当前位置:文档之家› 矩阵秩的研究与应用毕业论文

矩阵秩的研究与应用毕业论文

矩阵秩的研究与应用毕业论文
矩阵秩的研究与应用毕业论文

百度文库-让每个人平等地提升自我

3 矩阵秩的研究与应用

[摘要]矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究的一个重要工具。矩阵理论是线性代数的主要组成部分,也是线性方程组的理论基础。而在矩阵的理论中,矩阵的秩是一个基本概念,也是矩阵最重要的数量特征之一,它在初等变换下是一个不变量。它反映矩阵固有特性的一个重要概念。矩阵一旦确定秩也就确定了。它是高等代数课程中的一个参考指标,其定义、性质、求法、应用等相关内容在高等代数中出现的极为频繁,作用较大。

本文首先介绍了矩阵秩的相关理论知识:即秩的几种不同定义,相关性质,以及矩阵秩的三种常见求法,并对三种求法做了一个简单的比较分析。后面着重介绍了矩阵秩的应用部分,主要是其在线性代数中的应用和解析几何上的应用。这里就不细说了,具体内容还得从文章中来了解。[1][2][3]

[关键词]:矩阵的秩,定义,性质,求法,应用,高等代数。

百度文库-让每个人平等地提升自我

4 矩阵秩的研究与应用

1 前言

矩阵在高等代数理论中极其重要并且应用广泛,它是线性代数的核心,而矩阵的秩作为研究矩阵的一个重要工具,其秩的理论研究非常重要。更重要的是将它推广到实际应用中,那么我们目前在其应用方面的研究又达到了一个什么程度呢?

本文主要是对矩阵秩的应用方面的一个总结,让学者对其有个更清晰的认识,使后面的学者对矩阵的学习更轻松,更全面。矩阵方面的理论是非常重要的内容,历年来许多学者对它都有研究,而且其中的部分理论有了很广泛的应用,例如矩阵分析法在企业战略管理、营销活动、供应链管理技术、教学效率评价、射击训练效果评价等方面都起到举足轻重的作用;不仅在本文中的线性代数和解析几何中的理论上的应用,而且在其他领域上也有更实际贴切的应用。如在控制论中,矩阵的秩可用来确定线性系统是否为可控制的,或可观的;此外,矩阵的秩在教学中还有更广泛的应用,如在测量平差中的应用。

理论指导实践,所以我着重选择了矩阵秩在理论上的应用的部分来进行探讨,其意义更加广泛且深远。在前人研究的基础上,我主要是对其进行了一个归纳总结,并简单的说了些自己的感想,希望大家能够从中有所收获。

百度文库 - 让每个人平等地提升自我

4

2 矩阵的理论研究

2.1矩阵秩的定义:

秩的定义形式上看比较简单,但是难于理解为什么这样定义,有什么缘由?事实上矩阵秩的概念是从线性方程组中来的:

给出m 个n 元一次方程组成的方程组,其中有些方程可以用别的方程来运算得出,因此这些方程去掉后,不影响方程的通解性。

比如 方程5x y +=可以由以下两个方程相减得出347x y += 232x y += 因此由这三个方程组成的方程组与由后面两个方程组成的方程组是同解的,

5x y +=是多余的,可去掉。这样对于m 个n 元一次方程组成的方程组就可 想办法

去掉那些可用其他方程表示的方程,剩下相互独立的方程。例如高斯消元法来去掉,而剩下的那些独立的方程的个数就是这个方程组的秩,矩阵的秩是从方程组的秩中来的,理解了这个就理解了秩的概念,这也是秩的几何意义。如果从向量的相关性的角度考虑,可以这样认为:是矩阵的行(列)向量组的极大线性无关组的这个数,即这个向量组的行(列)秩。

传统的代数中有两种定义矩阵的秩的方法:

定义1:一个向量组的极大线性无关组所含向量的个数称为这个向量组的秩. 所谓矩阵的行秩就是矩阵的行向量组的秩, 矩阵的列秩就是矩阵的列向量组的秩. 矩阵的行秩等于矩阵的列秩, 并统称为矩阵的秩。

定义2:设m n A F ?∈.若有一个r 阶子式不为0,且 A 的所有1r +阶子式

(假设A 有1r +阶子式)全为0或不存在,则称r 为A 的秩,记作()rank A , 若0A =,则()0rank A = 。

百度文库-让每个人平等地提升自我

5 定义一、定义二,这两个定义是等价的。它的等价性可由向量的线性相关性来

证,课本中已有证明。

关于矩阵秩的刻画方式很多,下面给出的命题1就是关于矩阵秩的等价描述的一组结论.

命题1设A为m n

?矩阵,则下面各结论等价:

1)()

R A r

=;

2)A的行向量组的秩等于r;

3)A的列向量组的秩等于r;

4)A的行空间的维数等于r;

5)A的列空间的维数等于r;

6)n元其次线性方程组0

AX=的解空间的维数等于n r-。

定义3:矩阵A经过初等行变换所化成的阶梯型中非零行的个数称为矩阵A的秩.矩阵A的秩为r,记为()

R A r

=.特别,零矩阵0的秩(0)0

R=.

该定义不仅便于理解,用该定义计算矩阵的秩也十分方便.只要对矩阵进行初等变换成阶梯型就能直接看出其秩了.实际上定义三就是根据定理“初等变换不改变矩阵的秩”得来的。下面举例以加深理解和比较这三个定义:

例1求矩阵A的秩其中

1123

2357

1012

A

??

??

=??

??

---

??

解:法一(定义1)

百度文库 - 让每个人平等地提升自我

6

A 有4个3阶子式,112

2350101=--,113

2370102

=--,1232570112=---,

1

23

3570012

=--.即它的所有3阶子式均为0.

我们再随便写几个它的2阶子式,

111023

=≠,故A 的秩为2.

法二(定义2)

令1(1,1,2,3)α=,2(2,3,5,7)α=,3(1,0,1,2)α=---.则123A ααα?? ?

= ? ???

.

显然123,,ααα中两两不成比例,故秩不可能是1,但可能是2,这还需要验证, 令31122k k ααα=+.

则带入数据,即有1212

1

2122130

251372

k k k k k k k k +=-??+=??+=-??+=-?,解得1231k k =-??=?,

即有3123ααα=-+,也就是3α能被12,αα线性表出。 故其秩为2.

法三(定义3)

百度文库 - 让每个人平等地提升自我

7

3221312112311231123235701110111101201110000r r r r r r --+??????

?????????→???→??????

??????---??????,最终阶梯型矩阵不为0的行数是2,故其秩为2.[1][2][7]

2.2矩阵秩的性质:

1、()rank A B rankA rankB +≤+

2、()(),rank AB min rankA rankB ≤

3、(,)mn rankA min m n ≤

4、()()(,)rank PA rank AQ rank P Q ==可逆

5、若nn A 的秩为r ,则存在可逆矩阵P 、Q 使得r

E O PAQ O O ??=?

???

. 6、()0rank A =,当且仅当A 是零矩阵;

7、()nn rank A n =,当且仅当0A ≠;若0A =,则()nn rank A n <;

8、()()A O A O rank rankrank rank A rank B BC B O B ????

==+ ? ?????;

由上述性质7,我们又可以得到

命题2()0rank A n A =?≠,从而有以下一些等价条件: 1) n n ?矩阵A 的秩等于n ; 2)矩阵A 的行列式不为零; 3)矩阵A 是可逆矩阵;

百度文库 - 让每个人平等地提升自我

8

4)齐次线性方程组0AX =只有零解;

5)矩阵A 能表示成一些初等矩阵的乘积的形式12n A Q Q Q =;

6)矩阵A 的所有特征值均不为零。

有了这些等价条件,在解决一些具体问题的时候是十分方便的。[4][5][8]

2.3秩的求法:

求矩阵秩的方法很多,拿来一个题目首先要认真仔细审题,尤其要挖掘题设所隐含的、不明显的条件,寻找这些题设与要解得结论的关系,从而确定解题思路。有时也要做一些技巧的变形,或构造一些辅助的条件,作为解决问题的桥梁,这是难点所在。也正是数学难学的原因所在,总之,要因题而异,所谓学无定法。比如对一个具体矩阵来说,秩的求法可利用上面提到的三个定义求得,既简便,又可行,如例1三种方法均可使用,难易程度不分彼此。而对于一些抽象矩阵则很难一下看出思路和方法,还需利用其他知识等综合考虑问题,这需要学生多多做题,积累经验,具体问题具体分析。我们来看下面一个例题。

例2.3 设,A B 是n 阶方阵,

试证:

如果0AB =,则

()()rank A rank B n +≤.

