直径是弦,弦是直径B.圆有无数条对称轴C.无论过圆内哪一点,都只能作一条直径D.度数相等的弧是等弧6.已知,则等于()A.B.C.D.7.如图,在⊙O中,AB为弦,OC⊥AB,垂足为点C,若OA=5,OC=3,则弦AB长为()A.4 B.6 C.8 D.108.如图,AD⊥BC于D,CE⊥AB于E,交AD于F,则图中相似三角形的对数是()A.3对B.4对C.5对D.6对9.如图,在⊙O中,弦AB、CD相交于点E,且AB=CD,∠BED=α(0°<α<180°).有下列结论:①∠BOD=α,②∠OAB=90°﹣α,③∠ABC=.其中一定成立的个数为()A.3个B.2个C.1个D.0个10.如图,在△ABC中,∠ACB=90°,AC=4,BC=3,P是AC上的一点,PH⊥AB于点H,以PH为直径作⊙O,当CH与PB的交点落在⊙O上时,AP的值为()A.B.C.2 D.3二.填空题(共8小题)11.把方程3x2+x=5x﹣2整理成一元二次方程的一般形式为.12.若关于x的一元二次方程x2+kx﹣3=0有一个根是2,则k的值为.13.某县2014年的GDP是250亿元,要使2016年的GDP达到360亿元,求这两年该县GDP 年平均增长率.设年平均增长率为x,可列方程.14.两个相似多边形的面积比是9:16,其中较小多边形周长为36cm,则较大多边形周长为.15.如图,在平行四边形ABCD中,点E在BC上,,则的值为.16.如图,已知⊙O是△ABC的外接圆,连接OA,若∠B=65°,则∠OAC=.17.如图,△ABC是⊙O的内接三角形,D是的中点,BD交AC于点E,请找出一个与△BDC相似的三角形:.(写出一个即可)18.如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为.三.解答题(共10小题)19.解方程(1)x2﹣2x﹣2=0(2)(x﹣5)2﹣x+5=020.已知关于x的方程x2+8x+12﹣a=0有两个不相等的实数根.(1)求a的取值范围;(2)当a取满足条件的最小整数时,求出方程的解.21.如图,在△ABC中,BC的垂直平分线分别交BC、AC于点D、E,BE交AD于点F,AB=AD.求证:△FDB∽△ABC.22.如图,AB是⊙O的直径,C、D为⊙O上的点,且AD平分∠CAB,作DE⊥AB于点E.(1)求证:AC∥OD;(2)若OE=4,求AC的长.23.在四边形ABCD中,∠B=∠C=90°,若AB=4,BC=4,CD=1,问:在BC上是否存在点P,使得AP⊥PD?若存在,求出BP的长;若不存在,请说明理由.24.如图,△ABC中,AB=AC.(1)用无刻度的直尺和圆规作△ABC的外接圆;(保留画图痕迹)(2)若AB=10,BC=16,求△ABC的外接圆半径.25.如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A开始沿射线AC向点C以2cm/s的速度移动,与此同时,点Q从点C开始沿边CB向点B以1cm/s的速度移动.如果P、Q分别从A、C同时出发,运动的时间为ts,当点Q运动到点B时,两点停止运动.(1)当点P在线段AC上运动时,P、C两点之间的距离cm.(用含t的代数式表示)(2)在运动的过程中,是否存在某一时刻,使得△PQC的面积是△ABC面积的.若存在,求t的值;若不存在,说明理由.26.某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.该产品在第x周(x为正整数,且1≤x≤8)个销售周期的销售价格为y元,y与x之间满足如图所示的一次函数.(1)求y与x之间的函数关系;(2)产品在第x个销售周期的销售数量为p万台,p与x之间满足:.已知在某个销售周期的销售收入是16000万元,求此时该产品的销售价格是多少元?27.如图,AB为⊙O的直径,点C、D都在⊙O上,且CD平分∠ACB,交AB于点E.(1)求证:∠ABD=∠BCD;(2)若DE=13,AE=17,求⊙O的半径;(3)DF⊥AC于点F,试探究线段AF、DF、BC之间的数量关系,并说明理由.28.如图,已知A、B两点的坐标分别为(4,0)和(0,3),动点P从点A出发,以每秒2个长度单位的速度沿AO向O运动,在点P出发的同时,动直线EF从x轴出发,以每秒1个长度单位沿y轴方向向上平移,分别与y轴、线段AB交于EP、FP.设运动时间为ts(0<t≤2).(1)在运动过程中,是否存在某一时刻t,使得△EOP与△AOB相似?若存在,请求出所有符合题意的t的值;若不存在,请说明理由.(2)若△PEF是等腰三角形,求t的值.参考答案与试题解析一.选择题(共10小题)1.下列方程中,是关于x的一元二次方程的为()A.x+y=3 B.3x+y2=2 C.2x﹣x2=3 D.x(x2﹣2)=0 【分析】只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程,根据一元二次方程的定义判断即可.