当前位置:文档之家› 矩阵的秩 学年论文

矩阵的秩 学年论文

矩阵的秩 学年论文
矩阵的秩 学年论文

学院数学与信息科学学院

专业信息与计算科学

年级2009级

姓名张晓函

论文题目矩阵的秩

指导教师彭玉成职称讲师成绩

2009年5月25日

学年论文成绩评定表

目录

摘要 (1)

关键词 (1)

Abstract (1)

Keywords (1)

引言 (1)

1预备知识 (1)

2矩阵的秩的性质 (2)

3矩阵秩的计算 (4)

4矩阵秩的应用 (8)

5结束语 (9)

参考文献 (9)

矩阵的秩

学生姓名:张晓函学号:20095034048

数学与信息科学学院信息与计算科学系

指导教师:彭玉成职称:讲师

摘要:本文是关于求一个数字矩阵的秩的方法的初步探究.归纳总结了求矩阵秩的常用方法.

关键词:矩阵;初等变换;子式;极大线性无关组

Matrix rank

Abstract:This article is about for a digital matrix rank of the preliminary inquiry method. Summarizes the commonly used method of matrix rank

Keywords: matrix,elementary transformation, son,great linearly independent groups

前言

矩阵是贯穿线性代数的一块重要内容.而对矩阵秩的探究是我们学习矩阵的一个重要部分.也是我们判断线性方程组解的情形的重要手段.下面就来具体讨论、探究数字矩阵秩的求解方法.

1.预备知识

定义1.1:矩阵A中不为零的子式的最高阶数称为A的秩.记作()

r A

定义1.2:矩阵的行秩就是矩阵行向量的秩;矩阵的列秩就是矩阵列向量的秩.

矩阵A中任意选定k行和k列,位于这些选定的行和列的交点定义1.3:在一个s n

上的2k个元素按原来的次序所组成k级行列式,称为A的一个k级子式.

定义1.4:向量组的极大线性无关组所含向量的个数称为这个向量组的秩.

2.矩阵的秩的性质

1)现在我们来研究矩阵的秩具有哪些性质,从而利用这些性质求矩阵的秩。

性质2.1矩阵的行秩与列秩相等.

证 设所讨论的矩阵为11121212221

2n n s s sn a a a a a a A a a a ?? ? ?= ? ??? , 而A 的行秩=r ,列秩=1r .为了证明r 1r =,我们先来证明1r r ≤.

以12,,,s ααα 代表矩阵A 行向量组,无妨设12,,,r ααα 是它的一个极大线性无关组.因为12,,,r ααα 是线性无关的,所以方程

110r r x x αα++=

只有零解,也就是说,齐次线性方程组

111212112222211220

00

r r r r

n n rn r a x a x a x a x a x a x a x a x a x +++=??+++=??

?

?+++=? 只有零解.则这个方程组的系数矩阵

112111222212r r n n rn a a a a a a a a a ??

?

?

?

?

??

的行秩≥r .因之在它的行向量中可以找到r 个线性无关的,譬如说,向量组

()11211,,,r a a a ,()12222,,,r a a a ,…,()12,,,r r rr a a a

线性无关.那么在这些向量上添加几个分量后所得的向量组

()112111,,,,,r s a a a a ,()122222,,,,,r s a a a a ,…,()12,,,,,r r rr sr a a a a

也线性无关.它们正好是矩阵A 的r 个列向量,有它们线性无关性可知矩阵A 的列秩1r 至少是r ,也就是说1r r ≥.

用同样的方法可证1r r ≥.这样,我们就证明了行秩与列秩相等. 性质2.2 初等行(列)变换不改变矩阵的秩

证 矩阵的初等行变换是把行向量组变成一个与之等价的向量组,而我们知道,等价的向量组都有相同的秩.因此,初等变换不改变举证的秩.同样的,初等列变换也不改变举证的秩.

定理2.1一矩阵的秩是r 的充分必要条件是矩阵中有一个r 级子式不为零,同时所有

1r +级子式全为零.

3. 矩阵的秩的计算

3.1方法一 初等变换

分析:由性质2可知,矩阵经初等变换后,其秩不变.因此,可用初等变换求矩阵的秩.

用初等变换求矩阵的秩,级可一用初等行变换,也可用初等列变换,也可交替进行把替个矩阵A 化为阶梯行矩阵.由于阶梯形矩阵的秩就是其非零行(列)数的个数,所以化得的阶梯形矩阵中非零行(列)数就是矩阵A 的秩. 3.1.1 已知

11

2

1

0224203061103

001A -??

?

-

?

= ?-

?

??,求()r A . 解:对矩阵A 进行初等行变换化阶梯形

112

1

0112

1

0112

1

02242000

00003

04130611

03041

00012303

0010300000000A ---??????

?

?

?

--

? ? ?

=→→ ? ? ?---

?

?

?

?????? 因为非零行的个数为3,故()r A 3=.

注:此方法使用方便,不需要计算行列是,也不需要考察向量组的相关性,因此,是求秩最常用的方法. 3.2 方法二:计算子式法

分析:由定义1,矩阵的秩就是矩阵中不等于零的子式的最高阶数.根据这一定义,要求矩阵A 的秩,需计算行列式的各阶子式.从阶数最高的子式开始,一直找到不等于零的子是中阶数最大色一个子式.则这个子式的阶数就是矩阵A 的秩. 3.2.1 设

1121

0224203061121421A -??

?

-- ?

=

?

-

?

??

,求()r A .

解:因为A 只有4行,所以A 的每4阶子式都取遍A 的4行;又因为A 有5列,所以每次取出4列按原来的顺序组成的4阶子是共有45C 5=个,它们是

1121224

203061

21

4

2

--=-

11202240

030612

1

41

--=

111

02220

0301121

2

1

---=-

121

2420

0361124

2

1

-=-

121

02420

006111

4

2

1

---=-

所以A 的所有4阶子式都等于零,在考虑A 的3阶子式,有一个3阶子式

21

42006

11

o

-≠- 所以由定理1可知,()r A 3=. 3.3 方法三:综合法

综合使用初等变换和计算子式法秋菊在的秩的方法称为综合法.先对矩阵A 施行初等变换,将其化为比较简单的形式B (不必为阶梯形),然后用计算B 的子式的方法求出()()r A r B =.