分析:解这个题需要由题设0AB =联想到秩与齐次线性方程组关联,清楚

0AB =与0AX =两者的关系,更深一步是需要明白矩阵乘积的意义.

证明:因为0AB =,所以B 的列向量都是齐次线性方程组0AX =的解,所以()rank B 小于或等于方程组0AX =的基础解系的个数()n rank A -,即

()()rank B n rank A ≤-,

百度文库 - 让每个人平等地提升自我

9

从而得

()()rank A rank B n +≤.

现在我们回过头来看例1,比较三个定义来求矩阵秩的方法优劣。

1、从逻辑性方面看:

用定义3的方法逻辑推理性不强,没有层次感,学生较难理解接受;相比之下,用定义2,定义1的方法,逻辑推理性较强,层次分明,步骤明确,学生比较容易理解接受。

2、从计算量方面看:

定义3的方法计算量较小。对于常见的4行5列矩阵,用定义3的方法通常只需3—5个步骤、10次左右的初等变换就可求出秩。如果能够灵活地将初等行变换、初等列变换交替使用,过程就更简单了;相比之下,用定义2的方法计算量非常大。对于上述常见的4行5列矩阵,存在4、3、2、1阶子式,其中4阶子式有455C =个,3

阶子式有334

540C C =个,2阶子式有224560C C =个,1阶子式有11

4520C C =个,这样一个个算,量是非常大的。对行列数更多的矩阵,要计算的就更多了,计算量也就更大了。定义1的运算量也相当大,解多元方程组也是一个棘手的过程。

3、从计算难度方面看:

对于行列数均3≤的矩阵而言,两种方法难度相差不大。而对于行列数均3>的矩阵而言,用定义3的方法难度较小,用定义1、定义2的方法难度较大,且矩阵的行列数越大,前者和后两者方法难度的差距也随之增大。

4、从正确率方面看:

对于行列数3≤的矩阵而言,三种方法也相差无几。而对于行列数均3>的矩阵而言,用定义3的方法步骤简练,中间过程较少,因而出错的可能性相对较小,正确率较高;而用定义1、定义2的方法步骤繁多,且有一定难度,因而出错的可能性相

百度文库 - 让每个人平等地提升自我

10

对较大,正确率也较低。

综合以上几个方面,用定义3的方法虽然相对不易理解接受,但实际应用时步骤简练,计算量相对较小,正确率较高;而用定义1、定义2的方法虽然相对较易理解接受,但实际应用时步骤繁琐,计算量很大,正确率也较低。故而得出下面结论:在求矩阵的秩时,用定义3的方法要优于前面两种方法。[3]

3 矩阵的秩在线性代数中的应用

3.1 矩阵的秩在向量组线性相关性问题中的应用

我们先了解下向量组线性相关的定义以及线性无关的定义,还有就是向量组的极大线性无关组的概念,那么矩阵的秩和它们又有什么联系呢? 定义4:如果向量组12,,,(2)s s ααα≥(*)中有一个向量可以由其余的向量线

性表出,那么向量组12,,,s ααα称为线性相关的.

定义5:一向量组12,,,(1)s s ααα≥不线性相关,即没有不全为零的数12,,

,s

k k k 使

11220,s s k k k ααα++

+=

就成为线性无关;或者说,一向量组12,,

s ααα称为线性无关,如果由

11220s s k k k ααα++

+=

可以推出

120s k k k ==

==.

定义6:一向量组的一个部分组称为一个极大线性无关组,如果这个部分组本身是线性无关的,并且从这向量组中任意添一个向量(如果还有的话),所得的部分

百度文库 - 让每个人平等地提升自我

11

向量组都线性相关.

结合定义一,我们要判断向量组(*)是否线性相关,只需求出该向量组构成的矩阵的秩即可,其秩也就是其极大线性无关组的个数,从而判断出其是否线性相关。 定理3.1.1 设12,,

n s P ααα∈,令12(,,,)s A ααα=,其中A 是n s ?矩阵,

(1,2,)i i s α=为n 维列向量,且12(,,,)'s x x x x =,则

12,,,s ααα线性相关?0AX =有非零解?()rank A s <. 12,,

,s ααα线性无关?0AX =只有零解?()rank A s =.

定理3.1.2 向量组12,,

l b b b 与向量组12,,

m a a a 能够互相线性表出,则称这两

个向量组等价。其等价的充分必要条件是

()()(,).R A R B R A B ==

其中A 和B 分别是向量组12,,m a a a 和12,,l b b b 所构成的矩阵.

百度文库 - 让每个人平等地提升自我

10

例3.1 设有向量组

123(1)(1,0,2)',(1,1,3)',(1,1,2)'a ααα===-+; 123(2)(1,2,3)',(2,1,6)',(2,1,4)'a a a βββ=+=+=+.

试问:当a 为何值时,向量组(1)与(2)等价?当a 为何值时,向量组(1)与(2)不等价?

解 作初等航变换,有

123123(,,,,,)αααβββ

11

1122011211232364a a a a ?? ?=- ? ?++++?? 102111011211001111a a a a -?? ?→- ? ?+-+-??

(1)当1a ≠-时,有行列式12310a ααα=+≠,()1233rank ααα=,故线

性方程组112233(1,2,3)i x x x i αααβ++==均有唯一解.

所以123,,βββ可由向量组(1)线性表示. 行列式1

2360βββ=≠,故123,,ααα可由向量组(2)线性表示.

因此向量组(1)与(2)等价.

(2)当1a ≠-时,有123123102111(,,,,,)011211000202αααβββ-??

?

→- ? ?--??

百度文库 - 让每个人平等地提升自我

11

由于1231231(,,)(,,,)rank rank ααααααβ≠,线性方程组1122331x x x αααβ++=无解,故向量1β不能由123,,ααα线性表示.

因此向量组(1)与(2)不等价.

向量组的秩与向量组的最大无关组密切相关,向量空间的基的本质就是向量空间的一个最大无关组,向量组的秩又恰好等于其构成的矩阵的秩,这使得矩阵的秩与向量空间的维数和向量空间的基相联系.因此,研究矩阵的秩、向量组的秩、向量空间的维数以及线性方程组解得理论和方法密不可分.

3.2 矩阵的秩在求解线性方程组问题中的应用

线性方程组问题是高等代数中极其重要的一类问题, 在解决和讨论线性方程组

的解的问题时, 我们可以运用矩阵的秩的知识.而线性方程组要解决的问题可以归纳为以下三类问题: 1. 方程组是否有解?

2. 方程组有解时, 解的个数是多少?

3. 如何求出解?

对于上述三个问题, 无一不与矩阵的秩有关。下面的定理4.2.1建立了线性方程组解的判定与矩阵秩之间的关系,从而将线性方程组解得判定问题转化为计算系数矩阵与增广矩阵秩,并判断系数矩阵与增广矩阵的秩是否相等的问题,使线性方程组解的判定与求解难度大大降低.

定理3.2.1 n 元线性方程组AX b =

百度文库 - 让每个人平等地提升自我

12

1)无解的充分必要条件是()(,)R A R A b <;

2)有唯一解的充分必要条件是()(,)R A R A b n ==;

3)有无限多解的充分必要条件是()(,)R A R A b n =<.

例3.2.1 设有线性方程组

12312312

3(1)0(1)3(1)x x x x x x x x x λλλλ

+++=??