【解答】解:A、是二元一次方程,故本选项不合题意;B、不是一元二次方程,故本选项不合题意;C、是一元二次方程,故本选项符合题意;D、是一元三次方程,故本选项不合题意;故选:C.2.方程x2﹣3x=0解为()A.x=0 B.x=3 C.x=0或x=3 D.x=0且x=3 【分析】直接提取公因式x即可得到(x﹣3)=0,再解一元一次方程即可.【解答】解:∵方程x2﹣3x=0,∴x(x﹣3)=0,∴原方程的解为0或3,故选:C.3.用配方法解方程x2﹣2x﹣4=0,配方正确的是()A.(x﹣1)2=3 B.(x﹣1)2=4 C.(x﹣1)2=5 D.(x+1)2=3 【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用,把左边配成完全平方式,右边化为常数.【解答】解:∵x2﹣2x﹣4=0∴x2﹣2x=4∴x2﹣2x+1=4+1∴(x﹣1)2=5故选:C.4.已知点A与⊙O在同一平面内,⊙O的半径是3,且点A到圆心O的距离是4,则点A与⊙O的位置关系是()A.点A在⊙O外B.点A在⊙O内C.点A在⊙O上D.不能确定【分析】点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.据此求解可得.【解答】解:∵点A到圆心O的距离d=4,⊙O的半径r=3,∴d>r,则点A在⊙O外,故选:A.5.下列说法正确的是()A.直径是弦,弦是直径B.圆有无数条对称轴C.无论过圆内哪一点,都只能作一条直径D.度数相等的弧是等弧【分析】利用圆的有关性质分别判断后及可确定正确的选项.【解答】解:A、直径是弦,但弦不一定是直径,故错误,不符合题意;B、圆有无数条直径,故正确,符合题意;C、过圆心有无数条直径,故错误,不符合题意;D、完全重合的弧是等弧,故错误,不符合题意;故选:B.6.已知,则等于()A.B.C.D.【分析】依据比例的性质,即可得到2x=3y,进而得出=.【解答】解:∵,∴5x=3x+3y,即2x=3y,∴=,故选:A.7.如图,在⊙O中,AB为弦,OC⊥AB,垂足为点C,若OA=5,OC=3,则弦AB长为()A.4 B.6 C.8 D.10【分析】在Rt△OAC中,根据勾股定理易求得AC的长;由垂径定理知AB=2AC,由此可求得AB的值.【解答】解:Rt△OAC中,OA=5,OC=3;根据勾股定理,得:AC===4;所以AB=2AC=8,故选:C.8.如图,AD⊥BC于D,CE⊥AB于E,交AD于F,则图中相似三角形的对数是()A.3对B.4对C.5对D.6对【分析】由AD⊥BC,CE⊥AB,可得∠AEF=∠ADC=∠BEC=∠ABD=90°,然后由∠A,∠B是公共角,∠AFE与∠CFD是公共角,可证得△AEF∽△CEF∽△ADB∽△CEB.【解答】解:∵AD⊥BC,CE⊥AB,∴∠AEF=∠ADC=∠BEC=∠ABD=90°,∵∠AFE=∠CFD,∴△AFE∽△CFD,∵∠B是公共角,∴△ABD∽△CBE,∵∠A是公共角,∴△AEF∽△ADB,∴△AEF∽△CDF∽△ADB∽△CEB.∴图中相似三角形的对数是6对.故选:D.9.如图,在⊙O中,弦AB、CD相交于点E,且AB=CD,∠BED=α(0°<α<180°).有下列结论:①∠BOD=α,②∠OAB=90°﹣α,③∠ABC=.其中一定成立的个数为()A.3个B.2个C.1个D.0个【分析】连接OC,设OB交CD于K.利用全等三角形的性质以及圆周角定理一一判断,即可得出答案.【解答】解:如图,连接OC,设OB交CD于K.在△AOB和△COD中,,∴△AOB≌△COD(SSS),∴∠CDO=∠OBA,∵∠DKO=∠BKE,∴∠DOK=∠BEK=α,即∠BOD=α,故①正确,不妨设,∠OAB=90°﹣α,∵OA=OB,∴∠OAB=∠OBA,∴∠OBE+∠BEK=90°,∴∠BKE=90°,∴OB⊥CD,显然不可能成立,故②错误,∵AB=CD,∴,∴,∴∠ABC=∠DOB=α,故③正确.故选:B.10.如图,在△ABC中,∠ACB=90°,AC=4,BC=3,P是AC上的一点,PH⊥AB于点H,以PH为直径作⊙O,当CH与PB的交点落在⊙O上时,AP的值为()A.B.C.2 D.3【分析】当CH与PB的交点D落在⊙O上时,因为HP是直径,可以判定BP⊥HC,再证BP垂直平分HC,求出BH的长度,最后证△AHP∽△ACB,即可求出AP的长度.【解答】解:如图所示,当CH与PB的交点D落在⊙O上时,∵HP是直径,∴∠HDP=90°,∴BP⊥HC,∴∠HDP=∠BDH=90°,又∵∠PHD+∠BHD=90°,∠BHD+∠HBD=90°,∴∠PHD=∠HBD,∴△PHD∽△HBD,∴=,∴HD2=PD•BD,同理可证CD2=PD•BD,∴HD=CD,∴BD垂直平分CH,∴BH=BC=3,在Rt△ACB中,AB==5,∴AH=5﹣3=2,∵∠A=∠A,∠AHP=∠ACB=90°,∴△AHP∽△ACB,∴,即,∴AP=,故选:A.