3.3.1 求下列矩阵141268261042191776341353015206A ??

? ?= ? ???

的秩 解:

14126820

00006104219176104219177634176341353015206353015206A ???? ? ? ? ?=→ ? ? ? ????? 000006104219177634100001?? ?

?→ ? ???

B = 显然B 的所有4阶子式均为零,B 中有一个3阶子式不为零,故()()r A r B =. 3.4 方法四:求极大线性无关组法

因为秩()A =A 的行秩=A 的列秩,而由定义3可知,向量组的极大线性无关组所函向量的个数.所以,求矩阵A 的秩可转化为求A 的行向量或列向量的极大线性无关组所含向量的个数.

3.4.1 求下列矩阵61

5

7

14165

64112351846

21086A -??

?

-

?

= ?

-

?

--??的秩.

解 设A 的5个列向量依次为12345,,,,ααααα

()16,1,2,4α=- ()21,5,3,6α=- ()35,6,5,2α= ()47,4,1,10α=--- ()54,11,8,8α=

由于12,αα对应分量不成比例,故12,αα线性无关.

而321ααα=+, 412ααα=-, 5122ααα=+.故12,,αα是A 的列向量的极大线性无关组,所以秩()A 2=.

4 矩阵的秩的应用

矩阵的秩的应用很广泛,但由于目前所学知识的有限,现只讨论矩阵的秩在 齐次线性方程组中的应用.

1.1.1求解齐次线性方程组1234512345

1234534520243023302520x x x x x x x x x x x x x x x x x x ++++=??++++=??--++-=??+-=?

解 对系数矩阵A 进行初等行变换

1211

1243111213300252A ??

? ?=

?---

?-??121

1

10

01110

024200252??

?

-- ?

?

-

?

-??121

1

100111000600

0070?? ?

-- ?

?

?

??

121

1100111000100

0000?? ?

-- ?

→ ?

?

??

B =

得到同解的方程组的系数矩阵为B ,则有

()()3r A r B ==, 5n =, ()2n r A -=

故此方程组有两个自由未知量,选主元所在的未知量为独立未知量.即134,,x x x 为独立未知量,25,x x 为自由未知量.得到同解方程组

134********x x x x x x x x x ++=--??

-=??=?

取251,0x x ==和250,1x x ==得基础解系为

1(2,1,0,0,0)η=- , 2(2,0,1,0,1)η=-

于是 0Ax =的一般解为 1122k k ηηη=+(其中12,k k 为任意实数)

5结束语

通过对该部分知识的研究和总结,我对矩阵的求秩问题有了更深刻的认识.激发

了我对矩阵这部分知识的学习兴趣,同时我也认识到随着对知识的深入学习,在不久的将来,矩阵的秩将运用到更广泛的领域.

参考文献

[1]北京大学数学系几何与代数教研室前代数小组.高等代数(第三版)[M ].北京:高等教育出版

社,2003.

[2]张学元.线性代数能力试题题解.华中理工大学出版社[M].2003.

[3]俞正光.线性代数与空间解析几何学习指导:典型例题精析.北京:科学出版社[M].2003

《矩阵的秩的等式及不等式的证明》

摘要 矩阵的秩是矩阵的一个重要特征,它具有许多的重要性质.本文总结归纳出了有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,即从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.本文主要解决以下几个问题:用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;用线性空间的方法证明矩阵秩的等式和不等式问题;用向量组秩的理论证明矩阵秩的等式和不等式问题;用矩阵分块法证明秩的等式和不等式问题.

目录 第一章绪论 (1) 第二章预备知识 (2) 第三章用矩阵的秩的理论证明秩的等式和不等式 (3) 第四章用线性空间的理论证明秩的等式和不等式 (6) 第五章用向量组秩的理论证明秩的等式和不等式 (10) 第六章用矩阵分块法证明秩的等式和不等式 (15) 第七章小结 (23) 参考文献 (24) 致谢 (25)

第一章绪论 矩阵的秩是矩阵的一个重要特征,是矩阵理论中研究的一个重要内容,它具有许多的重要性质.研究矩阵的秩对于解决矩阵的很多问题具有重要意义.矩阵的秩的等式及不等式的证明对于学习矩阵也是重点和难点,初学者在做这方面的题目往往不知如何下手.笔者归纳了矩阵的秩的常见等式和不等式以及与之相关的一些结论,并从向量组、线性方程组、矩阵分块、矩阵初等变换等角度探索了多种证明方法,它有助于学习者加深对秩的理解和知识的运用,也方便教师教学. 目前对矩阵秩的研究已经比较成熟了,但是由于秩是矩阵论里的一个基本而重要的概念,它仍然有着重要的研究价值,有关它的论文时见报端.很多国内外的有关数学书籍杂志对矩阵的秩都有讲述,如苏育才、姜翠波、张跃辉在《矩阵论》(科学出版社、2006年5月出版)中较完整地给出了矩阵秩的理论.北京大学数学系前代数小组编写的《高等代数》(高等教育出版社,2003年7月出版)也介绍了秩的一些性质.但是对秩的等式及不等式的介绍都比较分散,不全面也没有系统化,不方便初学者全面掌握秩的性质.因此有必要对矩阵的秩的等式和不等式进行一个归总,便于学习和掌握. 本文通过查阅文献资料,总结归纳出有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.主要内容有:(1)用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;(2)用线性空间的方法证明矩阵秩的等式和不等式问题;(3)用向量组秩的理论证明矩阵秩的等式和不等式问题;(4)用矩阵分块法证明秩的等式和不等式问题.