+++=??+++=?(*) 问λ取何值时,次方程组(1)有唯一解;(2)无解;(3)有无限多个解?并在有无限多解时求其通解.

解法一 对增广矩阵(,)B A b =作初等行变换,把它变为行阶梯形矩阵,有

1321

31

(1)11101

11111311131111110r r r r r r B λλλλλλλλλ?--+++???? ? ?=+???→+????→ ? ? ? ?++????

3211

111103030(2)(1)00(3)(1)(3)r r λ

λ

λλλλλλλλλλλλλλλλλ+++????

? ?

--???→-- ? ? ? ?--+-+-+-+?

???

(1)当0λ≠且3λ≠-时,()()3R A R B ==,方程组有唯一解; (2)当0λ=时,()1,()2R A R B ==,方程组无解; (3)当3λ=-时,()()2R A R B ==,方程组有无限多个解.

继续对增广矩阵B 作初等变换,将其化为最简形

百度文库 - 让每个人平等地提升自我

13

112310110336011200000000B ----???? ? ?=--- ? ? ? ?????

由此得同解的线性方程组

13231

2

x x x x =-??

=-? 3x 为自由未知量,令3()x c c R =∈.则方程组(*)的通解为

123111210x x c x -?????? ? ? ?=+- ? ? ? ? ? ???????

c R ∈ 解法二 因系数矩阵A 为方阵,故方程有唯一解的充分必要条件是系数行列式

0A ≠.而

111111111(3)1

111

111

1

1A λλ

λλλλλ

++=

+=++++

211

1

(3)00(3)00λλ

λλλ

=+=+

因此,当0λ≠且3λ≠-时,方程组(*)有唯一解; 当0λ=时,对增广矩阵B 作初等行变换,将其化为

111011101113000111100000B ????

? ?= ?

? ? ?????

百度文库 - 让每个人平等地提升自我

14

则()1,()2R A R B ==,故方程组(*)无解;

当3λ=-时,对增广矩阵B 作初等行变换,将其化为

211010111213011211230000B ---????

? ?=--- ?

? ? ?--????

则()()2R A R B ==,故方程组(*)有无限多个解,其通解为

123111210x x c x -??????

? ? ?=+- ? ? ? ? ? ???????

c R ∈ 上例中介绍的两种解决问题的方案各有特点.解法一直接利用上面定理4.2.1的结论来判别,具有一般性;解法二针对方程个数与未知数个数相等这一特点,应用了克拉默法则,易于确定待定参数的值,使问题简单化.但是,当方程个数与未知数个数不等时,第二种方法不能使用.

从以上我们看到,借助矩阵的秩可以求线性方程组AX b =和0AX =的解,但是,线性方程组AX b =和0AX =的解的结构尚不清晰.有了向量空间的基与维数的概念后,矩阵的秩又帮助人们从更高的层次来看待线性方程组的解.定理4.2.2就刻画了线性方程组解的结构.

定义7: 齐次线性方程组0AX =(*)的一组解12,,,r ηηη称为(*)的一个基

础解系,如果

1)(*)的任一个解都能表成12,,,r ηηη的线性组合;

2)12,,

,r ηηη线性无关.

定理3.2.2 设m n ?矩阵A 的秩()R A r =,则n 元齐次线性方程组0AX =的解集

百度文库 - 让每个人平等地提升自我

15

S 的秩()R S n r =-.其通解为

1122

n r n r X k k k ξξξ--=++,

其中12,,,n r ξξξ-是解集的极大无关组,即12,,

,n r ξξξ-是方程组0AX =的基础

解系.

方程组AX b =的通解为

*1122

n r n r X k k k ξξξη--=+++,

其中12,,n r k k k -为任意实数,12,,,n r ξξξ-是方程组0AX =的基础解系,*η是

AX b =的某个解.

下面的例题就是对上述定理的一个应用,它总结了基础解系的求法,解的结构的求法,以及矩阵的秩在其中的作用.

例3.2.2求解非齐次线性方程组

1234123412

34031

2312

x x x x x x x x x x x x --+=??

-+-=??--+=-? (2) 解法一 对增广矩阵B 作初等变换

1111

01101121113100121211231200000B ----????

? ?=--- ?

? ? ?---????

可见()()2R A R B ==,故方程组(2)有无限多解,并有

百度文库 - 让每个人平等地提升自我

16

1243

412

212x x x x x =++??

=+?, 取240x x ==,则131

2

x x ==

,即得方程组的一个解(称为特解) *

120120η?? ? ?= ? ???

在对应的齐次方程组12434

2x x x x x =+??=?中,取2410x x ????= ? ?????及2401x x ????

= ? ?????,则1310x x ????= ? ?????及

1312x x ????

= ? ???

??,即得对应的齐次线性方程组的基础解系 11100ξ?? ? ?= ? ???,21021ξ?? ? ?= ? ???

于是方程组(2)通解为

12123411121000212010x x c c x x ????????

? ? ? ? ? ? ? ?=++ ? ? ? ? ? ? ? ?????????

,12

,c c R ∈

解法二 对增广矩阵B 作初等行变换

111101101121113100121211231200000B ----????

? ?=--- ?

? ? ?---????

百度文库 - 让每个人平等地提升自我

17

可见()()2R A R B ==,故方程组(2)有无限多解,并有

1243

412

212x x x x x =++??

=+?, 取24,x x 为自由未知量,并令2142,x c x c ==,则方程组(2)的通解为

112211232421211121002120212010x c c x c c c x c x c ++??????????

? ? ? ? ? ? ? ? ? ?==++ ? ? ? ? ?+ ? ? ? ? ???????????

,12

,c c R ∈

这里向量11100ξ?? ? ?= ? ???,21021ξ?? ? ?= ? ???

为方程组(2)对应的齐次线性方程组的基础解系. 3.3 矩阵的秩在二次型问题中的应用

二次型即二次齐次多项式,它有着十分广泛的应用,尤其是在解决二次曲线与二次曲面以及证明不等式方面有着显著地作用。高等代数课程中的核心内容是将二次型化为标准型,它在物理学、工程学、经济学等领域都有十分重要的作用,常用的方法有:配方法、初等变换法、正交变换法。那么它和矩阵的秩又有什么联系呢? 定义8:数域P 上n n ?矩阵,A B 称为合同的,如果有数域P 上n n ?矩阵C 使

T B C AC =。

两个重要结论:

1) 两个复对称矩阵合同的充分必要条件是秩相等。

2) 两个实对称矩阵合同的充分必要条件是正惯性指数与负惯性指数分别相等。

百度文库 - 让每个人平等地提升自我

18

定义9:二次型的几种表述:

(1)1211(,,

,)n

n

n ij i j i j f x x x a x x ===∑∑;

(2)22212111222(,,,)2n nn n ij i j i j

f x x x a x a x a x a x x <=++

++∑;

(3) 12(,,,)T n f x x x X AX =.其中12(,,,),()T n ij n n X x x x A a ?==且T A A =.

称A 为二次型f 的矩阵,矩阵A 的秩有时也称为二次型f 的秩. 定义10:二次型12(,,

,)n f x x x 经过非退化线性替换所变成的平方和称为

12(,,

,)n f x x x 的标准形.

任意二次型总可以经非退化线性变换X CY =化为标准形,而且还可以经过不同的非退化线性变换化为不同的标准形,由于经过非退化线性替换,二次型的矩阵变成一个与之合同的矩阵,由上述定义八的两个结论可知合同的矩阵有相同的秩,又标准型的矩阵是对角矩阵,而对角矩阵的秩等于它对角线上不为零的元素的个数,故这些标准形中所含平方项的个数是相同的,所含平方项的个数就等于二次型的秩.