二.填空题(共8小题)11.把方程3x2+x=5x﹣2整理成一元二次方程的一般形式为3x2﹣4x+2=0 .【分析】方程移项合并,整理为一般形式即可.【解答】解:方程整理得:3x2﹣4x+2=0,故答案为:3x2﹣4x+2=012.若关于x的一元二次方程x2+kx﹣3=0有一个根是2,则k的值为﹣.【分析】根据一元二次方程的解的定义,将x=2代入一元二次方程,列出关于k的方程,然后解关于k的方程即可.【解答】解:∵2是关于x的一元二次方程x2+kx﹣3=0的一个根,∴x=2满足关于x的一元二次方程x2+kx﹣3=0,∴22+2k﹣3=0,即2k+1=0,解得k=﹣.故答案是:﹣.13.某县2014年的GDP是250亿元,要使2016年的GDP达到360亿元,求这两年该县GDP 年平均增长率.设年平均增长率为x,可列方程250(1+x)2=360 .【分析】2016年的GDP360=2014年的GDP250×(1+年平均增长率)2,把相关数值代入即可.【解答】解:2015年的GDP为250×(1+x),2014年的GDP为250×(1+x)(1+x)=250×(1+x)2,即所列的方程为250(1+x)2=360,故答案是:250(1+x)2=360.14.两个相似多边形的面积比是9:16,其中较小多边形周长为36cm,则较大多边形周长为48cm.【分析】根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.【解答】解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:3.相似多边形周长的比等于相似比,因而设大多边形的周长为xcm,则有=,解得:x=48.大多边形的周长为48cm.故答案为48cm.15.如图,在平行四边形ABCD中,点E在BC上,,则的值为.【分析】根据平行四边形的性质和相似三角形的判定和性质定理即可得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵,∴=,∵AD∥BE,∴△BEF∽△DAF,∴==,故答案为:.16.如图,已知⊙O是△ABC的外接圆,连接OA,若∠B=65°,则∠OAC=25°.【分析】如图,连接OC.利用圆周角定理求出∠AOC,再利用等腰三角形的性质解决问题即可.【解答】解:如图,连接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠AOC=2∠ABC=130°,∴∠OAC=(180°﹣∠AOC)=25°,故答案为25°.17.如图,△ABC是⊙O的内接三角形,D是的中点,BD交AC于点E,请找出一个与△BDC相似的三角形:△CDE(答案不唯一).(写出一个即可)【分析】先根据D是的中点得出=,故可得出∠DBC=∠ACD,故可得出结论.【解答】解:∵D是的中点,∴=,∴∠DBC=∠ACD.∵∠D为公共角,∴△CDE∽△BDC.∵∠ABE=∠DBC,∠A=∠D,∴△BAE∽△BDC.∴与△BDC相似的三角形的有:△CDE,△ABE.故答案为:△CDE(答案不唯一).18.如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为2﹣2 .【分析】以AC为直径作圆O′,连接BO′、BC.在点P移动的过程中,点D在以AC为直径的圆上运动,当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D,利用勾股定理求出BO′即可解决问题.【解答】解:如图,以AC为直径作圆O′,连接BO′、BC,O'D,∵CD⊥AP,∴∠ADC=90°,∴在点P移动的过程中,点D在以AC为直径的圆上运动,∵AB是直径,∴∠ACB=90°,在Rt△ABC中,∵AB=8,∠CAB=60°,∴BC=AB•sin60°=4,AC=AB•cos60°=4,∴AO'=CO'=2,∴BO'===2,∵O′D+BD≥O′B,∴当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D=2﹣2,故答案为2﹣2.三.解答题(共10小题)19.解方程(1)x2﹣2x﹣2=0(2)(x﹣5)2﹣x+5=0【分析】(1)根据配方法即可求出答案;(2)根据因式分解法即可求出答案;【解答】解:(1)∵x2﹣2x﹣2=0,∴x2﹣2x+1=3,∴(x﹣1)2=3,∴x=1±;(2)∵(x﹣5)2﹣x+5=0,∴(x﹣5)(x﹣5﹣1)=0,∴x=5或x=6;20.已知关于x的方程x2+8x+12﹣a=0有两个不相等的实数根.