矩阵的开题报告doc

矩阵的开题报告 篇一:矩阵变换及应用开题报告 鞍山师范学院 数学系 13届学生毕业设计(论文)开题报告 课题名称:浅谈矩阵的变换及其应用 学生姓名:李露露 专业:数学与应用数学 班级:10级1班 学号: 30 指导教师:裴银淑 XX年 12月 26日 一、选题意义 1、理论意义: 矩阵是数学中的一个重要内容,是线性代数核心。矩阵的变换是矩阵中一种 十分重要的运算,它在解线性方程组求逆矩阵及矩阵理论的探讨中都可起到 非常重要的作用。很多复杂、繁琐的问题经过变换都可以化为简单、易于解 决的问题。因此,矩阵变换是研究代数问题的一个重要工具。 2、现实意义:

矩阵变换在物理、力学、信号与信息处理、通信、电子、系统、控制、模式 识别、土木、电机、航空航天等众多学科中式最富创造性和灵活性,并起着 不可代替的作用。 二、论文综述 1、国内外有关研究的综述: 矩阵不仅是个数学学科,而且也是许多理工学科的重要数学工具,因此国内 外有许多有关于矩阵的研究。英国数学家西尔维斯特首先使用了“矩阵”一词, 他与矩阵论的创立者凯莱一起发展了行列式理论。1858年,凯莱发表了关于矩 阵的第一篇论文《矩阵论的研究报告》。自此以后,国内外有了许多关于矩阵的 研究。在张贤达所著的《矩阵分析与应用》一书中,就有关于矩阵变换的内容, 在第一章中有关于矩阵初等变换的内容,并有初等变换在矩阵方程中的应用,在 第四章中也提到了Householder变换和Givens旋转。美国著名的约翰斯.霍普金 斯大学的RogerA.Horn和威廉姆和玛丽学院的

CharlesR.Johnson联合编著的《矩 阵分析》也有关于矩阵变换的内容,此书主要涉及的是矩阵变换的应用。国内外 关于矩阵变换的研究都取得了很大的进展,为矩阵知识所涉及的各个领域都作出 了巨大贡献。 2 、本人对以上综述的评价: 矩阵理论一直都是各个学科的基本数学工具,矩阵变换是矩阵理论的基础, 近年来有许多关于矩阵变换的研究,这些研究将一些繁琐复杂的问题简单化,也 极大地推进和丰富了电子信息、航空航天等领域的发展,同时促进了更多的数学 家加入到研究矩阵变换的队伍中,这样就使得矩阵变换知识日渐完善,并应用到 更多的领域中去。 三、论文提纲 前言 (一)、矩阵初等变换及应用 1、矩阵初等变换的基本概念 2、初等变换在方程组中的应用 3、初等变换在向量组中的应用

关于某矩阵秩地证明

关于矩阵秩的证明 -----09数应鄢丽萍 中文摘要 在高等代数中,矩阵的秩是一个重要的概念。它是矩阵的一个数量特征,而且在初等变换下保持不变。关于矩阵秩的问题,通常转化为矩阵是否可逆,线性方程组的解的情况等来解决。 所谓矩阵的行秩就是指矩阵的行向量组的秩,矩阵的列秩就是矩阵的列向量组的秩,由于矩阵的行秩与列秩相等,故统称为矩阵的秩。向量组的秩就是向量组中极大线性无关组所含向量的个数。 关键词:初等变换向量组的秩极大线性无关组

约定用E 表示单位向量,A T 表示矩阵A 的转置,r(A)表示矩阵A 的秩。在涉及矩阵的秩时,以下几个简单的性质: (1) r(A)=r(A T ); (2) r(kA)=? ??=≠0 00 )(k k A r (3) 设A,B 分别为n ×m 与m ×s 矩阵,则 r(AB)≤min{r(A),r(B),n,m,s} (4) r(A)=n,当且仅当A ≠0 (5) r ???? ??B O O A =r(A)+r(B)≤r ??? ? ??B O C A (6) r(A-B)≤r(A)+r(B) 矩阵可以进行加法,数乘,乘法等运算,运算后的新矩阵的秩与原矩阵的秩有一定关系。

定理1:设A,B 为n ×n 阶矩阵,则r(A+B)≤r(A)+r(B) 证: 由初等变换可得 ???? ??B O O A →???? ??B A O A →???? ??+B B A O A 即???? ??E E O E ???? ??B O O A ???? ??E E O E =??? ? ??+B B A O A 由性质5可得 r ???? ??B O O A =r ??? ? ??+B B A O A 则有r(A)+r(B)≥r(A+B) 定理2(sylverster 公式)设A 为s ×n 阶矩阵,B 为n × m 阶矩阵,则有r(A)+r(B)-n ≤r(AB) 证:由初等变换可得 ???? ??O A B E n →???? ??-AB O B E n →???? ??-AB O O E n 即? ??? ??-s n E A O E ??? ? ??O A B E n ? ??? ? ?-m n E O B E =???? ??-AB O O E n 则r ???? ??O A B E n =r ??? ? ??-AB O O E n 即r(A)+r(B)-n ≤r(AB)

矩阵论解题步骤-期末考试题

1. 广义逆(必考类型) 假设s x n 矩阵A 的广义逆为G ,且A 可以满秩分解为A = BC ,A 的秩r(A) = r ,则B 为s x r 矩阵,C 为r x n 矩阵。则G 可表示为: H 1 1 C (CC )(B B)B H H H G --= 例题: 步骤:显然,A 要分解为BC ,必须知道A 的秩,故先对A 进行行化简成最简式 ,r(A)=2,故A 满秩分解为A=(3x2) (2x4)=BC.根据A 的最简式来决定B 和C ,B 由A 最简式中只有1的原列组成,C 由A 的最简式的非零首元行组成。 B = , C = ,H 11C (CC )(B B)B H H H A --+=,通过计算即可 得到A 的广义逆。(若B 、C 中有单位矩阵,那么A 的广义逆表达式可去掉矩阵) 性质: 2. 证明r(ABC)r(B)r(AB)+r(BC)+>=

比较重要的性质 (1) ABX=0与BX=0同解 r(AB)=r(B) (2) r(A)=r(H A A ) (3) r(A+B)<=r(A)+r(B) (4) r(AB)<=min[r(A),r(B)] (5) r(AB)>=r(A)+r(B)-n ,其中A=s x n ,B=n x t 步骤: 设r(B)=r ,B 的满秩分解为B=HK ,所以ABC=AHKC , r(ABC)=r(AHKC)>=r(AH)+r(KC)-r (性质(5)) AB=AHK ,故r(AB)<=r(AH),同理得r(BC)<=r(KC),(性质(4)) 从而r(ABC)>=r(AB)+r(BC)-r(B),原式得证 知识点: A . 秩为r 的s x n 矩阵A 必可分解为A=BC ,其中B=s x r ,C=r x n 。该分解称为A 的 满秩分解。 3. nxn 2n n 2V {X |AX ,X C }n X ==∈,证明:12=V n C V ⊕ 证明包含两部分,1)证明12V V ⊕是直和 等价于 证明1 2V {0}V = 2)证明12V n C V ?⊕,12V n C V ?⊕ 步骤:

2013年工程矩阵理论期末试题A卷

杭州电子科技大学研究生考试卷(A 卷) 课程名称: 工程矩阵理论 1. 在R 2?2 中,求矩阵A=a b c d ????? ?在基 12341001000000001001????????====???????????????? E E E E ,,,下的坐标. 2. 设R [x ]4是所有次数小于4的实系数多项式组成的线性空间,求多项式p (x ) = 1+2x 3在基 1,x -1,(x -1)2,(x -1)3下的坐标. 3. 设1V 和2V 是线性空间 V 的两个子空间。证明维数公式: 121212dim dim dim()dim()V V V V V V +=++ 4. 已知矩阵A 相似与矩阵B ,证明:trace(AB ) = trace(BA ). 5. 已知矩阵A = ??? ? ? ?????-311111002,(1)求多项式 2012()p λαλαλα=++使得 2012()At p A A A I e ααα=++= (2)说明多项式()p λ是二次多项式的理由 (3)利用(1) 的结果计算At e . 6. 利用初等变换把λ-矩阵 2 (1)0 00000(1)λλλλ+?????? +???? 化为 Smith 标准型。 7. 已知矩阵A = ???? ? ?????-00i 001i 10, (1)A 是对称矩阵还是反对称矩阵,或者都不是? (2)A 是Hermite 矩阵还是反Hermite 矩阵,或者都不是? (3)A 是正规矩阵吗?A 可对角化吗?A 可酉对角化吗? (4)求酉矩阵U 使U H AU 为对角矩阵.

矩阵的秩及其应用

山西师范大学本科毕业论文(设计) 矩阵的秩及其应用 姓名杨敏娜 院系数学与计算机科学学院专业数学与应用数学 班级11510102 学号1151010240 指导教师王栋 答辩日期 成绩

矩阵的秩及其应用 内容摘要 矩阵在高等代数的研究中占有极其重要的地位,矩阵的秩更是研究矩阵的一个重要纽带。通过对矩阵的秩的分析,对判断向量组的线性相关性,求其次线性方程组的基础解系,求解非其次线性方程组等等都有一定的意义和作用。 论文第一部分介绍矩阵的概念,一般性质及秩的求法,这对之后介绍秩的应用有重要的铺垫作用。第二部分再利用这些性质及定理解决向量组和线性方程组的有关问题。第三部分研究矩阵的秩在解析几何应用中,着重用于判断空间两直线的位置关系。在与特征值间的关系主要是计算一些复杂矩阵的值。最后将矩阵的秩推广到特征值和其他与向量组有关的向量空间的应用。 本文主要对矩阵的秩相关定义定理进行总结和证明,并将其运用到一些具体事例中。 【关键词】矩阵的秩向量组线性方程组特征值解析几何

The Rank of Matrix and the Application of the Rank of Matrix Abstract The matrix plays a very important role in the research on advanced algebra. The rank of matrix is an important link of matrix. The analysis of the rank of matrix determines the linear relation of vector group. And there are certain significance and role to solve some linear equations and non linear equations. First, the article introduces the concept of matrix, general nature and method for the rank of matrix, it plays an important role for the application of the rank. Second, use the properties and theorems of vector group to solve the problem of linear equations. Third, analysis the rank of matrix in geometry application, it focuses on the judgment of space position relationship of two lines. In the characteristics of value, it mainly calculates some complex matrix. Finally, the application of the rank of matrix is extended to Eigen value and other related vectors in vector space. This paper mainly summarizes the matrix rank and its related theorem, and applies it to some specific examples. 【Key Words】rank of matrix vector group linear equations characteristic value Analytic geometry

矩阵理论中的矩阵分析的实际应用论文

矩阵分析在同步捕获性能研究新应用 摘要:该文提出了一种利用概率转移矩阵计算捕获传输函数的方法,通过将以往分析方法中的流程图转换为概率转移矩阵,仅需知道一步转移概率矩阵,利用现代计算机编程语言(如MAPLE,MATLAB等)的符号运算功能,即可得到捕获系统的传输函数:通过对传输函数求导,可计算平均捕获时间。矩阵分析方法可完整地计算出捕获系统的传输函数,可弥补流程图方法在分析传统连续搜索捕获方案的传输函数时所忽略的项;可纠正流程图方法在分 析非连续搜索捕获方案的传输函数时所引起的误差。 关键词:CDMA;矩阵分析;传输函数;流程图;捕获 A Novel Acquisition Performance Evaluation Approach Based on Matrix Analysis Abstract:A novel acquisition performance analysis approach is proposed based on matrix analysis.Given the first step transition probability matrix,the transfer function of acquisition system can be obtained by utilizing the symbol operation function of computer programming such as MAPLE,MATLAB and so on,and the mean acquisition time can be computed by differentiating the transfer function.The transfer function of acquisition system can be computed perfectly by matrix analysis,it not only complements the items neglected in that of conventional serial acquisition scheme but also corrects the error items in that of nonconsecutive acquisition scheme.