3.4 矩阵的秩在线性空间及线性变换中的应用

为了讨论矩阵的秩在这个方面的应用,我们先引入几个概念。

定义11:如果在线性空间V 中有n 个线性无关的向量,但是没有更多数目的线性无关的向量,那么V 就称为n 维的;如果在V 中可以找到任意多个线性无关的向量,那么V 就称为无线维的。

定义12:在n 维线性空间V 中,

n 个线性无关的向量12,,,n εεε称为V 的一组基。

设α是V 中任一向量,于是12,,,,n εεεα线性相关,因此α可以被基12,,

,n εεε线性

表出:

百度文库 - 让每个人平等地提升自我

19

1122n n a a a αεεε=++

+

其中系数12,,n a a a 是被向量α和基12,,

,n εεε唯一确定的,这组数就称为α在

基12,,

,n εεε下的坐标,记为12(,,

)n a a a 。

从以上定义可以看出,线性空间的维数就是这个线性空间的一组基所含向量的个数,这就把一个相对抽象的维数的概念转化到讨论向量的个数,即讨论向量组的秩。如果把矩阵的每一行看成一个向量,那么矩阵就可以认为是由这些行向量组成的,而矩阵的行向量组的秩称为行秩,也就是矩阵的秩。

设12,,

n a a a 是线性空间V 中的一组向量,称12(,,

)n L a a a 为由12,,

n a a a 生成的

子空间,12(,,)n L a a a 的维数等于向量组12,,

n a a a 的秩。根据以上的分析,就可以

把求线性空间的维数问题转化为比较直观的求矩阵的秩。

例3.4.1 已知123(1,2,1,1),(2,3,1,0),(1,2,2,3)ααα=-==- 求1123(,,)W L ααα=的基和维数。

解:1

2

112

123201011200

11

03000????????-?

??

?→???????

?--????

由此可以看出,123(,,)3rank ααα=,1123(,,)3dimW rank ααα==,且123,,ααα为1

W 的一组基。

在线性空间中,齐次线性方程组的全部解向量组成一个子空间,这个子空间叫做齐次线性方程组的解空间,解空间的基就是方程组的基础解系,它的维数等于n r -,其中r 为系数矩阵的秩。

定义13:设V 是数域P 上n 维线性空间,12,,

,n εεε是V 的一组基,A *是V 中的线

矩阵秩的研究与应用

. I 矩阵秩的研究与应用 [摘要]矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究的一个重要工具。矩阵理论是线性代数的主要组成部分,也是线性方程组的理论基础。而在矩阵的理论中,矩阵的秩是一个基本概念,也是矩阵最重要的数量特征之一,它在初等变换下是一个不变量。它反映矩阵固有特性的一个重要概念。矩阵一旦确定秩也就确定了。它是高等代数课程中的一个参考指标,其定义、性质、求法、应用等相关容在高等代数中出现的极为频繁,作用较大。 本文首先介绍了矩阵秩的相关理论知识:即秩的几种不同定义,相关性质,以及矩阵秩的三种常见求法,并对三种求法做了一个简单的比较分析。后面着重介绍了矩阵秩的应用部分,主要是其在线性代数中的应用和解析几何上的应用。这里就不细说了,具体容还得从文章中来了解。[1][2][3] [关键词]:矩阵的秩,定义,性质,求法,应用,高等代数。 矩阵秩的研究与应用

. I 1 前言 矩阵在高等代数理论中极其重要并且应用广泛,它是线性代数的核心,而矩阵的秩作为研究矩阵的一个重要工具,其秩的理论研究非常重要。更重要的是将它推广到实际应用中,那么我们目前在其应用方面的研究又达到了一个什么程度呢? 本文主要是对矩阵秩的应用方面的一个总结,让学者对其有个更清晰的认识,使后面的学者对矩阵的学习更轻松,更全面。矩阵方面的理论是非常重要的容,历年来许多学者对它都有研究,而且其中的部分理论有了很广泛的应用,例如矩阵分析法在企业战略管理、营销活动、供应链管理技术、教学效率评价、射击训练效果评价等方面都起到举足轻重的作用;不仅在本文中的线性代数和解析几何中的理论上的应用,而且在其他领域上也有更实际贴切的应用。如在控制论中,矩阵的秩可用来确定线性系统是否为可控制的,或可观的;此外,矩阵的秩在教学中还有更广泛的应用,如在测量平差中的应用。 理论指导实践,所以我着重选择了矩阵秩在理论上的应用的部分来进行探讨,其意义更加广泛且深远。在前人研究的基础上,我主要是对其进行了一个归纳总结,并简单的说了些自己的感想,希望大家能够从中有所收获。

《矩阵的秩的等式及不等式的证明》

摘要 矩阵的秩是矩阵的一个重要特征,它具有许多的重要性质.本文总结归纳出了有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,即从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.本文主要解决以下几个问题:用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;用线性空间的方法证明矩阵秩的等式和不等式问题;用向量组秩的理论证明矩阵秩的等式和不等式问题;用矩阵分块法证明秩的等式和不等式问题.

目录 第一章绪论 (1) 第二章预备知识 (2) 第三章用矩阵的秩的理论证明秩的等式和不等式 (3) 第四章用线性空间的理论证明秩的等式和不等式 (6) 第五章用向量组秩的理论证明秩的等式和不等式 (10) 第六章用矩阵分块法证明秩的等式和不等式 (15) 第七章小结 (23) 参考文献 (24) 致谢 (25)

第一章绪论 矩阵的秩是矩阵的一个重要特征,是矩阵理论中研究的一个重要内容,它具有许多的重要性质.研究矩阵的秩对于解决矩阵的很多问题具有重要意义.矩阵的秩的等式及不等式的证明对于学习矩阵也是重点和难点,初学者在做这方面的题目往往不知如何下手.笔者归纳了矩阵的秩的常见等式和不等式以及与之相关的一些结论,并从向量组、线性方程组、矩阵分块、矩阵初等变换等角度探索了多种证明方法,它有助于学习者加深对秩的理解和知识的运用,也方便教师教学. 目前对矩阵秩的研究已经比较成熟了,但是由于秩是矩阵论里的一个基本而重要的概念,它仍然有着重要的研究价值,有关它的论文时见报端.很多国内外的有关数学书籍杂志对矩阵的秩都有讲述,如苏育才、姜翠波、张跃辉在《矩阵论》(科学出版社、2006年5月出版)中较完整地给出了矩阵秩的理论.北京大学数学系前代数小组编写的《高等代数》(高等教育出版社,2003年7月出版)也介绍了秩的一些性质.但是对秩的等式及不等式的介绍都比较分散,不全面也没有系统化,不方便初学者全面掌握秩的性质.因此有必要对矩阵的秩的等式和不等式进行一个归总,便于学习和掌握. 本文通过查阅文献资料,总结归纳出有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.主要内容有:(1)用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;(2)用线性空间的方法证明矩阵秩的等式和不等式问题;(3)用向量组秩的理论证明矩阵秩的等式和不等式问题;(4)用矩阵分块法证明秩的等式和不等式问题.

关于某矩阵秩地证明

关于矩阵秩的证明 -----09数应鄢丽萍 中文摘要 在高等代数中,矩阵的秩是一个重要的概念。它是矩阵的一个数量特征,而且在初等变换下保持不变。关于矩阵秩的问题,通常转化为矩阵是否可逆,线性方程组的解的情况等来解决。 所谓矩阵的行秩就是指矩阵的行向量组的秩,矩阵的列秩就是矩阵的列向量组的秩,由于矩阵的行秩与列秩相等,故统称为矩阵的秩。向量组的秩就是向量组中极大线性无关组所含向量的个数。 关键词:初等变换向量组的秩极大线性无关组

约定用E 表示单位向量,A T 表示矩阵A 的转置,r(A)表示矩阵A 的秩。在涉及矩阵的秩时,以下几个简单的性质: (1) r(A)=r(A T ); (2) r(kA)=? ??=≠0 00 )(k k A r (3) 设A,B 分别为n ×m 与m ×s 矩阵,则 r(AB)≤min{r(A),r(B),n,m,s} (4) r(A)=n,当且仅当A ≠0 (5) r ???? ??B O O A =r(A)+r(B)≤r ??? ? ??B O C A (6) r(A-B)≤r(A)+r(B) 矩阵可以进行加法,数乘,乘法等运算,运算后的新矩阵的秩与原矩阵的秩有一定关系。