(1)求a的取值范围;(2)当a取满足条件的最小整数时,求出方程的解.【分析】(1)根据方程有两个不相等的实数根根,则根的判别式△>0,建立关于a的不等式,求出a的取值范围;(2)得到a的最小整数,利用因式分解法解一元二次方程即可.【解答】解:(1)∵一元二次方程x2+8x+12﹣a=0有两个不相等的实数根,∴△=82﹣4(12﹣a)=4a+16>0,∴a>﹣4;(2)a满足条件的最小值为a=﹣3,此时方程为x2+8x+15=0,解得x1=﹣3,x2=﹣5.21.如图,在△ABC中,BC的垂直平分线分别交BC、AC于点D、E,BE交AD于点F,AB=AD.求证:△FDB∽△ABC.【分析】证明∠EBC=∠ECB和∠ABC=∠ADB,即可得出结论.【解答】证明:∵DE是BC垂直平分线,∴BE=CE,∴∠EBC=∠ECB,∵AB=AD,∴∠ABC=∠ADB,∴△FDB∽△ABC.22.如图,AB是⊙O的直径,C、D为⊙O上的点,且AD平分∠CAB,作DE⊥AB于点E.(1)求证:AC∥OD;(2)若OE=4,求AC的长.【分析】(1)根据角平分线的性质可得出∠OAC=2∠OAD,由圆周角定理可得出∠BOD=2∠BAD,进而可得出∠BOD=∠OAC,利用“同位角相等,两直线平行”即可证出AC∥OD;(2)作OF⊥AC于点F,由垂径定理可得出AF=AC,由AC∥OD可得出∠DOE=∠OAF,结合∠DEO=∠OFA、DO=OA即可证出△DOE≌△OAF(AAS),再根据全等三角形的性质可得出OE=AF=AC,即可得出答案.【解答】(1)证明:∵AD平分∠CAB,∴∠OAC=2∠OAD.∵∠BOD=2∠BAD,∴∠BOD=∠OAC,∴AC∥OD.(2)解:作OF⊥AC于点F,如图所示:则AF=AC,∵AC∥OD,∴∠DOE=∠OAF.在△DOE和△OAF中,,∴△DOE≌△OAF(AAS),∴OE=AF=AC,∴AC=2OE=8.23.在四边形ABCD中,∠B=∠C=90°,若AB=4,BC=4,CD=1,问:在BC上是否存在点P,使得AP⊥PD?若存在,求出BP的长;若不存在,请说明理由.【分析】利用△ABP∽△PCD得出∠BPA+∠DPC=90°,即∠APD=90°,求出BP的长即可.【解答】解:存在.如图所示,AP⊥PD,∴∠APD=90°,∴∠APB+∠DPC=90°,又∵DC⊥BC,∴∠DCP=90°,∴∠PDC+∠DPC=90°,∴∠APB=∠PDC,∵∠B=∠C,∴△ABP∽△PCD,设BP=x,则CP=4﹣x,∴=,即4:(4﹣x)=x:1,即x(4﹣x)=4,则x2﹣4x+4=0,即(x﹣2)2=0,解得x=2,即BP=2.24.如图,△ABC中,AB=AC.(1)用无刻度的直尺和圆规作△ABC的外接圆;(保留画图痕迹)(2)若AB=10,BC=16,求△ABC的外接圆半径.【分析】(1)用尺规作边AB和AC的垂直平分线,两线相交于点O进而作出△ABC的外接圆;(2)根据垂径定理和勾股定理即可求出外接圆的半径.【解答】解:(1)如图所示即为△ABC的外接圆;(2)连接OB、OA,交BC于点D,∵OB=OA,∴AD⊥BC,根据垂径定理,得BD=DC=BC=8,∠ODB=90°,在Rt△BOD中,根据勾股定理,得OB2=OD2+BD2,即OB2=(OB﹣6)2+82解得OB=.答:△ABC的外接圆半径为.25.如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A开始沿射线AC向点C以2cm/s的速度移动,与此同时,点Q从点C开始沿边CB向点B以1cm/s的速度移动.如果P、Q分别从A、C同时出发,运动的时间为ts,当点Q运动到点B时,两点停止运动.(1)当点P在线段AC上运动时,P、C两点之间的距离(6﹣2t)cm.(用含t的代数式表示)(2)在运动的过程中,是否存在某一时刻,使得△PQC的面积是△ABC面积的.若存在,求t的值;若不存在,说明理由.【分析】(1)依据AC=6cm,AP=2t,即可得到:当点P在线段AC上运动时,P、C两点之间的距离(6﹣2t)cm;(2)分两种情况:当0<t<3时,当3<t≤8时,分别依据△PQC的面积是△ABC面积的,列方程求解即可.【解答】解:(1)∵△ABC中,∠C=90°,AB=10cm,BC=8cm,∴Rt△ABC中,AC=6cm,又∵点P从点A开始沿射线AC向点C以2cm/s的速度移动,∴AP=2t,∴当点P在线段AC上运动时,P、C两点之间的距离(6﹣2t)cm;故答案为:(6﹣2t);(2)△ABC的面积为S△ABC=×6×8=24,①当0<t<3时,PC=6﹣2t,QC=t,∴S△PCQ=PC×QC=t(6﹣2t),∴t(6﹣2t)=4,即t2﹣3t+4=0,∵△=b2﹣4ac=﹣7<0,∴该一元二次方程无实数根,∴该范围下不存在;②当3<t≤8时,PC=2t﹣6,QC=t,∴S△PCQ=PC×QC=t(2t﹣6),∴t(2t﹣6)=4,即t2﹣3t﹣4=0,解得t=4或﹣1(舍去),综上所述,存在,当t=4时,△PQC的面积是△ABC面积的.26.