当前位置:文档之家› 矩阵的秩与运算

矩阵的秩与运算

矩阵的秩与运算
矩阵的秩与运算

矩阵的秩与运算

一·矩阵秩的求法

求矩阵的秩主要有三种方法;(1)定义

法,利用定义寻找矩阵中非零子式的最高

阶数。(2)初等变换法,对矩阵实施初等行变

换,将其变成为行阶梯形矩阵,行阶梯形矩

阵中非零行的行数就是矩阵的秩;(3)标准

形法,求矩阵的标准形,l的个数即为矩阵

的秩。

二·矩阵的秩与行列式

对于一个方阵A,如何判断它是

否可逆,除了根据它的行列式是否为零,还

可以根据方阵秩的大小来判断。比如方阵A(nn)

其秩R, ,若R < n,则显然矩阵行列式为零,不可逆;

若R = n ,则矩阵行列式不为零,矩阵可逆。

三·矩阵的秩与线性方程组

1齐次的

齐次线性方程组

●系数矩阵R = n ,则有且仅有一个0解

●系数矩阵R < n,则有无数个解。

2非齐次的

费齐次线性方程组,设系数矩阵A ,增广矩阵B

●若R(A) = R(B) = n ,则有且仅有一个解;

●若R(A) = R(B)<n,则有无数个解;

●若R(A)≠R(B) ,则方程组无解。

四·矩阵的秩与二次曲面

说二次曲面,其实就是与二次型的关系。有定义知道,

二次型的秩定义为其矩阵的秩,这就为解决二次曲面问题找到了一个可转移的办法。

正所谓遇难则变,变则通。道家之言,诚哉大哉!!

下面将具体举例阐述,二次型总可以经线性变换成CY化为标准形(比如合同变换),而且,同的非退化线性变换化为不同的标准形,但这些标准形中所含平方项的个数是相同的,所含平方项的个数就等于二次型的秩,也就是矩阵的秩。

常用单元的刚度矩阵

r u r r u r =-+= πππεθ22)(2 由于各点在圆周方向上无位移,因而剪应变θr v 和r v θ均为 零。将应变写成向量的形式,则{}?? ?? ? ?????? ?????? ???????+??????=??????????????=r w z u z w r u r u rz z r γεεεεθ 根据上式,可推导出几何方程{}[]{})(e B ?ε= 其中几何矩阵[]????????? ?????????? ??= ij ji ki ik jk kj ji ik kj k j i ij kj jk z r z r z r r r r r z r N r z r N r z r N z z z B 000 0),(0),(0),(00021 3.弹性方程和弹性矩阵[D] 依照广义虎克定律,同样可以写出在轴对称中应力和应变之间的弹性方程,其形式为 [])(1 θσσσε+-= z r r u E [])(1 z r u E σσσεθθ+-= [])(1 θσσσε+-=r z z u E rz rz E r τμ)1(2+= 所以弹性方程为{}[]{}εσD = 式中应力矩阵{}{}T rz z r τσσσσθ=

弹性矩阵[]? ? ??????? ???? ?-----+=221000010101)21)(1(μμμμμμμμμμ μμE D 4.单元刚度矩阵[])(e k 与平面问题相同,仍用虚功原理来建立单元刚度矩阵,其积分式为 [][][][]dV B D B k V T e ?=)( 在柱面坐标系中,drdz dV π2= 将drdz dV π2=代入[][][][]dV B D B k V T e ?=)(,则[][][][]rdrdz B D B k T e ??=π2)( 即为轴对称问题求单元刚度矩阵的积分式。 与弹性力学平面问题的三角形单元不同,在轴对称问题中,几何矩阵[B]有的元素(如r z r N i ),(等)是坐标r 、z 的函 数,不是常量。因此,乘积[][][]B D B T 不能简单地从式 [][][][]rdrdz B D B k T e ??=π2)(的积分号中提出。如果对该乘积逐项求 积分,将是一个繁重的工作。一般采用近似的方法:用三角形形心的坐标值代替几何矩阵[B]的r 和z 的值。用[]B 表示在形心),(z r 处计算出的矩阵[B]。其中 3 ) (,3 ) (k j i k j i z z z z r r r r ++= ++= 只要单元尺寸不太大,经过这样处理引起的误差也不大。被积函数又成为常数,可以提出到积分号外面:

第3章 矩阵及其运算

第3章 矩阵及其运算 3.1 基本要求、重点难点 基本要求: 1.1.掌握矩阵的定义. 2.2.掌握矩阵的运算法则. 3.3.掌握伴随矩阵的概念及利用伴随矩阵求逆矩阵的方法. 4.4.掌握矩阵秩的概念及求矩阵秩的方法. 5.5. 掌握初等变换和初等矩阵的概念,能够利用初等变换计算矩阵的秩,求可逆矩阵的逆矩阵. 6.6.掌握线形方程组有解得判定定理及其初等变换解线形方程组的方法. 重点难点:重点是矩阵定义,矩阵乘法运算,逆矩阵的求法,矩阵的秩,初等 变换及线性方程组的解. 难点是矩阵乘法,求逆矩阵的伴随矩阵方法. 3.2 基本内容 3.2.1 3.2.1 重要定义 定义3.1 由n m ?个数)2,1;,2,1(n j m i a ij ==组成的m 行n 列的数表成为一个m 行n 列矩阵,记为 ????????????mn m m n n a a a a a a a a a 2122221 11211 简记为A n m ij a ?=)(,或A )(ij a =,n m A ?,mn A 注意行列式与矩阵的区别: (1) (1) 行列式是一个数,而矩阵是一个数表. (2) (2) 行列式的行数、列数一定相同,但矩阵的行数、列数不一定相 同. (3) (3) 一个数乘以行列式,等于这个数乘以行列式的某行(或列)的所有元素,而一个数乘以矩阵等于这个数乘以矩阵的所有元素. (4) (4) 两个行列式相等只要它们表示的数值相等即可,而两个矩阵相等则要求两个矩阵对应元素相等. (5) (5) 当0||≠A 时,||1A 有意义,而A 1 无意义.

n m =的矩阵叫做阶方阵或m 阶方阵.一阶方阵在书写时不写括号,它在 运算中可看做一个数. 对角线以下(上)元素都是0的矩阵叫上(下)三角矩阵,既是上三角阵, 又是下三角的矩阵,也就是除对角线以外的元素全是0的矩阵叫对角矩阵.在对角矩阵中,对角线上元素全一样的矩阵叫数量矩阵;数量矩阵中,对角线元素全是1的n 阶矩阵叫n 阶单位矩阵,常记为n E (或n I ),简记为E (或I ),元素都是0的矩阵叫零矩阵,记为n m 0?,或简记为0. 行和列分别相等的两个矩阵叫做同型矩阵,两个同型矩阵的且对应位置上的 元素分别相等的矩阵叫做相等矩阵. 设有矩阵A =n m ij a ?)(,则A -n m ij a ?-=)(称为A 的负矩阵. 若A 是方阵,则保持相对元素不变而得到的行列式称为方针A 的行列式,记 为||A 或A Det . 将矩阵A 的行列式互换所得到的矩阵为A 的转置矩阵,记为T A 或A '. 若方阵A 满足A A T =,则称A 为对称矩阵,若方阵A 满足A A T -=,则称A 为反对称矩阵. 若矩阵的元素都是实数,则矩阵称为实矩阵.若矩阵的元素含有复数,则称矩 阵为复矩阵,若A =n m ij a ?)(是复矩阵,则称矩阵n m ij a ?)((其中ij a 为ij a 的共轭矩阵,记为A n m ij a ?=)(. 定义3.2 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得E BA AB ==,则 称方阵A 可逆,B 称为A 的逆矩阵,记做1-=A B . 对于方阵A n m ij a ?=)(,设ij a 的代数余子式为ij A ,则矩阵 *A ????????????=nm n n n n A A A A A A A A A 2122212 12111 称为A 的伴随矩阵,要注意伴随矩阵中元素的位置. 定义3.3 设有矩阵A ,如果: (1) (1) 在A 中有一个r 阶子式D 不为零.

矩阵的秩与行列式的几何意义

矩阵的秩与行列式的几何意义 这里首先讨论一个长期以来困惑工科甚至物理系学生的一个数学问题,即,究竟什么是面积,以及面积的高维推广(体积等)? 1 关于面积:一种映射 大家会说,面积,不就是长乘以宽么,其实不然。我们首先明确,这里所讨论的面积,是欧几里得空间几何面积的基本单位:平行四边形的面积。平行四边形面积的定义,几何上说是相邻两边边长乘以他们之间的夹角的正弦。 然而为了应对更一般情形和更高维度的数理问题,我们有必要把面积的定义推广开来。注意到以下事实: 面积是一个标量,它来自于(构成其相邻边)两个矢量。因此,我们可以将面积看成一个映射: 其中V就是一个矢量,V*V代表两个矢量的有序对;f就是面积的值。 下面我们将说明这个映射是一个线性映射。 从最简单的例子出发。如果第一个矢量是(1,0),第二个矢量是(0,1);也就是说,两个矢量分别是X和Y轴上的单位正向量,那么由这两个矢量张成的四边形就是一个正方形,其面积根据定义,就是长乘以宽=1*1=1。 因此有:

如果我们把第一个矢量”缩放“a倍,面积将会相应是原来的a倍;把第二个矢量“缩放”b倍,面积也会成为原来的b倍。如果同时缩放,很显然,面积将会变成原面积的ab倍。这表明,面积映射对于其两个操作数(矢量)的标量积是各自线性的,如下: 最后,我们要说明,面积映射对于其操作数(矢量)的矢量加法也是线性的。因为矢量加法操作的本身是线性的,那么其面积映射理应对此也是一个线性映射。这里我们打算从几个实际的例子出发,说明映射的加法线性性的后果。 显然(两个共线矢量所张成的平行四边形还是一条线,因此面积为0): 假定面积映射是一个关于矢量加法的线性映射,那么我们有: 注意计算过程中用到了上面的结论。这说明:

关于矩阵秩的证明

关于矩阵秩的证明 -----09数应鄢丽萍 中文摘要 在高等代数中,矩阵的秩是一个重要的概念。它是矩阵的一个数量特征,而且在初等变换下保持不变。关于矩阵秩的问题,通常转化为矩阵是否可逆,线性方程组的解的情况等来解决。 所谓矩阵的行秩就是指矩阵的行向量组的秩,矩阵的列秩就是矩阵的列向量组的秩,由于矩阵的行秩与列秩相等,故统称为矩阵的秩。向量组的秩就是向量组中极大线性无关组所含向量的个数。 关键词:初等变换向量组的秩极大线性无关组

约定用E 表示单位向量,A T 表示矩阵A 的转置,r(A)表示矩阵A 的秩。在涉及矩阵的秩时,以下几个简单的性质: (1) r(A)=r(A T ); (2) r(kA)=? ??=≠0 00 )(k k A r (3) 设A,B 分别为n ×m 与m ×s 矩阵,则 r(AB)≤min{r(A),r(B),n,m,s} (4) r(A)=n,当且仅当A ≠0 (5) r ???? ??B O O A =r(A)+r(B)≤r ??? ? ??B O C A (6) r(A-B)≤r(A)+r(B) 矩阵可以进行加法,数乘,乘法等运算,运算后的新矩阵的秩与原矩阵的秩有一定关系。

定理1:设A,B 为n ×n 阶矩阵,则r(A+B)≤r(A)+r(B) 证: 由初等变换可得 ???? ??B O O A →???? ??B A O A →???? ??+B B A O A 即???? ??E E O E ???? ??B O O A ???? ??E E O E =??? ? ??+B B A O A 由性质5可得 r ???? ??B O O A =r ??? ? ??+B B A O A 则有r(A)+r(B)≥r(A+B) 定理2(sylverster 公式)设A 为s ×n 阶矩阵,B 为n ×m 阶矩阵,则有r(A)+r(B)-n ≤r(AB) 证:由初等变换可得 ???? ??O A B E n →? ??? ??-AB O B E n →???? ??-AB O O E n 即? ??? ??-s n E A O E ??? ? ??O A B E n ? ??? ? ?-m n E O B E =???? ??-AB O O E n 则r ???? ??O A B E n =r ??? ? ??-AB O O E n 即r(A)+r(B)-n ≤r(AB)

3-1 矩阵的秩习题评讲

3-1 矩阵的秩习题评讲 2、设秩(A)=r,问A中有没有等于零的r-1阶子式?有没有等于零的r阶子式? 有没有不等于零的r+1阶子式? 解:秩(A)=r时,A中可能有等于零的r-1阶子式;也可能有等于零的r阶子 式;没有不等于零的r+1阶子式。例如: A=? ? ??? ? ??? ???00 00 40004320 4321,A中存在一个3阶子式4004204 21=8≠0,所有4阶子式有一行全为零,值为零,所以秩(A)=3。A中存在等于零的2阶子式,如 4 34 3;还存在等于零的3阶子式,如0 00000 3 20。 3、如果从矩阵A中划去一行(或一列)得到矩阵B,问A的秩与B的秩有什么关系? 解:设m?n矩阵A的行向量为:α1,α2,……,αm-1,αm。从矩阵A中划去一 行,不妨设划去第m行,得矩阵B,则B的行向量为:α1,α2,……,αm-1。分两种情况讨论。 (1)如果αm可由α1,α2,……,αm-1线性表出,则A的行向量组与B的行向量 组等价,故A的行秩=B的行秩,即秩(A)=秩(B)。 (2)如果αm不能由α1,α2,……,αm-1线性表出,取B的行向量组的一个最大 无关组,不妨设为:α1,α2,……,αr,则αm不能由α1,α2,……,αr线性表出。据P111 11题,α1,α2,……,αr,αm线性无关,显然作成A的行向量组α1,α2,……,αm-1,αm的一个最大无关组,于是A的行秩=B的行秩+1,即秩(A)=秩(B)+1。 综上所述,知: R(B)=? ? ?-1)()(A R A R 线性表出时列不可由其它行列当删去的行线性表出时列可由其它行列当删去的行)()()()(。 4、t取何值时,向量组:α1=(6,t+1,7),α2=(t,2,2),α3=(t, 1,0)线性相关? 解:用α1,α2,α3为行向量作矩阵A,有

矩阵的秩的相关不等式的归纳小结

矩阵的秩的相关不等式的归 纳小结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

矩阵的秩的相关不等式的归纳小结 林松 (莆田学院数学系,福建,莆田) 摘要:利用分块矩阵,证明一些矩阵的秩的相关不等式,观察矩阵在运算后秩的变化,归纳出常见的有关矩阵的秩的不等式,由此引出等式成立的条件。 关键词:矩阵的秩,矩阵的初等变换 引言:矩阵的秩是指矩阵中行(或列)向量组的秩,与之等价的说法通常是指矩阵中不为零的子式的最高阶数,是矩阵最重要的数字特征之一。利用分块矩阵,把子式看成元素,可将高阶矩阵的运算化为较低阶矩阵的运算,也为矩阵的秩的一些常见不等式的证明带来了方便。本文将讨论矩阵的秩的一些常见不等式,并由此引出一些秩的不等式等号成立的等价条件。 一基本的定理 1 设A是数域P上n m ?矩阵,于是 ?矩阵,B是数域上m s 秩(AB)≤min [秩(A),秩(B)],即乘积的秩不超过个因子的秩 2设A与B是m n ?矩阵,秩(A±B)≤秩(A)+秩(B) 二常见的秩的不等式 1 设A与B为n阶方阵,证明若AB = 0,则 r(A) + r(B) ≤ n 证:设r(A) = r,r(B )= s,则由AB = 0,知,B的每一列向量都是以A为系数方阵的齐次线性方程组的解向量。 当r = n时,由于该齐次方程组只要零解,故此时 B = 0,即此时r(A) = n,r(B) = 0,结论成立。 当r〈 n 时,该齐次线性方程组的基础解系中含n-r个向量,