定理1:设A,B 为n ×n 阶矩阵,则r(A+B)≤r(A)+r(B) 证: 由初等变换可得 ???? ??B O O A →???? ??B A O A →???? ??+B B A O A 即???? ??E E O E ???? ??B O O A ???? ??E E O E =??? ? ??+B B A O A 由性质5可得 r ???? ??B O O A =r ??? ? ??+B B A O A 则有r(A)+r(B)≥r(A+B) 定理2(sylverster 公式)设A 为s ×n 阶矩阵,B 为n × m 阶矩阵,则有r(A)+r(B)-n ≤r(AB) 证:由初等变换可得 ???? ??O A B E n →???? ??-AB O B E n →???? ??-AB O O E n 即? ??? ??-s n E A O E ??? ? ??O A B E n ? ??? ? ?-m n E O B E =???? ??-AB O O E n 则r ???? ??O A B E n =r ??? ? ??-AB O O E n 即r(A)+r(B)-n ≤r(AB)

矩阵的秩及其应用

山西师范大学本科毕业论文(设计) 矩阵的秩及其应用 姓名杨敏娜 院系数学与计算机科学学院专业数学与应用数学 班级11510102 学号1151010240 指导教师王栋 答辩日期 成绩

矩阵的秩及其应用 内容摘要 矩阵在高等代数的研究中占有极其重要的地位,矩阵的秩更是研究矩阵的一个重要纽带。通过对矩阵的秩的分析,对判断向量组的线性相关性,求其次线性方程组的基础解系,求解非其次线性方程组等等都有一定的意义和作用。 论文第一部分介绍矩阵的概念,一般性质及秩的求法,这对之后介绍秩的应用有重要的铺垫作用。第二部分再利用这些性质及定理解决向量组和线性方程组的有关问题。第三部分研究矩阵的秩在解析几何应用中,着重用于判断空间两直线的位置关系。在与特征值间的关系主要是计算一些复杂矩阵的值。最后将矩阵的秩推广到特征值和其他与向量组有关的向量空间的应用。 本文主要对矩阵的秩相关定义定理进行总结和证明,并将其运用到一些具体事例中。 【关键词】矩阵的秩向量组线性方程组特征值解析几何

The Rank of Matrix and the Application of the Rank of Matrix Abstract The matrix plays a very important role in the research on advanced algebra. The rank of matrix is an important link of matrix. The analysis of the rank of matrix determines the linear relation of vector group. And there are certain significance and role to solve some linear equations and non linear equations. First, the article introduces the concept of matrix, general nature and method for the rank of matrix, it plays an important role for the application of the rank. Second, use the properties and theorems of vector group to solve the problem of linear equations. Third, analysis the rank of matrix in geometry application, it focuses on the judgment of space position relationship of two lines. In the characteristics of value, it mainly calculates some complex matrix. Finally, the application of the rank of matrix is extended to Eigen value and other related vectors in vector space. This paper mainly summarizes the matrix rank and its related theorem, and applies it to some specific examples. 【Key Words】rank of matrix vector group linear equations characteristic value Analytic geometry

行(列)满秩矩阵的性质及其应用

摘要 本文将行(列)满秩矩阵的性质与可逆矩阵(即满秩矩阵)的相关性质进行比较,归纳出行(列)满秩矩阵在解线性方程组、矩阵秩的证明及矩阵分解等方面的若干应用,使其不受方阵的正方性限制,而应用起来又与可逆矩阵相差无几。 关键词:可逆矩阵;行(列)满秩矩阵;矩阵的秩;线性方程组

Abstract This article will row (column) the nature of the full rank matrix and invertible matrix (i.e. full rank matrix) properties of comparison, induction travel (column) full rank matrix in solving linear equations, the proof of matrix rank and some applications of matrix decomposition, etc.to make it without being limited by a phalanx of tetragonality, and used up and reversible. Key words: Invertible matrix; Row (column) full rank matrix; Matrix rank; The System of linear equations.

目录 1 引言 (1) 2 预备知识 (2) 3 可逆矩阵的性质及其应用 (3) 4 行(列)满秩矩阵的性质 (5) 5 行(列)满秩矩阵的若干应用 (11) 5.1 在矩阵秩的证明中的应用 (11) 5.2 在齐次线性方程组中的应用 (12) 5.3 在非齐次线性方程组中的应用 (15) 5.4 在几类特殊矩阵分解方面的应用 (17) 参考文献 (20)

矩阵秩重要知识点总结_考研必看

一. 矩阵等价 行等价:矩阵A 经若干次初等行变换变为矩阵B 列等价:矩阵A 经若干次初等列变换变为矩阵B 矩阵等价:矩阵A 经若干次初等行变换可以变为矩阵B ,矩阵B 经若干次初等行变换可以变成矩阵A ,则成矩阵A 和B 等价 矩阵等价的充要条件 1. 存在可逆矩阵P 和Q,PAQ=B 2. R(A)=R(B) 二. 向量的线性表示 Case1:向量b r 能由向量组A 线 性表示: 充要条件: 1.线性方程组A x r =b 有解 (A)=R(A,b) Case2:向量组B 能由向量组A 线性表示 充要条件: R(A)=R(A,B) 推论 ∵R(A)=R(A,B),R(B) ≤R(A,B) ∴R(B) ≤R(A) Case3:向量组A 能由向量组B 线性表示 充要条件: R(B)=R(B,A) 推论 ∵R(B)=R(A,B),R(A) ≤R(A,B) ∴R(A) ≤R(B) Case4:向量组A 和B 能相互表示,即向量组A 和向量组B 等价 充要条件: R(A)=R(B)=R(A,B)=R(B,A) Case5:n 维单位坐标向量组能由矩阵A 的列向量组线性表示 充要条件是: R(A)=R(A,E)

n=R(E)<=R(A),又R(A)>=n ,所以R(A)=n=R(A,E) 三. 线性方程组的解 1. 非齐次线性方程组 (1) R(A)=R(A,B),方程有解. (2) R(A)=R(A,B)=n ,解唯一. (3) R(A)=R(A,B)

矩阵秩的研究与应用毕业论文

百度文库-让每个人平等地提升自我 3 矩阵秩的研究与应用 [摘要]矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究的一个重要工具。矩阵理论是线性代数的主要组成部分,也是线性方程组的理论基础。而在矩阵的理论中,矩阵的秩是一个基本概念,也是矩阵最重要的数量特征之一,它在初等变换下是一个不变量。它反映矩阵固有特性的一个重要概念。矩阵一旦确定秩也就确定了。它是高等代数课程中的一个参考指标,其定义、性质、求法、应用等相关内容在高等代数中出现的极为频繁,作用较大。 本文首先介绍了矩阵秩的相关理论知识:即秩的几种不同定义,相关性质,以及矩阵秩的三种常见求法,并对三种求法做了一个简单的比较分析。后面着重介绍了矩阵秩的应用部分,主要是其在线性代数中的应用和解析几何上的应用。这里就不细说了,具体内容还得从文章中来了解。[1][2][3] [关键词]:矩阵的秩,定义,性质,求法,应用,高等代数。

百度文库-让每个人平等地提升自我 4 矩阵秩的研究与应用 1 前言 矩阵在高等代数理论中极其重要并且应用广泛,它是线性代数的核心,而矩阵的秩作为研究矩阵的一个重要工具,其秩的理论研究非常重要。更重要的是将它推广到实际应用中,那么我们目前在其应用方面的研究又达到了一个什么程度呢? 本文主要是对矩阵秩的应用方面的一个总结,让学者对其有个更清晰的认识,使后面的学者对矩阵的学习更轻松,更全面。矩阵方面的理论是非常重要的内容,历年来许多学者对它都有研究,而且其中的部分理论有了很广泛的应用,例如矩阵分析法在企业战略管理、营销活动、供应链管理技术、教学效率评价、射击训练效果评价等方面都起到举足轻重的作用;不仅在本文中的线性代数和解析几何中的理论上的应用,而且在其他领域上也有更实际贴切的应用。如在控制论中,矩阵的秩可用来确定线性系统是否为可控制的,或可观的;此外,矩阵的秩在教学中还有更广泛的应用,如在测量平差中的应用。 理论指导实践,所以我着重选择了矩阵秩在理论上的应用的部分来进行探讨,其意义更加广泛且深远。在前人研究的基础上,我主要是对其进行了一个归纳总结,并简单的说了些自己的感想,希望大家能够从中有所收获。