某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.该产品在第x周(x为正整数,且1≤x≤8)个销售周期的销售价格为y元,y与x之间满足如图所示的一次函数.(1)求y与x之间的函数关系;(2)产品在第x个销售周期的销售数量为p万台,p与x之间满足:.已知在某个销售周期的销售收入是16000万元,求此时该产品的销售价格是多少元?【分析】(1)根据函数图象上的两点坐标,用待定系数法求出函数的解析式便可;(2)根据销售收入=销售单价×销售数量和.据此列出方程并解答.【解答】解:(1)设函数的解析式为:y=kx+b(k≠0),由图象可得,,解得,,∴y与x之间的关系式:y=﹣500x+7500;(2)根据题意得,(﹣500x+7500)(x+)=16000,解得x=7,此时y=﹣500×7+7500=4000(元)答:此时该产品每台的销售价格是4000元.27.如图,AB为⊙O的直径,点C、D都在⊙O上,且CD平分∠ACB,交AB于点E.(1)求证:∠ABD=∠BCD;(2)若DE=13,AE=17,求⊙O的半径;(3)DF⊥AC于点F,试探究线段AF、DF、BC之间的数量关系,并说明理由.【分析】(1)由CD平分∠ACB,根据圆周角定理,可得∠ACD=∠BCD=∠ABD;(2)过点E作EM⊥AD于点M,求出AD长,则AB=AD,可求出AB;则答案得出;(3)过点D作DN⊥CB,交CB的延长线于点N,可证明△DAF≌△DBN,则AF=BN,DF=CF则结论AF+BC=DF可得出.【解答】(1)证明:∵CD平分∠ACB,∴∠ACD=∠BCD,∵∠ACD=∠ABD,∴∠ABD=∠BCD;(2)解:如图1,过点E作EM⊥AD于点M,∵AB为⊙O的直径,∴∠ACB=90°,∠ADB=90°,∴∠DAB=∠BCD=45°,∵AE=17,∴ME=AM=17×=,∵DE=13,∴DM===,∴AD=AM+DM=12,∴AB=AD=12=24,∴AO==12;(3)AF+BC=DF.理由如下:如图2,过点D作DN⊥CB,交CB的延长线于点N,∵四边形DACB内接于圆,∴∠DBN=∠DAF,∵DF⊥AC,DN⊥CB,CD平分∠ACB,∴∠AFD=∠DNB=90°,DF=DN,∴△DAF≌△DBN(AAS),∴AF=BN,CF=CN,∵∠FCD=45°,∴DF=CF,∴CN=BN+BC=AF+BC=DF.即AF+BC=DF.28.如图,已知A、B两点的坐标分别为(4,0)和(0,3),动点P从点A出发,以每秒2个长度单位的速度沿AO向O运动,在点P出发的同时,动直线EF从x轴出发,以每秒1个长度单位沿y轴方向向上平移,分别与y轴、线段AB交于EP、FP.设运动时间为ts(0<t≤2).(1)在运动过程中,是否存在某一时刻t,使得△EOP与△AOB相似?若存在,请求出所有符合题意的t的值;若不存在,请说明理由.(2)若△PEF是等腰三角形,求t的值.【分析】(1)分两种情况,由相似三角形的性质得出比例式,即可得出答案;(2)分三种情况,根据等腰三角形的性质、相似三角形的性质和勾股定理进行解答即可.【解答】解:(1)存在,理由如下:∵A、B两点的坐标分别为(4,0)和(0,3),∴OA=4,OB=3,当∠EPO=∠BAO时,△EOP∽△BOA,∴=,即=,解得:t=;当∠EPO=∠ABO时,△EOP∽△AOB,∴=,即=,解得:t=;综上所述,存在某一时刻t,使得△EOP与△AOB相似,t的值为s或s;(2)分三种情况:①当PE=PF时,如图1所示:作PG⊥EF于G,如图1所示:则PG=EG=OP,∴EF=2EG=2OP,∵EF∥OA,∴△BEF∽△BOA,∴=,即=,解得:EF=(3﹣t),∴(3﹣t)=2(4﹣2t),解得:t=;②当EP=EF时,t2+(4﹣2t)2=[(3﹣t)]2,整理得:29t2+24t=0,解得:t=0(不合题意舍去)或t=﹣(不合题意舍去);③当FE=FP时,作FG⊥OA于G,如图3所示:则OG=EF=(3﹣t),PG=OG﹣OP=(3﹣t)﹣(4﹣2t),∵FE2=FP2,∴[(3﹣t)]2=t2+[(3﹣t)﹣(4﹣2t)]2,解得:t=16+4(不合题意舍去)或t=16﹣4;综上所述,若△PEF是等腰三角形,t的值为s或(16﹣4)s.。