从而B 的列向量组的秩≤n-r,即r (B )≤ n-r 所以 r(A) + r(B) ≤ n 2设A 为m n ?矩阵,B 为n s ?矩阵,证明不等式r(AB)≤r(A)+r(B)-n 证:设E 为n 阶单位矩阵, S E 为S 阶单位方阵,则由于 000S E B A AB A E E E B ??????= ? ? ?-?????? 而 0S E B E ?? ?-?? 可逆,故 r(A)+r(B) ≥ 秩 0A E B ?? ? ?? =秩 0A AB E ?? ???=秩 0 0AB E ?? ??? =r(AB)+r(E) =r(AB)+n 从而r(AB) ≥ r(A) + r(B) - n 3设A ,B 都是n 阶方阵,E 是n 阶单位方阵,证明 秩(AB-E )≤秩(A-E )+秩(B-E ) 证:因为0A E B E B E --?? ? -??00B E ?? ???00AB E B E -?? = ?-?? 故秩(AB-E )≤秩00AB E B E -?? ?-??≤秩0A E B E B E --?? ?-?? =秩(A-E )+秩(B-E ) 因此 秩(AB-E )≤秩(A-E )+秩(B-E ) 4 设A ,B ,C 依次为,,m n n s s t ???的矩阵,证明 r(ABC) ≥ r(AB) + r(BC) - r(B)

矩阵的秩及其应用

矩阵的秩及其应用 摘要:本文主要介绍了矩阵的秩的概念及其应用。首先是在解线性方程组中的应用,当矩阵的秩为1时求特征值;其次是在多项式中的应用,最后是关于矩阵的秩在解析几何中的应用。对于每一点应用,本文都给出了相应的具体的实例,通过例题来加深对这部分知识的理解。 关键词:矩阵的秩; 线性方程组; 特征值; 多项式 引言: 阵矩的秩是线性代数中的一个概念,它描述了矩阵的一个数值特征。它是矩阵 的一个重要性质。在判定向量组的线性相关性,线性方程组是否有解,求矩阵的特征值,在多项式、空间几何中等多个方面都有广泛的应用。由于矩阵的秩的重要作用和地位,需要我们认真学习。 1.矩阵的秩及其求法 1.1矩阵的秩的定义 定义1.1.1[1] 矩阵A 的行(列)向量组的秩称为矩阵A 的行(列)秩。 定义1.1.2[2] 矩阵的列向量组(或行向量组)的任一极大线性无关组所含向量的个数称为矩阵的秩。 定义1.1.3[1] 设在矩阵A 中有一个不等于零的r 阶子式,且所有的1r +子式(如果存在的话)全等于零,则称矩阵A 的秩为r ,记为()r A r =或秩()A r =。零矩阵的秩规定为零。 注:由定义可以看出

(1)若A 为n m ?矩阵,则()r A m ≤,也()r A n ≤,即()min{,}r A m n = (2) ()()T r A r A = ,()()r kA r A = ,k 为非零数 1.2 矩阵的秩的求法 定义法和初等变换法是我们常用的求矩阵的秩的两种方法,下面就来比较一 下这两种方法。 方法1 按定义 例1.2.1 求矩阵A =?? ????????--413112212228 32的秩 解 按定义3解答,容易算出二阶子式 12232-0≠,而矩阵的所有三阶子式 13 1 2122832--=0,43112122232-=0,41312212 2 8 3--=0,4 1112222 8 2 -=0 所以 ()2r A = 方法2 初等变换法 引理1.2.1[1] 初等变换不改变矩阵的秩。 例1.2.1求矩阵23822122121314A -?? ??=-?? ????的秩 解 用“→”表示对A 作初等变换,则有 A →13142122122382????-????-??→131406440966????-????-??→131406440000?? ?? -??????=B ,在矩阵B 中易 知,所有三阶子式全为零,且有一个二阶子式 1306 ≠0. 所以()2r B =, 可得