矩阵秩的一些著名结论

引言 矩阵的秩是高等代数中一个应用及其广泛的理论,有关矩阵的秩的等式或不 等式的证明,常常和向量组的秩,线性方程组的解等密切相关,推证有难度也有技巧。熟练掌握关于矩阵秩的一些结论及其证明技巧,对有关理论的学习会有很大的裨益。矩阵A 中的最大阶不为零的子式的阶数就称为矩阵A 的秩,记为r(A).一些平凡的理论及概念读者可参阅一些权威教材,这里只对一些经典的理论做一讨论. 1. 证明: 设B A ,为两个同阶矩阵,则有r(A ﹢B)≤r(A)﹢r(B) 证 设A =(α1,α 2 ,…, αn ), B =() ββ βn ,...,,2 1 则 A +B =( α1 +β1 ,α2 +β 2 ,…, αn +βn ) 不妨设A 列向量的极大线性无关组为 α1 ,α 2 ,…, α r . (1≤r ≤n); B 列向量的极大线性无关组为β1,β2,…βs . (1≤s ≤n). 则k i i 1 =αα1 +α 2 2 k i +…+ α r ir k ; βi =β1 1 l i +β 2 2 l i +…+ β s is l ; 则 αi +β i = k i 1 α1 +α 2 2 k i +…+αr ir k +β1 1 l i +β 2 2 l i +…+ β s is l ; 即A +B 的列向量可由 α1 ,α 2 ,…, α r , β 1 , β 2 ,… β s 线性表出, 故)()()(B +A =+≤B +A r r s r r . 2. 若AB =O ,则)()(B r A r +n ≤. 证 记 ),...,,(2 1 ββ βn B =,由AB =O ,知B 的每一列都是O =AX 解, 即O =A β i ,i =1,2,…,n 又因O =AX 的基础解系所含向量个数为)(A r n -, 换言之, O =AX 的所有解所构成的向量组的秩为)(A r n -.故≤)(B r )(A r n -, 即)()(B r A r +n ≤.

矩阵的秩及其应用

矩阵的秩及其应用 摘要:本文主要介绍了矩阵的秩的概念及其应用。首先是在解线性方程组中的应用,当矩阵的秩为1时求特征值;其次是在多项式中的应用,最后是关于矩阵的秩在解析几何中的应用。对于每一点应用,本文都给出了相应的具体的实例,通过例题来加深对这部分知识的理解。 关键词:矩阵的秩; 线性方程组; 特征值; 多项式 引言: 阵矩的秩是线性代数中的一个概念,它描述了矩阵的一个数值特征。它是矩阵 的一个重要性质。在判定向量组的线性相关性,线性方程组是否有解,求矩阵的特征值,在多项式、空间几何中等多个方面都有广泛的应用。由于矩阵的秩的重要作用和地位,需要我们认真学习。 1.矩阵的秩及其求法 1.1矩阵的秩的定义 定义1.1.1[1] 矩阵A 的行(列)向量组的秩称为矩阵A 的行(列)秩。 定义1.1.2[2] 矩阵的列向量组(或行向量组)的任一极大线性无关组所含向量的个数称为矩阵的秩。 定义1.1.3[1] 设在矩阵A 中有一个不等于零的r 阶子式,且所有的1r +子式(如果存在的话)全等于零,则称矩阵A 的秩为r ,记为()r A r =或秩()A r =。零矩阵的秩规定为零。 注:由定义可以看出

(1)若A 为n m ?矩阵,则()r A m ≤,也()r A n ≤,即()min{,}r A m n = (2) ()()T r A r A = ,()()r kA r A = ,k 为非零数 1.2 矩阵的秩的求法 定义法和初等变换法是我们常用的求矩阵的秩的两种方法,下面就来比较一 下这两种方法。 方法1 按定义 例1.2.1 求矩阵A =?? ????????--413112212228 32的秩 解 按定义3解答,容易算出二阶子式 12232-0≠,而矩阵的所有三阶子式 13 1 2122832--=0,43112122232-=0,41312212 2 8 3 --=0,4 1112222 8 2 -=0 所以 ()2r A = 方法2 初等变换法 引理1.2.1[1] 初等变换不改变矩阵的秩。 例1.2.1求矩阵23822122121314A -?? ??=-?? ????的秩 解 用“→”表示对A 作初等变换,则有 A →13142122122382????-????-??→131406440966????-????-??→131406440000?? ?? -??????=B ,在矩阵B 中易 知,所有三阶子式全为零,且有一个二阶子式 1306 ≠0. 所以()2r B =, 可得

最新考研数学矩阵8大秩及其证明

考研数学矩阵的8大秩及其证明2009 ()1 证明:根据矩阵秩的定义直接得出。 ()2 证明:对矩阵A 任意添加列后变成矩阵(), A B ,则秩显然不小于()R A ,即: ()(), R A B R A ≥ 同理: ()(), R A B R B ≥ 因而:()(){}(), , Max R A R B R A B ≤成立。 又设 ()(), R A r R B t ==,把, A B 分别做列变换化成列阶梯形~ ~ , A B 1110 3 810 1100 1000?? ? ? ? ? ??? 如:就是列阶梯形 用~ ~~ ~ 1 1 , r r a a b b 分别表示非全零列,则有: ()~ ~~ ()1~~ ~ ~~ ()1 , 00, , , 0 0表示列变换表示列变换c r c c r A A a a A B A B B B b b ????????→= ????? ?? ???→? ????? ??????→= ???? ? 由于初等变换后互为等价矩阵,故()~~, , R A B R A B ?? = ??? 而矩阵~~, A B ?? ???只含有r t +个非全零列,所以:()()~~~~, , R A B r t R A B R A R B ???? ≤+?≤+ ? ????? 。 综合上述得:()(){}()()(), , Max R A R B R A B R A R B ≤≤+

●特别地:如B b =为列向量,则()1R b ≡()()() , 1R A R A B R A ?≤≤+。 ●如B E =,设()(), , m n m R A B R A E ?=, 则 ()()() , , m n m m m n m m R A E R E m R A E m ??≥≥=?= ()3 证明: ()()()()()()()()()()()() 2 , , , , , , A B B A B R A B B R A B R A R B R A B R A B B R A B R A B R A R B +→?+=????→+≥=+≥+?+≤+由公式知 ()4 证明:()1 设()()() ,AB C B AX C R A R A C R C =?=?=≥是的解 ()()()() () ()()()()()(){},min , T R B R B T T T T T T T B A C R B R B C R C R B R C R C R AB R A R B n ==?=≥???? ?→≥?=≤≤又, ()2 设()(), m n n s R A r R B t ??== 则A 的标准型为000r m n E ??? ???,B 的标准型为000t n s E ??? ??? 存在可逆矩阵, , , m s n n P Q P Q 使:

矩阵的秩 学年论文

学院数学与信息科学学院 专业信息与计算科学 年级2009级 姓名张晓函 论文题目矩阵的秩 指导教师彭玉成职称讲师成绩 2009年5月25日

学年论文成绩评定表

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 引言 (1) 1预备知识 (1) 2矩阵的秩的性质 (2) 3矩阵秩的计算 (4) 4矩阵秩的应用 (8) 5结束语 (9) 参考文献 (9)