九年级数学南通试卷答案专业课原理概述部分一、选择题1. 下列哪个数是素数?()A. 21B. 37C. 39D. 272. 一个等腰三角形的底边长为8cm,腰长为5cm,那么这个三角形的周长是多少?()A. 18cmB. 20cmC. 22cmD. 24cm3. 如果一个正方形的对角线长是10cm,那么它的面积是多少平方厘米?()A. 50B. 100C. 200D. 50√24. 下列哪个数是最大的?()A. -5B. 0C. 3D. -25. 一个圆的半径增加了50%,它的面积增加了多少?()A. 50%B. 100%C. 125%D. 150%二、判断题1. 任何两个奇数相加的和都是偶数。
()2. 一个三角形的两边之和一定大于第三边。
()3. 任何数乘以0都等于0。
()4. 如果一个数的平方是25,那么这个数一定是5。
()5. 1的立方根是1。
()三、填空题1. 如果一个数的平方是49,那么这个数是______。
2. 一个直角三角形的两个直角边长分别是3cm和4cm,那么它的斜边长是______cm。
3. 5的立方是______。
4. 如果一个圆的半径是r,那么它的面积是______。
5. 下列各数中,______是最小的质数。
四、简答题1. 解释什么是等差数列,并给出一个例子。
2. 简述勾股定理的内容。
3. 什么是算术平方根?如何计算一个数的算术平方根?4. 解释什么是比例,并给出一个例子。
5. 什么是因式分解?请给出一个多项式因式分解的例子。
五、应用题1. 一个长方形的长是10cm,宽是5cm,求它的面积。
2. 一个等差数列的第一项是3,公差是2,求第10项的值。
3. 如果一个圆的直径是14cm,求它的周长。
4. 解方程:2x + 5 = 15。
5. 一个正方形的对角线长是10cm,求它的面积。
六、分析题1. 已知一个等差数列的前三项分别是2,5,8,求这个数列的通项公式。
2. 一个圆的半径增加了20%,求它的面积增加了多少百分比。
南通初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 3.1416B. √2C. 0.33333D. 22/7答案:B2. 一个数的平方等于它本身,这个数是:A. 0B. 1C. -1D. 0或1答案:D3. 一次函数y=2x+3的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C4. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 20厘米D. 15厘米答案:A5. 一个等腰三角形的两边长分别为3cm和5cm,那么它的周长是:A. 11cmB. 13cmC. 16cmD. 无法确定答案:B6. 一个数的倒数是它本身,这个数是:A. 1B. -1C. 0D. 1或-1答案:A7. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 非负数D. 非正数答案:C8. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是:A. 24立方厘米B. 12立方厘米C. 8立方厘米D. 6立方厘米答案:A9. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 0或1答案:D10. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0、1或-1答案:D二、填空题(每题4分,共20分)1. 一个数的立方等于27,这个数是______。
答案:32. 一个数的平方等于9,这个数是______。
答案:±33. 一个直角三角形,如果一个锐角是30°,那么另一个锐角是______。
答案:60°4. 一个数的相反数是-5,这个数是______。
答案:55. 一个数的绝对值是5,这个数是______。
答案:±5三、解答题(每题10分,共50分)1. 已知一个直角三角形的两条直角边长分别为6cm和8cm,求斜边的长度。
答案:斜边长度为10cm。
2. 一个长方体的长、宽、高分别是5cm、4cm、3cm,求它的体积。
2008年江苏省南通六校联考九年级数学试题本卷共150分,考试时间为120分钟.第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分.下列各题的四个选项中,只有一个选项是符合题意的)1.下列计算中,正确的是 ( )A .a 10÷a 5=a 2B .3a -2a=aC .a 3-a 3=1D .(a 2)3=a 52.下面右边的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的主视图是 ( )3.若两圆的半径分别为5cm 和3cm ,圆心距为1cm ,则这两个圆的位置关系是( )A .外切B .相交C .内切D .内含 4.五名同学在“爱心捐助”活动中,捐款数额为4,5,6,7,5(单位:元),这组数据的中位数是 ( ) A .6 B .5 C .5.5 D . 