矩阵的秩及其多样性的解法

矩阵的秩及其多样性的解法 数学学院 数学与应用数学(师范)专业 摘 要:矩阵论是代数学中一个重要组成部分和主要研究对象,而矩阵的秩又是矩阵的一个重要指标,本文研究了与矩阵的秩的相关性质及其多样性的解法, 用定理和实例说明了行列式、线性空间、线性方程组、分块矩阵和矩阵秩的关系及其在求矩阵的秩中的应用。 关键词: 矩阵的秩; 行列式; 线性方程组; Abstract :Matrix theory is an important part of the main object of study in algebra and rank of the matrix is an important indicator of the matrix, we study the rank of the matrix solution of the nature and diversity of theorems and examples illustratedeterminant, linear space, linear equations, the block matrix and the matrix rank and matrix rank. Keywords: Rank of matrix; V ector; Linear equations; 引言、引理 矩阵理论是高等代数的主要内容之一, 在数学及其它科学领域中有着广泛的应用.在矩阵理论中, 矩阵的秩是一个重要的概念. 它是矩阵的一个数量特征, 而且是初等变换下的不变量. 本文归纳了矩阵的秩相关性质及等价条件,并从行列式、线性方程组、线性空间以及分块矩阵的角度来阐述矩阵秩的不同解法。 矩阵的秩的等价刻划 设A F m n ?∈ ,则rank(A)=r ?A 中不为零的子式的最大阶数是r ; ?A 中有一个r 阶子式D 不等于零,所有包含D 作为子式的 r+1阶子式全为零; ? 存在可逆矩阵m n P F ?∈,m n Q F ?∈,使得000r E P A Q ?? = ??? ; ? A 的行(列)向量的极大无关组所含向量的个数为r;

第3讲矩阵的秩与矩阵的初等变换.

§1.3 矩阵的秩与矩阵的初等变换 主要问题:1. 自由未知数个数的唯一性 2. 相抵标准形的唯一性 3. 矩阵秩的性质 4. 满秩矩阵的性质 一、矩阵的秩 定理矩阵用初等行变换化成的阶梯形矩阵中,主元的个数(即非零行的数目)唯一。 定义矩阵A 用初等行变换化成的阶梯形矩阵 中主元的个数称为矩阵A的秩,记为秩(A)或r(A)例求下述矩阵的秩 2 1 0 3 12 3 1 2 1 01 A 4 1 6 3 58 2 2 2 6 16

2 1 0 3 1 2 3 1 2 1 0 1 A 4 1 6 3 5 8 2 2 2 6 1 6 R4 ( 1)R1 2 1 0 3 1 2 R3 ( 2)R1 R2 ( 1)R1 1 2 2 2 1 1 0 3 6 9 3 4 0 1 2 3 2 8 1 2 2 2 1 1 R2 R1 2 1 0 3 1 2 0 3 6 9 3 4 0 1 2 3 2 8 1 2 2 2 1 1 R2 ( 2)R1 0 5 4 7 3 4 0 3 6 9 3 4 0 1 2 3 2 8 1 2 2 2 1 1 R2 R4 0 1 2 3 2 8 0 3 6 9 3 4 0 5 4 7 3 4

所以秩(A) = 4 o | 性质 (1) 秩(A) = 0当且仅当 A = 0 ⑵秩(A m n ) min{ m , n} (3)初等行变换不改变矩阵的秩。 定义设A 是n 阶方阵。若秩(A) = n ,则称A 是满秩方阵;若 秩(A) < n ,则称A 是降秩方阵。 定理 满秩方阵只用初等行变换即可化为单位 方阵。 R 4 ( 5)R 2 R 3 3R 2 1 2 2 2 1 0 1 2 3 2 0 0 0 0 3 1 8 20 0 0 6 8 13 44 01 0 0 6 8 13 44 0 0 0 0 3 20 R 3

矩阵的秩及其求法求秩的技巧

第五节:矩阵的秩及其求法 一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的 阶行列式,称为A 的一个k 阶子式。 例如 共有 个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。显然, 矩阵 A 共有 个 k 阶子式。 2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r+1阶子式(如果存在的话)全为0 , 称r为矩阵A的秩,记作R (A)或秩(A )。 规定: 零矩阵的秩为 0 . 注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 . (2) 有行列式的性质, (3) R(A) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } . (4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n . 二、矩阵秩的求法 1、子式判别法(定义)。 例1 设 为阶梯形矩阵,求R(B ) 。 解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R(B ) = 2. 结论:阶梯形矩阵的秩=台阶数。 例如 () n m ij a A ?={}),m in 1(n m k k ≤≤????? ??----=110145641321A 182423=C C 43334=C C 10122--=D 1015643 213-=D n m ?k n k m c c () n m ij a A ?=0, r D ≠()(). T R A R A =0,A ≠0.A ≠????? ??=000007204321B 02021≠????? ??=010*********A ????? ??=001021B ????? ??=100010011C 125034000D ?? ?= ? ???21235081530007200000E ?? ? ?= ? ??? ()3=A R ()2=B R ()3=C R ()2 R D =()3R E =

矩阵的秩 学年论文

学院数学与信息科学学院 专业信息与计算科学 年级2009级 姓名张晓函 论文题目矩阵的秩 指导教师彭玉成职称讲师成绩 2009年5月25日

学年论文成绩评定表

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 引言 (1) 1预备知识 (1) 2矩阵的秩的性质 (2) 3矩阵秩的计算 (4) 4矩阵秩的应用 (8) 5结束语 (9) 参考文献 (9)