矩阵的秩 学生姓名:张晓函学号:20095034048 数学与信息科学学院信息与计算科学系 指导教师:彭玉成职称:讲师 摘要:本文是关于求一个数字矩阵的秩的方法的初步探究.归纳总结了求矩阵秩的常用方法. 关键词:矩阵;初等变换;子式;极大线性无关组 Matrix rank Abstract:This article is about for a digital matrix rank of the preliminary inquiry method. Summarizes the commonly used method of matrix rank Keywords: matrix,elementary transformation, son,great linearly independent groups 前言 矩阵是贯穿线性代数的一块重要内容.而对矩阵秩的探究是我们学习矩阵的一个重要部分.也是我们判断线性方程组解的情形的重要手段.下面就来具体讨论、探究数字矩阵秩的求解方法. 1.预备知识 定义1.1:矩阵A中不为零的子式的最高阶数称为A的秩.记作() r A 定义1.2:矩阵的行秩就是矩阵行向量的秩;矩阵的列秩就是矩阵列向量的秩. 矩阵A中任意选定k行和k列,位于这些选定的行和列的交点定义1.3:在一个s n 上的2k个元素按原来的次序所组成k级行列式,称为A的一个k级子式. 定义1.4:向量组的极大线性无关组所含向量的个数称为这个向量组的秩. 2.矩阵的秩的性质 1)现在我们来研究矩阵的秩具有哪些性质,从而利用这些性质求矩阵的秩。 性质2.1矩阵的行秩与列秩相等.

矩阵及其秩在高等代数中应用论文

矩阵及其秩在高等代数中的应用 玲毓 师高等专科学校数学教育 摘要:在矩阵理论中,矩阵的秩是一个重要的概念。它是矩阵的一个数量特征,而且是初等变换下的不变量。矩阵的秩与矩阵是否可逆、线性方程组的解、极大无关组的情况等都有着密切的联系。通过引用了大量的实例说明了矩阵及其秩是高等代数中的一个重要的概念,希望通过本文的介绍可以让读者对矩阵及其秩有更深的了解。 关键词:矩阵;秩;变换;可逆

1 引言矩阵作为数学工具之一有其重要的实用价值,它常见于很多科学中,如:线性代数、线 性规划、统计分析、以及组合数学等,而本文主要介绍其在高等代数中的应用。高等代数是用辩证观点和严密的逻辑推理方法来体现的一门课程它常见于很多科学中, 矩阵作为数学工具之一有其重要的实用价值对其在高等代数中的应用概括为:求解一般的线性方程组,判定向量组的线性相关性,求极大无关组,化二次型为标准型,求规正交基,对称变换,正交变换的判断,欧氏空间中的积的表示。 这就使矩阵成为数学中一个极其重要而且广泛的工具.本文对矩阵的基本理论及其秩的应用进行具体阐述。 2矩阵的基本理论 定义2.1 矩阵是一简化了的表格,一般地

111212122212 n n m m mn a a a a a a ? ? ? ??? 称为n m ?矩阵,它有m 行、n 列,共n m ?个元素,其中第i 行、第j 列的元素用ij a 表 示.通常我们用大写黑体字母,,A B C 表示矩阵.为了标明矩阵的行数m 和列数n ,可用 m n A ?或() ij m n a ?表示.矩阵既然是一表,就不能像行列式那样算出一个数来. 定义2.2 所有元素均为0的矩阵,称为零矩阵,记作0. 定义2.3 如果矩阵A 的行、列数都是n ,则称A 为n 阶矩阵,或称为n 阶方阵. 定义2.4 令A 是数域F 上一个n 阶矩阵.若是存在F 上n 阶矩阵B ,使得, AB BA I == 那么A 叫作一个可逆矩阵,而B 叫作A 的逆矩阵.用1 A -来表示. 定义2.5 主对角线上元素全为1的对角矩阵,叫做单位矩阵,记为I ,即 1000100 1I ?? ? ?= ? ??? n ?1矩阵(只有一行)又称为n 维行向量;1?n 矩阵(只有一列)又称为n 维列向量.行向量、列向量统称为向量.向量通常用小写黑体字母a ,b ,x ,y 表示.向量中的元素又称为向量的分量.11?矩阵因只有一个元素,故视之为数量,即()a a =. 定义2.6 把矩阵A 的行与列互换所得到的矩阵称为矩阵A 的转置矩阵,记为T A ,即 111212122212 n n m m mn a a a a a a A a a a ?? ? ?= ? ? ?? ,11 21 11222212m m T n n mn a a a a a a A a a a ?? ? ? = ? ??? 若方阵A 满足T A A =,则称A 为对称矩阵. 定义2.7n 阶矩阵有一条从左上角到右下角的主对角线.n 阶矩阵A 的元素按原次序构成的n 阶行列式,称为矩阵A 的行列式,记作A . 定义2.8 设有n 阶方阵 111212122212 n n n n nn a a a a a a A a a a ?? ? ? = ? ??? 的行列式A 有2 n 个代数余子式ij A (j i ,=1,2,…,n ),将它们按转置排列,得到矩阵

正交矩阵的秩及其性质开题报告

本科毕业论文开题报告 题目:正交矩阵的秩及其性质 学院:数学学院 专业:数学与应用数学 班级: 姓名: 指导教师: 申报日期:

开题报告填写要求 1、开题报告作为毕业论文(设计)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业论文(设计)工作前期内完成,经指导教师签署意见审查后生效。 2、开题报告内容必须用黑墨水笔工整书写,按教务处统一设计的电子文档标准格式打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见。 3、学生查阅资料的参考文献应在3篇及以上(不包括辞典、手册),开题报告的字数要在1000字以上。 4、有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2004年9月26日”或“2004-09-26”。

毕业论文开题报告 一.本课题的研究意义 (一)理论意义 矩阵是数学中重要的基本概念,是代数学的重要研究对象之一,也是数学与其它领域研究与应用的一个重要工具.矩阵是线性代数中的核心内容 ,而正交矩阵是一种较常用的矩阵 ,正交矩阵在矩阵论中占有重要地位,有着广泛的应用.对其本身的研究来说是富有创造性的领域. 正交矩阵不仅在线性代数中,而且在理工各学科领域的数学方法中。本文对矩阵进行了较为深入的研究,得到了正交矩阵的一系列常用性质,相关性质的概括、改进和推广,以及正交矩阵在近世代数,点集拓扑中的应用等的研究,对矩阵的理论研究有重要意义. 二.本课题的基本内容 1 正交矩阵及其相关定义 2 正交矩阵的性质 3 正交矩阵在线性代数中的应用 4 正交矩阵在点集拓扑中的应用 5 正交矩阵在近世代数中的应用 毕业论文开题报告

矩阵的秩及其应用

矩阵的秩及其应用 摘要:本文主要介绍了矩阵的秩的概念及其应用。首先是在解线性方程组中的应用,当矩阵的秩为1时求特征值;其次是在多项式中的应用,最后是关于矩阵的秩在解析几何中的应用。对于每一点应用,本文都给出了相应的具体的实例,通过例题来加深对这部分知识的理解。 关键词:矩阵的秩; 线性方程组; 特征值; 多项式 引言: 阵矩的秩是线性代数中的一个概念,它描述了矩阵的一个数值特征。它是矩阵 的一个重要性质。在判定向量组的线性相关性,线性方程组是否有解,求矩阵的特征值,在多项式、空间几何中等多个方面都有广泛的应用。由于矩阵的秩的重要作用和地位,需要我们认真学习。 1.矩阵的秩及其求法 1.1矩阵的秩的定义 定义1.1.1[1] 矩阵A 的行(列)向量组的秩称为矩阵A 的行(列)秩。 定义1.1.2[2] 矩阵的列向量组(或行向量组)的任一极大线性无关组所含向量的个数称为矩阵的秩。 定义1.1.3[1] 设在矩阵A 中有一个不等于零的r 阶子式,且所有的1r +子式(如果存在的话)全等于零,则称矩阵A 的秩为r ,记为()r A r =或秩()A r =。零矩阵的秩规定为零。 注:由定义可以看出