6.5 5.如图5,点P 为反比例函数2y x=上的一动点,作PD x ⊥轴于点D ,POD △的面积为k ,则函数1y kx =-的图象为 ( )6.将矩形ABCD 沿着对角线折叠,使C 落在C ’处,BC ’ 交AD 于E ,下列结论不一定成立的是 ( ) A .AD=BC ′ B.EDB EBD ∠=∠C .ABE ∆∽CBD ∆ D.EDAEABE =∠sin10题 第Ⅱ卷(132分)二、填空题(本大题共12小题,第7~16小题每小题3分,第17~18小题每小题4分,共38分.把正确答案填在题中的横线上)7.分解因式:2812ax ax a -+= . 8.函数12-+=x x y 中自变量x 的取值范围是 . 9.在“2008北京”奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为4.581亿帕的钢材,那么用科学计数法(保留两位有效数字)表示为_____________________帕.10.如图,AB 是O 的弦,OC AB ⊥于C,若AB =,1cm OC =,则O 的半径长为____________cm .11.某公司成立3年以来,积极向国家上缴利税,由第一年的200万元增长到800万元,则平均每年增长的百分数是__________________.12.钟表的轴心到分针针端的长为5cm ,那么经过40分钟,分针针端转过的弧长是_______________________ cm.13.已知电流在一定时间段内正常通过电子元件的概率是0.5,如图所示,求A 、B 之间电流能够正常通过的概率是__________________.第13题图14.如图,O 为矩形ABCD 的中心,将直角三角板的直角顶点与O 点重合,转动三角 板使两直角边始终与BC 、AB 相交,交点分别为M 、N ,如果AB =4,AD =6, OM =x ,ON =y ,则y •与x 的关系是___________. 15.一个叫巴尔末的中学教师成功地从光谱数据59,1216,2125,3236,…中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按照这种规律,写出第n (n ≥1)个数据是____________________.16.线段OA 绕原点O 逆时针旋转90︒到OA '的位置,若A点坐标为,则点A '的坐标为____________________.17.已知二次函数图像2(0)y ax bx c a =++≠向左平移2个单位,向下平移1个单位后得到二次函数22y x x =+的图像,则二次函数2(0)y ax bx c a =++≠的解析式为____________________.18.二次函数x x y 2212+-=,当x 时,0<y ;且y 随x 的增大而减小.三.解答题 (本大题共10小题,共94分 ,其中19题每小题5分,共10分.)第14图题19.(1)45sin 60)︒-︒+(2)化简:22(1)(2)4422a a a a a a a a a +-⎡⎤-÷⎢⎥-+--⎣⎦.20.(本题满分7分)解不等式组12221132x x x x -⎧->⎪⎪⎨-+⎪<⎪⎩,.并写出该不等式组的整数解.21.(本题满分7分)已知一元二次方程2(3)210m x mx m -+++=有两个不相等的实数根,并且这两个根又不互为相反数.(1)求m 的取值范围;(2)当m 在取值范围内取最小偶数时,求方程的根.22.(本题满分8分)一游客从某塔顶A望地面C、D两点的俯角分别为45︒、30︒,若C、D与塔底B共线,CD =200米,求塔高AB?23.(本题满分7分)如图,一个可以自由转动的均匀转盘被分成了4等份,每份内均标有数字.小明和小亮商定了一个游戏,规则如下:①连续转动转盘两次;②将两次转盘停止后指针所指区域内的数字相乘(当指针恰好停在分格线上时视为无效,重转);③若数字之积为奇数,则小明赢;若数字之积为偶数,则小亮赢.请用“列表”或“画树状图”的方法分析一下,这个游戏对双方公平吗?并说明理由.若不公平请你重新制定一个使双方公平的游戏规则.24.(本题满分8分)已知,如图,在Rt△ABC中,∠ACB=900,AD平分∠CAB交BC于点D,过点C作CE⊥CAD ,垂足为E ,CE 的延长线交AB 于点F ,过点E 作EG ∥BC 交AB 于点G ,16=⋅AD AE ,54=AB .(1)求AC 的长,(2)求EG 的长.25.(本题满分10分)如图,在ABC △中,AB AC =,以AB 为直径的圆O 交BC 于点D ,交AC 于点E ,过点D 作DF AC ⊥,垂足为F . (1)求证:DF 为O 的切线;(2)若过A 点且与BC 平行的直线交BE 的延长线于G 点,连结CG .当ABC △是等边三角形时,求AGC ∠的度数.26.