矩阵的秩 学生姓名:张晓函学号:20095034048 数学与信息科学学院信息与计算科学系 指导教师:彭玉成职称:讲师 摘要:本文是关于求一个数字矩阵的秩的方法的初步探究.归纳总结了求矩阵秩的常用方法. 关键词:矩阵;初等变换;子式;极大线性无关组 Matrix rank Abstract:This article is about for a digital matrix rank of the preliminary inquiry method. Summarizes the commonly used method of matrix rank Keywords: matrix,elementary transformation, son,great linearly independent groups 前言 矩阵是贯穿线性代数的一块重要内容.而对矩阵秩的探究是我们学习矩阵的一个重要部分.也是我们判断线性方程组解的情形的重要手段.下面就来具体讨论、探究数字矩阵秩的求解方法. 1.预备知识 定义1.1:矩阵A中不为零的子式的最高阶数称为A的秩.记作() r A 定义1.2:矩阵的行秩就是矩阵行向量的秩;矩阵的列秩就是矩阵列向量的秩. 矩阵A中任意选定k行和k列,位于这些选定的行和列的交点定义1.3:在一个s n 上的2k个元素按原来的次序所组成k级行列式,称为A的一个k级子式. 定义1.4:向量组的极大线性无关组所含向量的个数称为这个向量组的秩. 2.矩阵的秩的性质 1)现在我们来研究矩阵的秩具有哪些性质,从而利用这些性质求矩阵的秩。 性质2.1矩阵的行秩与列秩相等.

矩阵的秩与行列式的几何意义

矩阵的秩与行列式的几何意义 2016年7月16日16:39:30 1 关于面积:一种映射 大家会说,面积,不就是长乘以宽么,其实不然。我们首先明确,这里所讨论的面积,是欧几里得空间几何面积的基本单位:平行四边形的面积。平行四边形面积的定义,几何上说是相邻两边边长乘以他们之间的夹角的正弦。 然而为了应对更一般情形和更高维度的数理问题,我们有必要把面积的定义推广开来。注意到以下事实: 面积是一个标量,它来自于(构成其相邻边)两个矢量。因此,我们可以将面积看成一个映射: 其中V就是一个矢量,V*V代表两个矢量的有序对;f就是面积的值。 下面我们将说明这个映射是一个线性映射。 从最简单的例子出发。如果第一个矢量是(1,0),第二个矢量是(0,1);也就是说,两个矢量分别是X和Y轴上的单位正向量,那么由这两个矢量张成的四边形就是一个正方形,其面积根据定义,就是长乘以宽=1*1=1。 因此有: 如果我们把第一个矢量”缩放“a倍,面积将会相应是原来的a倍;把第二个矢量“缩放”b倍,面积也会成为原来的b倍。如果同时缩放,很显然,面积将会变成原面积的ab倍。这表明,面积映射对于其两个操作数(矢量)的标量积是各自线性的,如下:

最后,我们要说明,面积映射对于其操作数(矢量)的矢量加法也是线性的。因为矢量加法操作的本身是线性的,那么其面积映射理应对此也是一个线性映射。这里我们打算从几个实际的例子出发,说明映射的加法线性性的后果。 显然(两个共线矢量所张成的平行四边形还是一条线,因此面积为0): 假定面积映射是一个关于矢量加法的线性映射,那么我们有: 注意计算过程中用到了上面的结论。这说明: 也就是说,交换相互垂直操作数矢量的顺序,面积映射取负。孰正孰负取决于认为的定义。一般,我们把X轴单位矢量在前,Y轴单位矢量在后,从X轴到Y 轴张成的一个平行四边形的面积,取做正号。 1.1 右手定则 由此我们引入右手定则。注意右手定则只在三维空间中有效。如果以X正方向为首,Y正方向为尾,右手定则告诉我们,纸面向外是面积的正方向;如果反过来,那么纸面向内就是该面积的正方向,与规定的正方向相反,取负号。那么面积正负号的几何意义就明显了。 由此,我们不难得到平面内任意两个矢量所张成的平行四边形的面积(*): 我们不难看到,所谓面积就是一个2x2矩阵的行列式:

最新7.4-单元刚度矩阵组装及整体分析

7.4 单元刚度矩阵组装及整体分析 7.4.1 单刚组装形成总刚 根据全结构的平衡方程可知,总体刚度矩阵是由单元刚度矩阵集合而成的.如果一个结构的计算模型分成个单元,那么总体刚度矩阵可由各个单元的刚度矩阵组装而成,即 [K]是由每个单元的刚度矩阵的每个系数按其脚标编号“对号入座”叠加而成的.这种叠加要求在同一总体坐标系下进行.如果各单元的刚度矩阵是在单元局部坐标下建立的,就必须要把它们转换到统一的结构(总体)坐标系.将总体坐标轴分别用表示,对某单元有 式中,和分别是局部坐标系和总体坐标系下的单元结点位移向量;[T]为坐标转换阵,仅与两个坐标系的夹角有关,这样就有 是该单元在总体坐标系下的单元刚度矩阵.以后如不特别强调,总体坐标系下的各种物理参数 均不加顶上的横杠. 下面就通过简单的例子来说明如何形成总体刚度矩阵.设有一个简单的平面结构,选取6个结点,划分为4个单元.单元及结点编号如图3-27所示.每个结点有两个自由度.总体刚度矩阵的组装过程可分为 下面几步:

图7-27 (1)按单元局部编号顺序形成单元刚度矩阵.图7-27中所示的单元③,结点的局部编号顺序为.形成的单元刚度矩阵以子矩阵的形式给出是 (2)将单元结点的局部编号换成总体编号,相应的把单元刚度矩阵中的子矩阵的下标也换成总体编号.对下图3-27所示单元③的刚度矩阵转换成总体编号后为 (3)将转换后的单元刚度矩阵的各子矩阵,投放到总体刚度矩阵的对应位置上.单元③的各子矩阵投放后情况如下:

(4)将所有的单元都执行上述的1,2,3步,便可得到总体刚度矩阵,如式(3-9).其中右上角的上标表示第单元所累加上的子矩阵. (3-9)(5)从式(3-9)可看出,总体刚度矩阵中的子矩阵AB是单元刚度矩阵的子矩阵转换成总体编号后 具有相同的下标,的那些子矩阵的累加.总体刚度矩阵第行的非零子矩阵是由与结点相联系的那些单元的子矩阵向这行投放所构成的. 7.4.2 结点平衡方程 我们首先用结构力学方法建立结点平衡方程.连续介质用有限元法离散以后,取出其中任意一个结点,从环绕点各单元移置而来的结点载荷为 式中表示对环绕结点的所有单元求和,环绕结点的各单元施加于结点的结点力为

对矩阵的秩的有关理解及其在线性代数中的应用

对矩阵的秩的有关理解及其在线性代数中的应用 摘 要:本文叙述了矩阵秩的几个等价定义,并且给出了几个相关秩的解法.通过例子来验证和探讨了矩阵秩在线性代数中的应用,这些知识对我们理解矩阵的本质,灵活运用矩阵的秩去分析相关问题有一定的意义和作用. 关键词:矩阵的秩;秩的解法;秩的应用 On the Rank of Matrix relating to the understanding Extremely in the Application of Linear Algebra Abstract : This article describes several equivalent definitions of matrix rank, and gives the solution of some rank. Through example to verify that the discussion and application of matrix in linear algebra, this knowledge to our understanding of the nature of the matrix, flexible use of matrix rank to have a certain meaning and analysis of related problems. Key words : rank of matrix; rank method; the application of rank 0 前言 矩阵的理论是线性代数的理论基础。而在矩阵的理论中,矩阵的秩是一个基本的理论概念,也是矩阵最重要的数量特征之一,他在初等变换下是一个不变量.它是反应矩阵固有特性的一个重要概念.矩阵作为线性代数的重要工具,已渗透到各章内容之中,并成为行列式、线性代数方程组、线性空间、欧氏空间和二次型的纽带,它把线性代数各章节贯串成为一个整体.而矩阵的秩几乎贯穿矩阵理论的始终,是矩阵一个重要的、本质的属性,在求方阵的逆、判断线性方程组是否有解以及有多少个解、判断向量组的线性相关性、求矩阵的特征值等方面,矩阵的秩都有着广泛的应用. 1 矩阵秩的概念 首先给出矩阵秩的几个等价定义 定义1 设s ,矩阵中不为0子式的最高阶数,即A 有r 阶子式不为0,任何1r +阶子式(如果存在的话)全为0,称r 为矩阵A 的秩。记做()R A r =. 从本质上说,矩阵的秩就是矩阵中不等于0的姿势的最高阶数。这个不为0的子

单元刚度矩阵(等参元)MATLAB编程

《有限元法》实验报告 专业班级力学(实验)1601 姓名田诗豪 学号1603020210 提交日期2019.4.24

实验一(30分) 一、实验内容 编写一个计算平面3结点三角形单元的应变矩阵、应力矩阵和单元刚度矩阵的MATLAB 函数文件[B3,S3,K3] = ele_mat_tri3(xy3,mat),其中:输入变量xy3为结点坐标数组,mat为材料参数矩阵;输出变量B3为应变矩阵,S3为应力矩阵,K3为单元刚度矩阵。(要求给出3个不同算例进行验证,并绘制出单元形状和结点号) 二、程序代码 通用函数 function [B3,S3,K3] = ele_mat_tri3(xy3,mat) %生成平面3结点三角形单元的应变矩阵、应力矩阵和单元刚度矩阵的功能函数 %*********变量说明**************** %xy3------------------结点坐标数组 %mat------------------材料参数矩阵(弹性模量,泊松比,壁厚) %B3-------------------应变矩阵 %S3-------------------应力矩阵 %K3-------------------单元刚度矩阵 %********************************* xyh=[1,xy3(1,1),xy3(1,2);1,xy3(2,1),xy3(2,2);1,xy3(3,1),xy3(3,2)]; A=0.5*det(xyh); A=abs(A); D=mat(1)/(1-mat(2)^2)*[1,mat(2),0;mat(2),1,0;0,0,(1-mat(2))/2]; b=zeros(1,3);c=zeros(1,3); %********************************* for i=1:3 if i==1 j=2; m=3; elseif i==2 j=3; m=1; else j=1; m=2; end b(i)=xy3(j,2)-xy3(m,2); c(i)=xy3(m,1)-xy3(j,1); end %********************************* B31=1/(2*A)*[b(1),0;0,c(1);c(1),b(1)];