矩阵论论文

西安理工大学 研究生课程论文 课程名称:矩阵论 任课教师:XXX 论文/研究报告题目:线性变换在 电路方程中的应用 完成日期:2014年11月5日学科:Xxxx 学号:XXXXXXX 姓名:XXX 成绩:

线性变换在电路方程中的应用 摘要:电路分析中的坐标变换和复杂绕组变压器分析中所用的变压器变换都是电路方程的线性变换。根据矩阵理论,对坐标变换和变压器变换进行了统一阐释。坐标变换本质是一个方阵和对角阵的相似变换,变压器变换的本质是新变量对旧变量的表示,当变换矩阵的逆阵等于它的转置(共轭转置)阵时,坐标变换和变压器变换数学表示是相同的。通过对电路方程系数矩阵和三角阵的相似变换,同时得到了三相 abc 坐标系和任意速度旋转两相 dq0 坐标系、瞬时值复数分量 120 坐标系、前进 - 后退 FB0 坐标系之间的变换矩阵。这有助于在更加基础的理论层面上揭示和理解电路方程线性变换的本质,也为提出电路方程线性变换的新类型提供了思路。 关键词:电路方程;线性变换;坐标变换;变压器变换 引言 在交流电机等电路分析中,常用的坐标变换是指三相静止 abc 坐标系任意速度旋转两相 d q坐标系、瞬时值复数分量 120 坐标系、 前进 - 后退 F B坐标系,以及它们对应的特殊坐标系的变量之间的 相互转换。电路方程坐标变换的主要目的是使电压、电流、磁链方程系数矩阵对角化和非时变化,从而简化数学模型,使分析和控制变得简单、准确、易行。还有一类电路方程变换,其目的是用旧变量表示出新变量,例如变压器中由原边变量利用变比变换而来的副边变量,把这类电路方程变换称为变压器变换。坐标变换已有很多文献进行了阐述,但这些阐述大都是基于物理概念的。变压器变换在复杂绕组变

矩阵秩的研究与应用毕业论文

百度文库-让每个人平等地提升自我 3 矩阵秩的研究与应用 [摘要]矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究的一个重要工具。矩阵理论是线性代数的主要组成部分,也是线性方程组的理论基础。而在矩阵的理论中,矩阵的秩是一个基本概念,也是矩阵最重要的数量特征之一,它在初等变换下是一个不变量。它反映矩阵固有特性的一个重要概念。矩阵一旦确定秩也就确定了。它是高等代数课程中的一个参考指标,其定义、性质、求法、应用等相关内容在高等代数中出现的极为频繁,作用较大。 本文首先介绍了矩阵秩的相关理论知识:即秩的几种不同定义,相关性质,以及矩阵秩的三种常见求法,并对三种求法做了一个简单的比较分析。后面着重介绍了矩阵秩的应用部分,主要是其在线性代数中的应用和解析几何上的应用。这里就不细说了,具体内容还得从文章中来了解。[1][2][3] [关键词]:矩阵的秩,定义,性质,求法,应用,高等代数。

百度文库-让每个人平等地提升自我 4 矩阵秩的研究与应用 1 前言 矩阵在高等代数理论中极其重要并且应用广泛,它是线性代数的核心,而矩阵的秩作为研究矩阵的一个重要工具,其秩的理论研究非常重要。更重要的是将它推广到实际应用中,那么我们目前在其应用方面的研究又达到了一个什么程度呢? 本文主要是对矩阵秩的应用方面的一个总结,让学者对其有个更清晰的认识,使后面的学者对矩阵的学习更轻松,更全面。矩阵方面的理论是非常重要的内容,历年来许多学者对它都有研究,而且其中的部分理论有了很广泛的应用,例如矩阵分析法在企业战略管理、营销活动、供应链管理技术、教学效率评价、射击训练效果评价等方面都起到举足轻重的作用;不仅在本文中的线性代数和解析几何中的理论上的应用,而且在其他领域上也有更实际贴切的应用。如在控制论中,矩阵的秩可用来确定线性系统是否为可控制的,或可观的;此外,矩阵的秩在教学中还有更广泛的应用,如在测量平差中的应用。 理论指导实践,所以我着重选择了矩阵秩在理论上的应用的部分来进行探讨,其意义更加广泛且深远。在前人研究的基础上,我主要是对其进行了一个归纳总结,并简单的说了些自己的感想,希望大家能够从中有所收获。

师生教学关系矩阵论

师生教学关系矩阵论

————————————————————————————————作者:————————————————————————————————日期:

师生教学关系矩阵论-中学语文论文 师生教学关系矩阵论 ■ 梁红松 教学活动中,师生关系主要为教学关系,它是教育教学生产关系的主要方面。改革教育教学生产关系,释放、提高教育教学生产力,应该是新课程的本质追求。重新定位师生教学关系成为新课程改革的关键。 受苏联教育教学理论的影响,再加传统教育思想的历史沉淀,主客对立统一观长期占统治地位:教师是教育教学的主体,学生是客体。这种观念高度重视教师,而对学生则严重忽略。教育教学的创新发展被束缚住了。 新时期,中西文教交流日益密切,欧美教育教学理论涌入中国,学生的主体地位被重新发现,形成了“学生为主体,教师为主导,训练为主线”的三主教学观。新课程的启动,更把学生的自主合作探究活动视为教学的生命线。 但是,改革的深入,改革的各种问题逼迫我们更加细致透彻地分析研究师生教学关系。 教学是师生的交流互动,是教师的教与学生的学的和谐交融。它是师生双方的活动,其结果与目的却在单方的学生:培育符合社会时代需求的“社会人”。人之初,只是具备“社会人”发展可能性的“动物人”,如不接受教育(包括家庭、学校、社会教育等),就会象印度狼人一样,只是徒具人形的动物,从这个意义上说,教育教学是马克思所说的人的自身生产的一部分。母亲只生了我的身,教育使我们成为真正的人。 教师与学生、教师的教与学生的学通过符合与体现教育教学目的的教育教学资源(如教材等)的中介,浑然融合为一个不可分割的整体——教育教学活动。教