(1)若A 为n m ?矩阵,则()r A m ≤,也()r A n ≤,即()min{,}r A m n = (2) ()()T r A r A = ,()()r kA r A = ,k 为非零数 1.2 矩阵的秩的求法 定义法和初等变换法是我们常用的求矩阵的秩的两种方法,下面就来比较一 下这两种方法。 方法1 按定义 例1.2.1 求矩阵A =?? ????????--413112212228 32的秩 解 按定义3解答,容易算出二阶子式 12232-0≠,而矩阵的所有三阶子式 13 1 2122832--=0,43112122232-=0,41312212 2 8 3--=0,4 1112222 8 2 -=0 所以 ()2r A = 方法2 初等变换法 引理1.2.1[1] 初等变换不改变矩阵的秩。 例1.2.1求矩阵23822122121314A -?? ??=-?? ????的秩 解 用“→”表示对A 作初等变换,则有 A →13142122122382????-????-??→131406440966????-????-??→131406440000?? ?? -??????=B ,在矩阵B 中易 知,所有三阶子式全为零,且有一个二阶子式 1306 ≠0. 所以()2r B =, 可得

矩阵秩的相关结论证明及举例

华北水利水电大学 矩阵秩的相关结论证明及举例 课程名称:线性代数 专业班级:能源与动力工程(热动)101班 成员组成:王威威 联系方式: 2014年12月30日

一:摘要 矩阵的秩是数学中一个极其重要并广泛应用的概念,是线性代数的一个重要研究对象,因此,矩阵的秩的结论作为线性代数的一个重要结论已经渗透到各章节之中,他把线性代数的内容紧紧联系在一起,矩阵的秩作为矩阵的一个重要本质属性则贯穿矩阵理论的始终,所以对矩阵秩的研究不仅能帮助我们更好地学习矩阵,而且也是我们学习好线性代数各章节的有力保证。 关键词:矩阵秩结论证明 英文题目 Abstract: Matrix rank is an extremely important and widely us ed in the mathematical concept, is an important res earch object of linear algebra, as a result, the c onclusion of the rank of matrix as an important co nclusion of linear algebra has penetrated into chapt er, associate the content of the positive linear al gebra and matrix of rank as an important essential attribute of the matrix, however, throughout the c ourse of the theory of matrix so that the study o f matrix rank can not only help us better learning matrix and chapter we learn good linear algebra Key words:matrix rank conclusion proof

矩阵秩重要知识点总结_考研必看

一.矩阵等价 行等价:矩阵A经若干次初等行变换变为矩阵B 列等价:矩阵A经若干次初等列变换变为矩阵B 矩阵等价:矩阵A经若干次初等行变换可以变为矩阵B,矩阵B经若干次初等行变换可以变成矩阵A,则成矩阵A和B等价 矩阵等价的充要条件 1.存在可逆矩阵P和Q,PAQ=B 2.R(A)=R(B) 二.向量的线性表示 Case1:向量b能由向量组A线性表示: 充要条件: 1.线性方程组A x=b有解 (A)=R(A,b) Case2:向量组B能由向量组A线性表示 充要条件: R(A)=R(A,B) 推论∵R(A)=R(A,B),R(B)≤R(A,B) ∴R(B)≤R(A) Case3:向量组A能由向量组B线性表示 充要条件: R(B)=R(B,A) 推论∵R(B)=R(A,B),R(A)≤R(A,B) ∴R(A)≤R(B) Case4:向量组A和B能相互表示,即向量组A和向量组B等价 充要条件: R(A)=R(B)=R(A,B)=R(B,A) Case5:n维单位坐标向量组能由矩阵A的列向量组线性表示 充要条件是: R(A)=R(A,E) n=R(E)<=R(A),又R(A)>=n,所以R(A)=n=R(A,E) 三.线性方程组的解 1.非齐次线性方程组 (1)R(A)=R(A,B),方程有解. (2)R(A)=R(A,B)=n,解唯一. (3)R(A)=R(A,B)

对矩阵的秩的有关理解及其在线性代数中的应用

对矩阵的秩的有关理解及其在线性代数中的应用 摘 要:本文叙述了矩阵秩的几个等价定义,并且给出了几个相关秩的解法.通过例子来验证和探讨了矩阵秩在线性代数中的应用,这些知识对我们理解矩阵的本质,灵活运用矩阵的秩去分析相关问题有一定的意义和作用. 关键词:矩阵的秩;秩的解法;秩的应用 On the Rank of Matrix relating to the understanding Extremely in the Application of Linear Algebra Abstract : This article describes several equivalent definitions of matrix rank, and gives the solution of some rank. Through example to verify that the discussion and application of matrix in linear algebra, this knowledge to our understanding of the nature of the matrix, flexible use of matrix rank to have a certain meaning and analysis of related problems. Key words : rank of matrix; rank method; the application of rank 0 前言 矩阵的理论是线性代数的理论基础。而在矩阵的理论中,矩阵的秩是一个基本的理论概念,也是矩阵最重要的数量特征之一,他在初等变换下是一个不变量.它是反应矩阵固有特性的一个重要概念.矩阵作为线性代数的重要工具,已渗透到各章内容之中,并成为行列式、线性代数方程组、线性空间、欧氏空间和二次型的纽带,它把线性代数各章节贯串成为一个整体.而矩阵的秩几乎贯穿矩阵理论的始终,是矩阵一个重要的、本质的属性,在求方阵的逆、判断线性方程组是否有解以及有多少个解、判断向量组的线性相关性、求矩阵的特征值等方面,矩阵的秩都有着广泛的应用. 1 矩阵秩的概念 首先给出矩阵秩的几个等价定义 定义1 设s ,矩阵中不为0子式的最高阶数,即A 有r 阶子式不为0,任何1r +阶子式(如果存在的话)全为0,称r 为矩阵A 的秩。记做()R A r =. 从本质上说,矩阵的秩就是矩阵中不等于0的姿势的最高阶数。这个不为0的子

矩阵秩的等式与不等式的证明及应用

矩阵秩的等式与不等式的证明及应用 矩阵是高等代数的一个重要概念,也是线性代数中的主要研究对象,同时也是一种应用广泛的数学工具.不管是在数学学习还是实际问题中,我们常常会遇到许多比较复杂的计算问题,而使用矩阵来解决这些难题,往往会使问题简单化.早在古代,我国的《九章算术》就已经对矩阵有了初步的描述.而矩阵的理论起源,可追溯到18世纪.高斯在1801年、艾森斯坦在1844-1852年,先后把一个线性变换的全部系数用一个字母来表示,艾森斯坦还强调乘法次序的重要性.这些工作都孕育了矩阵的思想,但矩阵的正式定义直到1858年才由凯莱给出来.凯莱在《矩阵论的研究报告》中全面阐述了矩阵的一些理念,同时他还在文中给出了许多矩阵的运算法则以及矩阵转置的定义,证明了矩阵加法中的可交换性与可结合性,更为重要的是他还给出了伴随矩阵、矩阵可逆的概念.由于凯莱的奠基性工作,一般认为他是矩阵理论的创始人. 而矩阵的秩是矩阵的一个重要特征,是矩阵理论中研究的一个重要内容,它具有许多的重要性质.对于矩阵的秩的等式与不等式,近年来有一些学者对其进行了研究.张英,乔世东利用同解方程组、标准形、线性空间和同态基本定理来证明矩阵秩的一些性质;王廷明利用构造分块矩阵并通过广义初等变换的方法,证明矩阵秩的(不)等式;殷倩把分散的知识点及重要的常用结论整合在一起,归纳整理出若干常用有效的证明方法;徐小萍给出五个矩阵秩的不等式,并利用代数理论对其进行证明,然后用一些典型例题对其应用进行分析.在前人研究的基础上,本文进一步系统的探究了矩阵秩的等式与不等式及其应用.首先介绍矩阵秩的等式与不等式的研究背景和国内外的研究现状,其次介绍矩阵秩的定义与简单性质,然后给出一些矩阵秩的等式与不等式的证明,最后通过例子研究其在多方面的应用。 1

相关主题
文本预览
相关文档 最新文档