矩阵的秩的性质

矩阵的秩的性质和 矩阵秩与矩阵运算之间的关系 要谈矩阵的秩,就得从向量组的秩说起,向量组的秩,简而言之就是其极大无关组里向量的个数。进而扩展到线性方程组,在线性方程组的概念中(课本P90)定理1说:“线性方程组有解的充要条件是,它的系数矩阵和增广矩阵有相同的秩。” 那么不妨把矩阵用向量组的方式来看,则有行秩和列秩,一个矩阵的行秩和列秩相同,而其初等变换又不会改变秩。自然而然,我们就得到了一个判断矩阵秩的方法,就是将它转化为阶梯形矩阵,非零行数目即其秩。矩阵进一步发展就是运算了,包括数乘、加减、乘积等,又涉及到单位矩阵、三角矩阵、可逆矩阵以及矩阵的分块等概念,综合所学,我们得到如下性质: 1、矩阵的初等变换不改变秩,任一矩阵的行秩等于列秩。 2、秩为r 的n 级矩阵(n r ≥),任意r+1阶行列式为0,并且至少有一个r 阶子式不为0. 3、)}(),(min{)(B rank A rank AB rank ≤ )'()(A r a n k A r a n k =,)()()(B rank A rank B A rank ±=± )()(A rank kA rank = 4、设A 是n s ?矩阵,B 为s n ?矩阵,则+)(A rank )}(),(min{)()(B rank A rank AB rank n B rank ≤≤- 5、设A 是n s ?矩阵,P,Q 分别是s,n 阶可逆矩阵,则 )()()(A rank AQ rank PA rank ==

6、设A 是n s ?矩阵,B 为s n ?矩阵,且AB=0,则 n B rank A rank ≤+)()( 7、设A 是n s ?矩阵,则)()'()'(A rank A A rank AA rank == 其中,也涉及到线性方程组解得问题: 8、对于齐次线性方程组,设其系数矩阵为A ,n A rank =)( 则方程组有惟一非零解,n A rank <)(则有无穷多解,换言之,即为克莱姆法则, 非齐次线性方程组有解时,n A rank =)(惟一解,n A rank <)( 有无穷多解。 还有满秩矩阵: 9、可逆?满秩 10、行(列)向量组线性无关,即n 级矩阵化为阶梯形矩阵后非零行数目为n 。 扩展到矩阵的分块后: 11、110(A )(A )0n n A rank rank rank A ?? ?=++ ? ??? 12、()()0A C rank rank A rank B B ??≥+ ???

浅谈矩阵的秩及其应用定稿

山西师范大学本科毕业论文 浅谈矩阵的秩及其应用 姓名李欢 院系数学与计算机科学学院专业数学与应用数学 班级07510101 学号0751010125 指导教师张富荣 答辩日期2010.12.20 成绩

浅谈矩阵的秩及其应用 内容摘要 矩阵理论,在线性代数中占有十分重要的地位。而在矩阵理论中,矩阵的秩又是一个十分重要的概念,它是矩阵的一个数量特征,而且初等变换不改变矩阵的秩,是初等变换下的不变量。矩阵的秩与矩阵是否可逆,线性方程组的解得情况等都有密切的关系。 论文开头介绍了矩阵的秩,矩阵的行秩和列秩以及与矩阵有关的常见的命题和定理,部分定理并给出证明。第二部分介绍了计算矩阵的两种计算方法,求非零子式的最高级数法和初等变换法,并对其优劣进行比较。在矩阵的运算过程中,矩阵的秩存在某些关系,熟练地掌握这些关系对解有关矩阵的习题很有帮助。最后详细地介绍了矩阵的秩与线性方程组解的个数之间的关系,并将其应用到解析几何中,判断空间两直线位置关系。 本论文主要将矩阵的秩这一重要概念的相关内容及其相关定理的证明详细给出,并在一些具体题目中加以应用。 【关键词】矩阵矩阵的秩线性方程组非零子式的最高级数初等变换

A Brief Introduction on the rank of Matrix and the Application of the rank of Matrix Abstract In matrix theory, rank of matrix is an important concept. It is a matrix of number of characteristics, and it is invariant under elementary transformations. Rank of matrix may have a close relationship with the solution of linear equations. At the beginning, the paper presents the concept of rank of matrix, the matrix row rank and column rank, and the common matrix-related theorems. And some theorems are given proof. The second section of the paper describes two methods for calculating the rank of matrix, one is seeking the highest grade of the non-zero minor, and the other is elementary transformation. And it compares their advantages and disadvantages. In the process of matrix computation, there are some important relations about the matrix rank .If we have a good understanding about these relations, it will be very helpful. Finally, it has a detail description on the application of the rank of matrix, especially the relationship between the rank of matrix and the solution of linear equations. In this paper, it contains some important concepts related to the rank of matrix, the proof and some specific application. 【Key Words】matrix rank of matrix linear equations the highest grade of the non-zero minor elementary transformation

相关主题
文本预览
相关文档 最新文档