矩阵理论2017-2018学年期末考试试题

矩阵理论2017-2018学年期末考试试题 ?、选择题 (每题5分,共25分) 1.下列命题错误的是(A)(B)若,且,则(C)设且,令,则的谱半径为1 (D)设为空间的任意?空间,则2.下列命题错误的是(A)若,则(B)若,则(C)若,则(D)设的奇异值分别为,,如果,则3.下列说法正确的是(A)若,则(B)若为收敛矩阵,则?定可逆 (C)矩阵函数对任何矩阵均有定义,?论A 为实矩阵还是复矩阵 (D)对任意?阵,均有4.下列选项中正确的是(A)且,则为收敛矩阵; (B)为正规矩阵,则(C),则(D)为的所有正奇异值,5.下列结论错误的是(A)若和分别是列满秩和?满秩矩阵,则(B)若矩阵为?满秩矩阵,则是正定矩阵(C)设为严格对?占优矩阵,,则的谱半径(D)任何可相似对?化的矩阵,皆可分解为幂等矩阵的加权和,即?、判断题(15分)(正确的打√,错误的打×) 1.若,且,,则 2.若且,则为到的值域上的正交投影 3.设都是可逆矩阵,且齐次线性?程组有?零解,为算?范数,则 4.,定义,则是上的范数 5.设矩阵的最?秩分解为,则当且仅当 ( ) (A ?B =?)H A H B H A ∈C n ×n =A A 2rank (A )=tr (A )μ∈C n μ=1μH H =E ?2μμH H ,V 1V 2V dim (+)=dim ()+dim () V 1V 2V 1V 2( ) =A ,=A A H A 2=A A +A =A A H A H (=(A m )+A +)m x ∈C n ∥x ≤∥x ≤∥x ∥∞∥2∥1 A , B ∈ C n ×n ≥≥?≥>0σ1σ2σn ≥≥?≥>0σ′1σ′2σ′ n >(i =1,2,?,n )σi σ′i ∥>∥A +∥2B +∥2 ( )A =????π000π001π????sinA =????0000000sin 10?? ??A E ?A e A A A ,B =e A e B e A +B ( )A ∈C n ×n ∥A <1∥m A A ∈C n ×n r (A )=∥A ∥2A ∈(r >0)C m ×n r ∥A =A +∥F r √≥≥?≥σ1σ2σr A ∥=A +∥21σ1 ( ) A B (AB =)+ B +A + A A A H Hermite A =()∈(n >1)a ij C n ×n D =diag (,,?,)a 11a 22a nn E ?A D ?1r (E ?A )≥1 D ?1(i =1,2,?,n )A i A =∑n i =1λi A i A ∈C m ×n A ≠0(A =A A ?)H A ?∥A =n A ?∥2 ( ) A ∈,G ∈C m ×n C n ×m AGA =A y =AGx ,?x ∈C m C m A ( ) A , B ∈ C n ×n (A +B )x =0∥?∥∥A ∥≥1B ?1 ( )?(x ,y )∈R 2f (x ,y )=2+3?4xy x 2y 2 ̄  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄√f (x ,y )R 2 ( )A A =BD Ax =0Dx =0 ( )

矩阵论论文

利用蚁群算法分析TSP问题 “旅行商问题”(Traveling Salesman Problem,TSP)可简单描述为:一位销售商从n个城市中的某一城市出发,不重复地走完其余n-1个城市并回到原出发点,在所有可能路径中求出路径长度最短的一条。旅行商的路线可以看作是对n城市所设计的一个环形,或者是对一列n个城市的排列。由于对n个城市所有可能的遍历数目可达(n-1)!个,因此解决这个问题需要O(n!)的计算时间。而由美国密执根大学的Holland教授发展起来的遗传算法,是一种求解问题的高效并行全局搜索方法,能够解决复杂的全局优化问题,解决TSP问题也成为遗传算法界的一个目标。 与粒子群算法相似,蚁群算法也是通过对生物的群体进行观察研究得来的。在研究蚂蚁的行为时发现,一只蚂蚁,不论是工蚁还是蚁后,都只能完成很简单的任务,没有任何一只蚂蚁能够指挥其他蚂蚁完成筑巢等各种复杂的行为。蚂蚁是如何分工,如何完成这些复杂的行为的这一问题引起了科学及的兴趣。 生物学家发现,蚁群具有高度的社会性。在蚂蚁的行动过程中,蚂蚁之间不只是通过视觉和触觉进行沟通,蚂蚁之间的信息传递还可以通过释放出一种挥发性的分泌物,这是一种信息素之类的生物信息介质。一只蚂蚁的行为极其简单,但是一个蚁群的行为则是复杂而又神奇的。蚂蚁在觅食的过程中,如果没有发现信息素,会随机选择一个方向前进,遇见障碍物也会绕开,直到遇见食物,若果遇见的食物比较小,就即刻搬回巢穴,假如食物很大,则会释放信息素之后回去搬救兵。在一只蚂蚁发现食物并留下信息素之后,其它的蚂蚁会跟着信息素很快找到食物。 虽然对蚂蚁的行为有了一定的了解,在实际模拟蚁群的时候仍然存在不少问题。蚂蚁觅食过程中在没有信息素的情况下,蚂蚁会随机向一个方向前进,不能转圈或者震动。虽然有了一个方向,蚂蚁也不能一直只向着同样方向做直线运动,这一运动需要有点随机性,由此,蚂蚁的运动在保持原有的方向的同时对外界的干扰能够做出反应,也有了新的试探。这一点在遇到障碍物时是非常重要的。在有了信息素之后,大多数的蚂蚁都会沿着信息素去找食物,这条路上的信息素会越来越多,但这并不一定会是最优的路径,所以还需要找到最优的路径。好在蚂

矩阵秩的一些著名结论

引言 矩阵的秩是高等代数中一个应用及其广泛的理论,有关矩阵的秩的等式或不 等式的证明,常常和向量组的秩,线性方程组的解等密切相关,推证有难度也有技巧。熟练掌握关于矩阵秩的一些结论及其证明技巧,对有关理论的学习会有很大的裨益。矩阵A 中的最大阶不为零的子式的阶数就称为矩阵A 的秩,记为r(A).一些平凡的理论及概念读者可参阅一些权威教材,这里只对一些经典的理论做一讨论. 1. 证明: 设B A ,为两个同阶矩阵,则有r(A ﹢B)≤r(A)﹢r(B) 证 设A =(α1,α 2 ,…, αn ), B =() ββ βn ,...,,2 1 则 A +B =( α1 +β1 ,α2 +β 2 ,…, αn +βn ) 不妨设A 列向量的极大线性无关组为 α1 ,α 2 ,…, α r . (1≤r ≤n); B 列向量的极大线性无关组为β1,β2,…βs . (1≤s ≤n). 则k i i 1 =αα1 +α 2 2 k i +…+ α r ir k ; βi =β1 1 l i +β 2 2 l i +…+ β s is l ; 则 αi +β i = k i 1 α1 +α 2 2 k i +…+αr ir k +β1 1 l i +β 2 2 l i +…+ β s is l ; 即A +B 的列向量可由 α1 ,α 2 ,…, α r , β 1 , β 2 ,… β s 线性表出, 故)()()(B +A =+≤B +A r r s r r . 2. 若AB =O ,则)()(B r A r +n ≤. 证 记 ),...,,(2 1 ββ βn B =,由AB =O ,知B 的每一列都是O =AX 解, 即O =A β i ,i =1,2,…,n 又因O =AX 的基础解系所含向量个数为)(A r n -, 换言之, O =AX 的所有解所构成的向量组的秩为)(A r n -.故≤)(B r )(A r n -, 即)()(B r A r +n ≤.