(本题满分10分)善于不断改进数学学习方法的小慧发现,对解数学题进行回顾反思,学习效果更好.某一天自G (第25题) D习课小慧有20分钟时间可用于数学学习.假设小慧用于解题的时间x (单位:分钟)与学习收益量y 的关系如图1所示,用于回顾反思的时间x (单位:分钟)与学习收益量y 的关系如图2所示(其中OA 是抛物线的一部分,A 为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求小慧解题的学习收益量y 与用于解题的时间x 之间的函数关系式; (2)求小慧回顾反思的学习收益量y 与用于回顾反思的时间x 的函数关系式; (3)问小慧如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?27.(本题满分12分)如图,矩形ABCD 中,边长AB=3,4tan 3ABD ∠=,两动点E 、F 分别从顶点B 、C 同时开始以相同速度在边BC 、CD 上运动,与△BCF 相应的△EGH 在运动过程中始终保持△EGH ≌△BCF ,对应边EG =BC ,B 、E 、C 、G 在同一直线上,DE 与BF 交于点O . (1)若BE =1,求DH 的长;(2)当E 点在BC 边上的什么位置时,△BOE 与△DOF 的面积相等?(第26题图1)(第26题图2)AEHBCG(3)延长DH 交BC 的延长线于M ,当E 点在BC 边上的什么位置时,DM=DE ?28.(本题满分15分)如图, ABO ∆中,O 是坐标原点,A (,B (.⑴①以原点O 为位似中心,将ABO ∆放大,使变换后得到的CDO ∆与ABO ∆的位似比为2:1, 且D 在第一象限内,则C 点坐标为( _______,_______); D 点坐标为( _______,_______ ); ②将DOC ∆沿OD 折叠,点C 落在第一象限的E 处,画出图形,并求出点E 的坐标; ⑵若抛物线2y ax bx =+ (0)a ≠过⑴中的E 、C 两点,求抛物线的解析式;⑶在⑵中的抛物线EC 段(不包括C 、E 点)上是否存在一点M ,使得四边形MEOC 面积最大?若存在,求出这个最大值,并求出此时M 点的坐标;若不存在,请说明理由。
y 第27题图参考答案一、选择题:1.B ,2.D ,3.D ,4.B ,5.A ,6.C. 二、填空题:7.(2)(6)a x x --,8. 2x 1x ≥-≠且,9. 84.610⨯,10. 2,11.100%, 12. 203π , 13. 34, 14.3xy=2, 15. 22(n +2)(2)4n +-,16. ( 17.221y x x =-+, 18. 4x >.三、解答题: 19.⑴ 2; ⑵ 1.20.不等式⑴的解为3x >,不等式⑵的解为5x <,所以不等式组的解集为3<x<5. 不等式组的整数解为4.21. 解:(1) 3m >-且0m ≠ (2)1222x x ==A第28题图22. ⑴CD 在AB 同侧AB=)1001;⑵CD 在AB 异侧AB=)100123. ⑴不公平;改“数字相乘”为“数字相加”,“和”改为“积”,其它规则可行也对. 24. AC=4,EG=4.25. ⑴证明略;⑵60︒. 26. 解:(1)由图1,设y kx =.当1x =时,2y =, 解得2k =,2(020)y x x =∴≤≤.(2)由图2,当05x <≤时,设2(5)25y a x =-+.当0x =时,0y =,02525a =+∴. 1a =-∴.2(5)25y x =--+∴,即210y x x =-+.当510x ≤≤时,25y =.因此210(05)25(510)x x x y x ⎧-+<⎪=⎨⎪⎩,.≤ ≤≤(3)设小慧用于回顾反思的时间为(010)x x ≤≤分钟, 学习收益总量为y ,则她用于解题的时间为(20)x -分钟.当05x <≤时,222102(20)840(4)56y x x x x x x =-++-=-++=--+.当4x =时,56y =最大.当510x ≤≤时,252(20)652y x x =+-=-.y 随x 的增大而减小,因此当5x =时,55y =最大.综上,当4x =时,56y =最大,此时2016x -=.答:小慧用于回顾反思的时间为4分钟,用于解题的时间为16分钟时,学习收益总量最大.27.⑴DE =⑵127BE =;⑶5BE =-28.⑴C D ;⑵E⑶2y x =-+⑷存在点9)4M ,使四边形MEOCEOF MEC MECMEOC S S S S ∆∆∆=+=四边形设2(,)M k k -+,过点M 作y 轴的平行线交EC 于点N可求得EC的解析式为:6y =+,则(,6)N k +∴229(236)2MEC S k k ∆=-++-=+-∴当2k =MEC S ∆=即9)4M 时,MEOC S ==四边形。