矩阵的秩 学年论文

学院数学与信息科学学院 专业信息与计算科学 年级2009级 姓名张晓函 论文题目矩阵的秩 指导教师彭玉成职称讲师成绩 2009年5月25日

学年论文成绩评定表

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 引言 (1) 1预备知识 (1) 2矩阵的秩的性质 (2) 3矩阵秩的计算 (4) 4矩阵秩的应用 (8) 5结束语 (9) 参考文献 (9)

矩阵的秩 学生姓名:张晓函学号:20095034048 数学与信息科学学院信息与计算科学系 指导教师:彭玉成职称:讲师 摘要:本文是关于求一个数字矩阵的秩的方法的初步探究.归纳总结了求矩阵秩的常用方法. 关键词:矩阵;初等变换;子式;极大线性无关组 Matrix rank Abstract:This article is about for a digital matrix rank of the preliminary inquiry method. Summarizes the commonly used method of matrix rank Keywords: matrix,elementary transformation, son,great linearly independent groups 前言 矩阵是贯穿线性代数的一块重要内容.而对矩阵秩的探究是我们学习矩阵的一个重要部分.也是我们判断线性方程组解的情形的重要手段.下面就来具体讨论、探究数字矩阵秩的求解方法. 1.预备知识 定义1.1:矩阵A中不为零的子式的最高阶数称为A的秩.记作() r A 定义1.2:矩阵的行秩就是矩阵行向量的秩;矩阵的列秩就是矩阵列向量的秩. 矩阵A中任意选定k行和k列,位于这些选定的行和列的交点定义1.3:在一个s n 上的2k个元素按原来的次序所组成k级行列式,称为A的一个k级子式. 定义1.4:向量组的极大线性无关组所含向量的个数称为这个向量组的秩. 2.矩阵的秩的性质 1)现在我们来研究矩阵的秩具有哪些性质,从而利用这些性质求矩阵的秩。 性质2.1矩阵的行秩与列秩相等.

矩阵论文

矩阵分析在雷达信号波达方向估计中的应用 摘要:本文介绍了矩阵分析在雷达信号波达方向估计中的应用,主要介绍了DOA 估计中 常用的基于矩阵特征空间分解的MUSIC 算法的基本原理,并用MATLAB 对此算法性能进行了仿真。 关键词:矩阵分析 DOA 估计MUSIC 算法算法仿真 1、引言 矩阵分析作为一种重要的数学工具,在信号与信息处理领域起着不可代替的作用。矩阵分解是解决矩阵问题的重要方法之一,将一个矩阵分解为几个简单矩阵的乘积,有很强的技巧性和实用性。比如在雷达信号波达方向估计常用的MUSIC 算法中涉及了较多的矩阵分解的知识。 2、矩阵分析在MUSIC 算法中的应用 波达方向(DOA)估计的基本问题就是确定同时处在空间某一区域多个感兴趣的信号的空间位置(即多个信号到达阵列参考阵元的方向角)。最早的也是最经典的超分辨率DOA 估计算法是著名的多信号分类(MulitPleSignalClassicfiaitno)法,简称MUSIC 算法,是一类经典的基于特征结构分析的空间谱估计[1,2]方法。该方法是Scmhidt 和Bienveun 及Kopp 于1979年独立提出的,后来scmhidi 于1986年重新发表[3]。 MUSIC 算法基本原理及矩阵分析如下: 阵列阵元数为M ,则信号()i S t 到达各阵元的相位差所组成的向量为 ()()()(M 1)11,,...,,...,i i T jw j w i i M i a e e a a θθθ---??==? ????? (1) 称为信号()i S t 的方向向量。又知共有N 个信号位于远场,则在第K 个阵元上观测或接收信号()k x t 为: ()()()()1 N k k i i k i x t a S t n t θ==+∑()k n t 表示第K 个阵元上的加性观测噪声。 将M 个阵元上的观测数据组成1M ?维数据向量: ()()()()12,,...,T M x t x t x t x t =???? (2) 类似地,定义1M ?维观测噪声向量: ()()()()12,n ,...,n T M n t n t t t =???? (3) 空间信号的1N ?维矢量: ()()()()12,s ,...,s T N s t s t t t =???? (4)

南航矩阵论期中考试参考答案.doc

1) 一组基为q = .维数为3. 3) 南京航空航天大学双语矩阵论期中考试参考答案(有些答案可能有问题) Q1 1解矩阵A 的特征多项式为 A-2 3 -4 4I-A| =-4 2+6 -8 =A 2(/l-4) -6 7 A-8 所以矩阵A 的特征值为4 =0(二重)和/^=4. 人?2 3 由于(4-2,3)=1,所以D| (人)二1.又 彳 人+6=“2+4人=?(人) 4-2 3 、=7人+4=代(人)故(们3),代3))=1 ?其余的二阶子式(还有7个)都包含因子4, -6 7 所以 D? 3)=1 .最后 det (A (/L))=42(人.4),所以 D 3(A)=/l 2 (2-4). 因此矩阵A 的不变因子为d, (2) = d 2(2) = l, d 3 (2) = r (2-4). 矩阵A 的初等因子为人2, 2-4. 2解矩阵B 与矩阵C 是相似的.矩阵B 和矩阵C 的行列式因子相同且分别为9 3)=1 , D 2(/i)=A 2-/l-2 .根据定理:两矩阵相似的充分必要条件是他们有相同的行列式因子. 所以矩阵B 与矩阵c 相似. Q2 2)设k 是数域p 中任意数,a, 0, /是v 中任意元素.明显满足下而四项. (") = (",a) ; (a+月,/) = (",/) + (”,刃;(ka,/3) = k(a,/3) ; (a,a)>0, 当且仅当Q = 0时(a,a) = ().所以(。,/?)是线性空间V 上的内积. 利 用Gram-Schmidt 正交化方法,可以依次求出 ,p 2 =%-(%'5)与= 层=%-(%,弟与一(%,弓)役=

正交矩阵的秩及其性质开题报告

本科毕业论文开题报告 题目:正交矩阵的秩及其性质 学院:数学学院 专业:数学与应用数学 班级: 姓名: 指导教师: 申报日期:

开题报告填写要求 1、开题报告作为毕业论文(设计)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业论文(设计)工作前期内完成,经指导教师签署意见审查后生效。 2、开题报告内容必须用黑墨水笔工整书写,按教务处统一设计的电子文档标准格式打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见。 3、学生查阅资料的参考文献应在3篇及以上(不包括辞典、手册),开题报告的字数要在1000字以上。 4、有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2004年9月26日”或“2004-09-26”。

毕业论文开题报告 一.本课题的研究意义 (一)理论意义 矩阵是数学中重要的基本概念,是代数学的重要研究对象之一,也是数学与其它领域研究与应用的一个重要工具.矩阵是线性代数中的核心内容 ,而正交矩阵是一种较常用的矩阵 ,正交矩阵在矩阵论中占有重要地位,有着广泛的应用.对其本身的研究来说是富有创造性的领域. 正交矩阵不仅在线性代数中,而且在理工各学科领域的数学方法中。本文对矩阵进行了较为深入的研究,得到了正交矩阵的一系列常用性质,相关性质的概括、改进和推广,以及正交矩阵在近世代数,点集拓扑中的应用等的研究,对矩阵的理论研究有重要意义. 二.本课题的基本内容 1 正交矩阵及其相关定义 2 正交矩阵的性质 3 正交矩阵在线性代数中的应用 4 正交矩阵在点集拓扑中的应用 5 正交矩阵在近世代数中的应用 毕业论文开题报告

矩阵论在神经网络中的应用详解

矩阵论论文 论文题目:矩阵微分在BP神经网络中的应用 姓名: 崔义新 学号: 20140830 院(系、部): 数学与信息技术学院 专业: 数学 班级: 2014级数学研究生 导师: 花强 完成时间: 2015 年 6 月

摘要 矩阵微分是矩阵论中的一部分,是实数微分的扩展和推广.因此,矩阵微分具有与实数微分的相类似定义与性质.矩阵微分作为矩阵论中的基础部分,在许多领域都有应用,如矩阵函数求解,神经网络等等. BP网络,即反向传播网络(Back-Propagation Network)是一种多层前向反馈神经网络,它是将W-H学习规则一般化,对非线性可微分函数进行权值训练的多层网络. 它使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小.在其向前传播的过程中利用了矩阵的乘法原理,反传的过程中则是利用最速下降法,即沿着误差性能函数的负梯度方向进行,因此利用了矩阵微分. 关键词:矩阵微分;BP神经网络;

前 言 矩阵微分(Matrix Differential)也称矩阵求导(Matrix Derivative),在机器学习、图像处理、 最优化等领域的公式推导过程中经常用到.本文将对各种形式下的矩阵微分进行详细的推导. BP (Back Propagation )神经网络是1986年由Rumelhart 和McCelland 为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一.BP 网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小.BP 神经网络模型拓扑结构包括输入层(input )、隐层(hiddenlayer)和输出层(outputlayer). BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成.输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果.当实际输出与期望输出不符时,进入 误差的反向传播阶段. 误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传.周而复始的信息正向传播和 误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止. 1 矩阵的微分 1.1 相对于向量的微分的定义 定义1 对于n 维向量函数,设函数 12 ()(,,,)n f f x x x =X 是以向量X 为自变量的 数量函数,即以n 个变量 x i 为自变量的数量函数. 我们将列向量 1n f x f x ???????? ???????????? 叫做数量函数f 对列向量X 的导数, 记作 1n f x df f f d f x ??? ?????= = =????? ???????? grad X 12T n df f f f d x x x ?? ???=? ?????? X (1.1)

最新考研数学矩阵8大秩及其证明

考研数学矩阵的8大秩及其证明2009 ()1 证明:根据矩阵秩的定义直接得出。 ()2 证明:对矩阵A 任意添加列后变成矩阵(), A B ,则秩显然不小于()R A ,即: ()(), R A B R A ≥ 同理: ()(), R A B R B ≥ 因而:()(){}(), , Max R A R B R A B ≤成立。 又设 ()(), R A r R B t ==,把, A B 分别做列变换化成列阶梯形~ ~ , A B 1110 3 810 1100 1000?? ? ? ? ? ??? 如:就是列阶梯形 用~ ~~ ~ 1 1 , r r a a b b 分别表示非全零列,则有: ()~ ~~ ()1~~ ~ ~~ ()1 , 00, , , 0 0表示列变换表示列变换c r c c r A A a a A B A B B B b b ????????→= ????? ?? ???→? ????? ??????→= ???? ? 由于初等变换后互为等价矩阵,故()~~, , R A B R A B ?? = ??? 而矩阵~~, A B ?? ???只含有r t +个非全零列,所以:()()~~~~, , R A B r t R A B R A R B ???? ≤+?≤+ ? ????? 。 综合上述得:()(){}()()(), , Max R A R B R A B R A R B ≤≤+

●特别地:如B b =为列向量,则()1R b ≡()()() , 1R A R A B R A ?≤≤+。 ●如B E =,设()(), , m n m R A B R A E ?=, 则 ()()() , , m n m m m n m m R A E R E m R A E m ??≥≥=?= ()3 证明: ()()()()()()()()()()()() 2 , , , , , , A B B A B R A B B R A B R A R B R A B R A B B R A B R A B R A R B +→?+=????→+≥=+≥+?+≤+由公式知 ()4 证明:()1 设()()() ,AB C B AX C R A R A C R C =?=?=≥是的解 ()()()() () ()()()()()(){},min , T R B R B T T T T T T T B A C R B R B C R C R B R C R C R AB R A R B n ==?=≥???? ?→≥?=≤≤又, ()2 设()(), m n n s R A r R B t ??== 则A 的标准型为000r m n E ??? ???,B 的标准型为000t n s E ??? ??? 存在可逆矩阵, , , m s n n P Q P Q 使:

相关主题
文本预览
相关文档 最新文档